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7 Trigonometric and Exponential Functions

7.1 Basic Trigonometric Identities

An anticlockwise rotation about the origin through an angle of θ radians
sends a point (x, y) of the plane to the point (x′, y′), where{

x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ

(1)

(This follows easily from the fact that such a rotation takes the point (1, 0) to
the point (cos θ, sin θ) and takes the point (0, 1) to the point (− sin θ, cos θ).)
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An anticlockwise rotation about the origin through an angle of φ radians
then sends the point (x′, y′) of the plane to the point (x′′, y′′), where{

x′′ = x′ cosφ− y′ sinφ
y′′ = x′ sinφ+ y′ cosφ

(2)

Now an anticlockwise rotation about the origin through an angle of θ + φ
radians sends the point (x, y), of the plane to the point (x′′, y′′), and thus{

x′′ = x cos(θ + φ)− y sin(θ + φ)
y′′ = x sin(θ + φ) + y cos(θ + φ)

(3)

But if we substitute the expressions for x′ and y′ in terms of x, y and θ
provided by equation (1) into equation (2), we find that{

x′′ = x(cos θ cosφ− sin θ sinφ)− y(sin θ cosφ+ cos θ sinφ)
y′′ = x(sin θ cosφ+ cos θ sinφ) + y(cos θ cosφ− sin θ sinφ)

(4)

On comparing equations (3) and (4) we see that

cos(θ + φ) = cos θ cosφ− sin θ sinφ, (5)

and
sin(θ + φ) = sin θ cosφ+ cos θ sinφ. (6)

On replacing φ by −φ, and noting that cos(−φ) = cosφ and sin(−φ) =
− sinφ, we find that

cos(θ − φ) = cos θ cosφ+ sin θ sinφ, (7)

and
sin(θ − φ) = sin θ cosφ− cos θ sinφ. (8)

If we add equations (5) and (7) we find that

cos θ cosφ = 1
2
(cos(θ + φ) + cos(θ − φ)). (9)

If we subtract equation (5) from equation (7) we find that

sin θ sinφ = 1
2
(cos(θ − φ)− cos(θ + φ)). (10)

And if we add equations (6) and (8) we find that

sin θ cosφ = 1
2
(sin(θ + φ) + sin(θ − φ)). (11)
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If we substitute φ = θ in equations (5) and (6), and use the identity cos2 θ+
sin2 θ = 1, we find that

sin 2θ = 2 sin θ cos θ (12)

and
cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ. (13)

It then follows from equation (13) that

sin2 θ = 1
2
(1− cos 2θ) (14)

cos2 θ = 1
2
(1 + cos 2θ). (15)

Remark Equations (1) and (2) may be written in matrix form as follows:(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
,(

x′′

y′′

)
=

(
cosφ − sinφ
sinφ cosφ

)(
x′

y′

)
.

Also equation (3) may be written(
x′′

y′′

)
=

(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)(
x
y

)
.

It follows from basic properties of matrix multiplication that(
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

)
=

(
cosφ − sinφ
sinφ cosφ

)(
cos θ − sin θ
sin θ cos θ

)
,

and therefore

cos(θ + φ) = cos θ cosφ− sin θ sinφ

sin(θ + φ) = sin θ cosφ+ cos θ sinφ.

This provides an alternative derivation of equations (5) and (6).

7.2 Basic Trigonometric Integrals

On differentiating the sine and cosine function, we find that

d

dx
sin kx = k cos kx (16)

d

dx
cos kx = −k sin kx. (17)
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for all real numbers k.
It follows that ∫

sin kx = −1

k
cos kx+ C (18)∫

cos kx =
1

k
sin kx+ C, (19)

for all non-zero real numbers k, where C is a constant of integration.

Theorem 7.1 Let m and n be positive integers. Then∫ π

−π
cosnx dx = 0, (20)∫ π

−π
sinnx dx = 0, (21)∫ π

−π
cosmx cosnx dx =

{
π if m = n,
0 if m 6= n,

(22)∫ π

−π
sinmx sinnx dx =

{
π if m = n,
0 if m 6= n,

(23)∫ π

−π
sinmx cosnx dx = 0. (24)

Proof First we note that∫ π

−π
cosnx dx =

[
1

n
sinnx

]π
−π

=
1

n
(sinnπ − sin(−nπ)) = 0

and ∫ π

−π
sinnx dx =

[
− 1

n
cosnx

]π
−π

= − 1

n
(cosnπ − cos(−nπ)) = 0

for all non-zero integers n, since cosnπ = cos(−nπ) = (−1)n and sinnπ =
sin(−nπ) = 0 for all integers n.

