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7 Quaternions and Rotations

7.1 Quaternions

A quaternion may be defined to be an expression of the form w+xi+yj+zk,
where w, x, y and z are real numbers. There are operations of addition,
subtraction and multiplication defined on the set H of quaternions. These
are binary operations on that set.

Quaternions were introduced into mathematics in 1843 by William Rowan
Hamilton (1805–1865).

The definitions of addition and subtraction are straightforward. The sum
and difference of two quaternions w + xi + yj + zk and w′ + x′i + y′j + z′k
are given by the formulae

(w + xi+ yj + zk) + (w′ + x′i+ y′j + z′k)

= (w + w′) + (x+ x′)i+ (y + y′)j + (z + z′)k;

(w + xi+ yj + zk)− (w′ + x′i+ y′j + z′k)

= (w − w′) + (x− x′)i+ (y − y′)j + (z − z′)k.

If the quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k are denoted by q
and q′ respectively, then we may denote the sum and the difference of these
quaternions by q + q′ and q − q′.

These operations of addition and subtraction of quaternions are binary
operations on the set H of quaternions. It is easy to see that the operation
of addition is commutative and associative, and that the zero quaternion
0 + 0i+ 0j + 0k is an identity element for the operation of addition.

The operation of subtraction of quaternions is neither commutative nor
associative. This results directly from the fact that the operation of subtrac-
tion on the set of real numbers is neither commutative nor associative.

Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z, and there is a corresponding quaternion −q, with −q =
(−w) + (−x)i + (−y)j + (−z)k. Then q + (−q) = (−q) + q = 0, where 0
here denotes the zero quaternion 0 + 0i+ 0j+ 0k. Thus, to every quaternion
q there corresponds a quaternion −q that is the inverse of q with respect to
the operation of addition.

These properties of quaternions ensure that the quaternions constitute a
group with respect to the operation of addition.

The definition of quaternion multiplication is somewhat more compli-
cated than the definitions of addition and subtraction. The product of two
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quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k is given by the formula

(w + xi+ yj + zk)× (w′ + x′i+ y′j + z′k)

= (ww′ − xx′ − yy′ − zz′) + (wx′ + xw′ + yz′ − zy′)i
+(wy′ + yw′ + zx′ − xz′)j + (wz′ + zw′ + xy′ − yx′)k.

We shall often denote the product q × q′ of quaternions q and q′ by qq′.
Given any real number w, let us denote the quaternion w+0i+0j+0k by

w itself. Let us also denote the quaternions 0 + 1i+ 0j+ 0k, 0 + 0i+ 1j+ 0k
and 0 + 0i + 0j + 1k by i, j and k respectively. It follows directly from the
above formula defining multiplication of quaternions that

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

where i2 = i× i, ij = i× j etc. It follows directly from these identities that

ijk = −1,

where ijk = i× (j × k) = (i× j)× k.
Let q be a quaternion, given by the expression w + xi + yj + zk, where

w, x, y and z are real numbers. One can easily verify that the quaternion q
can be formed from the seven quaternions w, x, y, z, i, j and k according to
the formula

q = w + (x× i) + (y × j) + (z × k).

The operation of multiplication on the set H of quaternions is not com-
mutative. Indeed i× j = k, but j × i = −k.

One can however verify by a straightforward but somewhat tedious cal-
culation that this operation of multiplication of quaternions is associative.
Moreover the quaternion 1 + 0i + 0j + 0k is an identity element for this
operation of multiplication.

A quaternion w + xi + yj + zk is said to be real if x = y = z = 0. Such
a quaternion may be identified with the real number w. In this way the set
of real numbers may be regarded as a subset of the set of quaternions.