Let m and n be positive integers. It follows from equations (9) and (10)
that ∫ π

−π
cosmx cosnx dx = 1

2

∫ π

−π
(cos((m− n)x) + cos((m+ n)x)) dx.

and ∫ π

−π
sinmx sinnx dx = 1

2

∫ π

−π
(cos((m− n)x)− cos((m+ n)x)) dx
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But ∫ π

−π
cos((m+ n)x) dx = 0

(since m+ n is a positive integer, and is thus non-zero). Also∫ π

−π
cos((m− n)x) dx = 0 if m 6= n,

and ∫ π

−π
cos((m− n)x) dx = 2π if m = n

(since cos((m− n)x) = 1 when m = n). It follows that∫ π

−π
cosmx cosnx dx =

∫ π

−π
sinmx sinnx dx = 1

2

∫ π

−π
cos((m− n)x) dx

=

{
π if m = n;
0 if m 6= n.

Using equation (11), we see also that∫ π

−π
sinmx cosnx dx = 1

2

∫ π

−π
(sin((m+ n)x) + sin((m− n)x)) dx = 0

for all positive integers m and n. (Note that sin((m − n)x) = 0 in the case
when m = n).

7.3 The Exponential Function

The exponential function x 7→ ex is characterized by the properties that
e0 = 1 and

d

dx
ex = ex.

This last identity is an example of a differential equation, and it follows
from the general theory of differential equations that the conditions described
above uniquely characterize the exponential function amongst differentiable
functions, so that any differentiable function f :R → R with the properties
that f(0) = 1 and

d

dx
f(x) = f(x)

must satisfy the equation f(x) = ex for all real numbers x. We can apply
this result in order to prove that ea+b = eaeb for all real numbers a and b.
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Let a be some fixed real number. A simple application of the Chain Rule for
differentiation shows that

d

dx
ex−a = ex−a.

It follows that if we define f(x) = eaex−a for all real numbers x then f(0) = 1
and

d

dx
f(x) = f(x),

and therefore f(x) = ex for all real numbers x. Thus ex = eaex−a for all real
numbers x and a. On setting x = a + b, we find that ea+b = eaeb for all
real numbers a and b. This standard property of the exponential function is
therefore a consequence of the differential equation (d/dx) ex = ex and the
initial condition e0 = 1 satisfied by the exponential function.

It follows from the theory of Taylor series that this exponential function
may be expanded as an infinite series as follows:

ex =
∞∑
n=0

xn

n!
= 1 +

x

1
+
x2

2
+
x3

6
+
x4

24
+ · · ·

The infinite series on the right hand side of this formula converges for all
values of the real number x. The following result will enable us to analyse
the convergence of this series.

Proposition 7.2 Let x be a real number, and let an = xn/n! for all positive
integers n. Let t be a real number satisfying 0 < t < 1, and let N be a positive
integer chosen large enough to ensure that tN > |x|. Then |aN+k(x)| <
tk|aN(x)| and

|aN+1(x)|+ |aN+2(x)|+ · · ·+ |aN+k(x)| < t

1− t
|aN(x)|

for all positive integers k.

Proof The definition of an(x) ensures that an+1(x) = xan(x)/(n+ 1) for all
non-negative integers n. It follows that

|an+1(x)| = |x| |an(x)|
|n+ 1|

< t|an(x)| whenever n ≥ N.

Using the Principle of Mathematical Induction, it follows that |aN+k(x)| <
tk|aN(x)| for all non-negative integers k. Therefore

|aN+1(x)|+ |aN+2(x)|+ · · ·+ |aN+k(x)| ≤ (t+ t2 + · · ·+ tk)|aN(x)|
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for all positive integers k. But

(1− t)(t+ t2 + · · ·+ tk) = (t− t2) + (t2 − t3) + · · · (tk − tk+1) = t− tk+1

and therefore

t+ t2 + · · ·+ tk =
t− tk+1

1− t
.

It follows from this that

t+ t2 + · · ·+ tk <
t

1− t
provided that 0 < t < 1.

We find therefore that

|aN+1(x)|+ |aN+2(x)|+ · · ·+ |aN+k(x)| < t

1− t
|aN(x)|

as required.

Corollary 7.3 Let x be a real number, and let an = xn/n! for all positive
integers n. Let t be a real number satisfying 0 < t < 1, and let N be a positive
integer chosen large enough to ensure that N > 2|x|. Then |aN+k(x)| <
2−k|aN(x)| and

−|aN(x)| < aN+1(x) + aN+2(x) + · · ·+ aN+k(x) < |aN(x)|

for all positive integers k.

Proof If u and v are real numbers then −|u| ≤ u ≤ |u|, and −|v| ≤ v ≤ |v|,
and therefore −(|u|+ |v|) ≤ u+v ≤ |u|+ |v|. It follows that |u+v| ≤ |u|+ |v|
for all real numbers u and v. A straightforward proof by induction on k now
shows that ∣∣∣∣∣

k∑
j=1

aN+j(x)

∣∣∣∣∣ ≤
k∑
j=1

|aN+j(x)|

for all positive integers k. On applying the results of Proposition 7.2 with
t = 1

2
, we find that the right hand side of this inequality is bounded above

by |aN(x)|. Therefore

−|aN(x)| < aN+1(x) + aN+2(x) + · · ·+ aN+k(x) < |aN(x)|,

for all positive integers k. Also |aN+k(x)| ≤ 2−k|an(x)|, as required.
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Suppose now that we wish to calculate the value of ex, for some value of
x, to within an error of at most ε, where ε > 0. Let us define

pm(x) =
m∑
n=0

xn

n!
= 1 +

x

1
+
x2

2
+
x3

6
+ · · ·+ xm

m!

for all positive integers m. Now we can pick a value of N (depending on
the choice of x) which is large enough to ensure that |x|N/N ! < ε. Indeed
suppose we first pick some natural number M satisfying M > 2|x|. Then

|aM+k(x)| < 1

2k
|aM(x)| for all positive integers k, where an(x) = xn/n!.

We can therefore make aM+k(x) as close to zero as we wish by choosing a
sufficiently large value of k.

Example Suppose that x = 5. We can apply the above results with M = 11.
Now a11(x) = 511/11! = 1.2232474798 to 10 decimal places. Using the fact
that 210 = 1024 > 1000, we find that a21(x) < 0.00123, a31(x) < 0.00000123,
a41(x) < 0.00000000123, etc. Indeed a11+10q(x) < 1.23×10−3q for all positive
integers q.

Suppose then that we choose N large enough to ensure that N > 2|x| and
|x|N/N ! < ε. It then follows from Corollary 7.3 that pN(x)− ε < pN+k(x) <
pN(x) + ε for all positive integers k. This fact is sufficient to guarantee the
convergence of the Taylor series for the exponential function. The sum of
this Taylor series is the limit lim

k→∞
pN+k(x) of the partial sums pN+k(x) is

k → ∞. Moreover pN(x) − ε < ex < pN(x) + ε provided that N is chosen
large enough to ensure that N > 2|x| and |x|N/N ! < ε. Thus suppose we
wish, for example, to find the value of ex, for some real number x, to an
accuracy of r decimal places. We can choose a natural number N that is
large enough to ensure that N > 2|x| and |x|N/N ! < 10−r. Then the sum
pN(x) of the first N + 1 terms of the Taylor series for ex will approximate
to the value of ex to within an error less than 10−r. We conclude from this
that, no matter how large the real number x that we choose, the values of the
partial sums pn(x) of the Taylor series for ex will always converge to some
real number lim

n→∞
pn(x), and this limit is the value of the exponential ex of x.

Example Suppose we need to calculate the value of e3 to 6 decimal places.
Let an(3) = 3n/n! for all non-negative integers n. Then a7(3) = 0.4339285714
to 10 decimal places. Now 220 > 106. The results of Corollary 7.3 guarantee
that a27(3) < 10−6, and that e3 will agree with the sum of the first 28 terms
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of the Taylor series for the exponential function to within an accuracy of
10−6. And indeed

327 = 7625597484987, 27! = 10888869450418352160768000000,

and therefore a27(3) ≈ 7.00311223283×10−16. It follows that in fact the sum
of these first 28 terms is guaranteed to agree with the value of e3 to within
an accuracy of 10−15.

7.4 Basic Properties of Complex Numbers

We shall extend the definition of the exponential function so as to define a
value of ez for any complex number z. First we note some basic properties
of complex numbers.