Although quaternion multiplication is not commutative, one can readily
show that a × q = q × a for all real numbers a and for all quaternions q.
Indeed if q = w + xi + yj + zk, where w, x, y and z are real numbers, then
the rules of quaternion multiplication ensure that

a× q = q × a = (aw) + (ax)i+ (ay)j + (az)k.
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Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z. We define the conjugate q of q to be the quaternion q =
w − xi − yj − zk. The definition of quaternion multiplication may then be
used to show that

q × q = q × q = w2 + x2 + y2 + z2.

We define the modulus |q| of the quaternion q by the formula

|q| =
√
w2 + x2 + y2 + z2.

Then qq = qq = |q|2 for all quaternions q. Moreover |q| = 0 if and only if
q = 0.

If q and r are quaternions, and if q and r denote the conjugates of q and
r respectively, then the conjugate q × r of the product q × r is given by the
formula q × r = r × q.

If q is a non-zero quaternion, and if the quaternion q−1 is defined by the
formula q−1 = |q|−2q, then qq−1 = q−1q = 1. We conclude therefore that,
given any non-zero quaternion q, there exists a quaternion q−1 that is the
inverse of q with respect to the property of multiplication.

These properties of quaternions ensure that the non-zero quaternions con-
stitute a group with respect to the operation of multiplication.

7.2 Quaternions and Vectors

Let q be a quaternion. We can write

q = q0 + q1i+ q2j + q3k,

where q0, q1, q2 and q3 are real numbers. We can then write

q = q0 + ~q

where
~q = q1i+ q2j + q3k.

Following Hamilton, we can refer to q0 as the scalar part of the quaternion q,
and we can refer to ~q as the vector part of the quaternion q. Moreover ~q may
be identified with the vector (q1, q2, q3) in three-dimensional space whose
components (with respect to some fixed orthonormal basis) are q1, q2 and
q3. Thus a quaternion may be regarded as, in some sense, a formal sum of a
scalar and a vector.

In particular, we can regard vectors as a special type of quaternion: a
quaternion q0 + q1i + q2j + q3k represents a vector ~q in three-dimensional
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space if and only if q0 = 0. Thus vectors are identified with those quaternions
whose scalar part is zero.

Now let ~q and ~r be vectors, with Cartesian components (q1, q2, q3) and
(r1, r2, r3) respectively. If we consider ~q and ~r to be quaternions (with zero
scalar part), and multiply them together in accordance with the rules of
quaternion multiplication, we find that

~q ~r = −(~q . ~r) + (~q ∧ ~r),

where ~q .~r denotes the scalar product of the vectors ~q and ~r, and ~q∧~r denotes
the vector product of these vectors. Thus the scalar part of the quaternion
~q ~r is −~q . ~r, and the vector part is ~q ∧ ~r.

Note that ~q ~r is itself a vector if and only if the vectors ~q and ~r are
orthogonal.

More generally, let q and r be quaternions with scalar parts q0 and r0 and
with vector parts ~q and ~r, so that

q = q0 + ~q, r = r0 + ~r.

Then
qr = q0r0 − ~q . ~r + q0~r + r0~q + ~q ∧ ~r,

and thus the scalar part of the quaternion qr is

q0r0 − ~q . ~r,

and the vector part of the quaternion qr is

q0~r + r0~q + ~q ∧ ~r.

Now let ~u, ~v and ~w be an orthonormal triad of vectors in three dimensional
space, with

|~u| = |~v| = |~w| = 1,

~u ∧ ~v = −~v ∧ ~u = ~w,

~v ∧ ~w = −~w ∧ ~v = ~u,

~w ∧ ~u = −~u ∧ ~w = ~v,

If we multiply these with one another in accordance with the rules for quater-
nion multiplication, we find that

~u2 = ~v2 = ~w2 = −1,
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~u~v = −~v ~u = ~w,

~v ~w = −~w~v = ~u,

~w ~u = −~u ~w = ~v,

(Note that the rules for multiplying ~u, ~v and ~w with one another correspond
to Hamilton’s rules for multiplying the basic quaternions i, j and k with
one another, whenever ~u, ~v and ~w constitute a positively oriented basis of
three-dimensional space.)

7.3 Quaternions and Rotations

Let us consider the effect of a rotation through an angle θ about an axis in
three-dimensional space passing through the origin. Let l, m and n be the
cosines of the angles between the axis of the rotation and the three coordinate
axes. In Cartesian coordinates, the axis of rotation is then in the direction
of the vector (l,m, n), where l2 +m2 +n2 = 1. The angle θ and the direction
cosines l, m, n of the axis of the rotation together determine a quaternion q,
with

q = cos
θ

2
+ sin

θ

2
(li+mj + nk).

Let q be the conjugate of q, given by the formula

q = cos
θ

2
− sin

θ

2
(li+mj + nk).

Let (x, y, z) and (x′, y′, z′) be the Cartesian coordinates of two points in three-
dimensional space, and let r and r′ be the quaternions r and r′ be defined
by

r = xi+ jy + zk and r′ = x′i+ y′j + z′k.

We shall show that if r′ = qrq then a rotation about the axis (l,m, n) through
an angle θ will send the point (x, y, z) to the point (x′, y′, z′). (The effect
of a rotation through an angle θ in the opposite sense can be calculated by
replacing θ by −θ in the definition of the quaternion q.)

In this way the algebra of quaternions may be used in areas of appli-
cation such as computer-aided design and the programming of computer
games, in order to calculate the results of rotations applied to points in
three-dimensional space.

Let ~u, ~v, ~w be an orthonormal basis of three-dimensional space with
~w = ~u ∧ ~v (as above), and with ~u directed along the axis of the rotation.
Let θ be a real number, specifying the angle of rotation, and let q be the
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quaternion

q = cos
θ

2
+

(
sin

θ

2

)
~u

= cos
θ

2
+ l sin

θ

2
i+m sin

θ

2
j + n sin

θ

2
k,

where
~u = (l,m, n), l2 +m2 + n2 = 1.

Then

q−1 = q = cos
θ

2
−
(

sin
θ

2

)
~u,

since

q q =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
− sin

θ

2
~u

)
= cos2 θ

2
+

(
sin2 θ

2

)
~u . ~u

−
(

sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
+ sin2 θ

2
= 1.

Also we find that

q2 =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
+ sin

θ

2
~u

)
= cos2 θ

2
−
(

sin2 θ

2

)
~u . ~u

+ 2 sin
θ

2
cos

θ

2
~u+

(
sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
− sin2 θ

2
+ 2 sin

θ

2
cos

θ

2
~u

= cos θ + sin θ ~u.

Let us now calculate the quaternion products q~u q, q~v q and q ~w q. We
first note that

~u q = q ~u, ~v q = q~v, ~w q = q ~w.
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Therefore

q~u q = qq ~u = ~u,

q~v q = q2~v = (cos θ + sin θ ~u)~v

= cos θ~v + sin θ ~w,

q ~w q = q2 ~w = (cos θ + sin θ ~u)~w

= cos θ ~w − sin θ~v

Thus if we define T : R3 → R3 to be the transformation that sends a vector ~r
to q~r q, then T fixes the vector ~u, rotates the vector ~v about the direction
of ~u through an angle θ towards ~w, and rotates ~w about the direction of ~u
through an angle θ towards −~v. This transformation T is therefore a rotation
about the direction of ~u through an angle θ.

Problems

1. Calculate the products q × r and r × q of the quaternions q and r in
each of the following cases:

(i) q = 1− i and r = 2i− j − k;

(ii) q = 2j + k and r = j + 2k;

(iii) q = 1− i− j and r = 2i+ j − k.

(This requires you to express q×r and r×q in the form w+xi+yj+zk
for appropriate real numbers w, x, y and z).

2. Let q and r be the quaternions defined by q = 1
2

+ 1
2
i+ 1

2
j+ 1

2
k and r =

i−j. Calculate qrq (where q denotes the conjugate of the quaternion q).
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