A complex number is a number that may be represented in the form x+iy,
where x and y are real numbers, and where i2 = −1. The real numbers x
and y are referred to as the real and imaginary parts of the complex number
x + iy, and the symbol i is often denoted by

√
−1. One adds or subtracts

complex numbers by adding or subtracting their real parts, and adding or
subtracting their imaginary parts. Thus

(x+iy)+(u+iv) = (x+u)+i(y+v). (x+iy)−(u+iv) = (x−u)+i(y−v).

Multiplication of complex numbers is defined such that

(x+ iy)× (u+ iv) = (xu− yv) + i(xv + uy).

The reciprocal (x + yi)−1 of a non-zero complex number x + iy is given by
the formula

(x+ iy)−1 =
x

x2 + y2
− i y

x2 + y2

One can readily verify that the complex numbers constitute a commutative
group with respect to the operation of addition, and that the non-zero com-
plex numbers constitute a commutative group with respect to the operation
of multiplication.

Complex numbers may be represented by points of the plane (through the
Argand diagram). A complex number x + iy represents, and is represented
by, the point of the plane whose Cartesian coordinates are (x, y). One often
therefore refers to the set of all complex numbers as the complex plane. This
complex plane is pictured as a flat plane, containing lines, circles etc., and
distances and angles are defined in accordance with the usual principles of
plane geometry and trigonometry.
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The modulus of a complex number x + iy is defined to be the quantity√
x2 + y2: it represents the distance of the corresponding point (x, y) of the

complex plane from the origin (0, 0). The modulus of a complex number z is
denoted by |z|.

Let z and w be complex numbers. Then z lies on a circle of radius |z|
centred at 0, and the point z + w lies on a circle of radius |w| centred at
z. But this circle of radius |w| centred at z is contained within the disk
bounded by a circle of radius |z| + |w| centred at the origin, and therefore
|z + w| ≤ |z| + |w|. This basic inequality is essentially a restatement of the
basic geometric result that the length of any side of a triangle is less than or
equal to the sum of the lengths of the other two sides. Indeed the complex
numbers 0, z and z + w represent the vertices of a triangle in the complex
plane whose sides are of length |z|, |w| and |z+w|. The inequality is therefore
often referred to as the Triangle Inequality.

Lemma 7.4 Let z1, z2, . . . , zr be complex numbers. Then

|z1 + z2 + · · ·+ zr| ≤ |z1|+ |z2|+ · · ·+ |zr|.

Proof The result follows easily by induction on the number r of complex
numbers involved. The result is clearly true when r = 1. Suppose that the re-
sult is true when r = m, wherem is some natural number. Let z1, z2, . . . , zm+1

be a collection of m+ 1 complex numbers. Then

|z1 + z2 + · · ·+ zm| ≤ |z1|+ |z2|+ · · ·+ |zm|,

and therefore

|z1 + z2 + · · ·+ zm + zm+1| ≤ |z1 + z2 + · · ·+ zm|+ |zm+1|
≤ |z1|+ |z2|+ · · ·+ |zm|+ |zm+1|.

The result is therefore true for all finite collections of complex numbers, by
the Principle of Mathematical Induction.

Let z and w be complex numbers, and let z = x + iy, w = u + iv. Then
zw = (xu− yv) + i(xv + yu) and therefore

|zw|2 = (xu− yv)2 + (xv + yu)2

= (x2u2 + y2v2 − 2xyuv) + (x2v2 + y2u2 + 2xyuv)

= (x2 + y2)(u2 + v2) = |z|2|w|2.

It follows that |zw| = |z| |w| for all complex numbers z and w. A straight-
forward proof by induction on n then shows that |zn| = |z|n for all complex
numbers z and non-negative integers n.
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7.5 Complex Numbers and Trigonometrical Identities

Let θ and ϕ be real numbers, and let

z = cos θ + i sin θ, w = cosϕ+ i sinϕ,

where i =
√
−1. Then

zw = (cos θ cosϕ− sin θ sinϕ) + i(sin θ cosϕ+ cos θ sinϕ)

= cos(θ + ϕ) + i sin(θ + ϕ).

7.6 The Exponential of a Complex Number

Let z be a complex number. We shall define exp(z) to be the sum of the
infinite series

exp z =
∞∑
n=0

zn/n!.

This infinite series defining exp(z) converges for all values of the complex
number z, as we shall see.

Proposition 7.5 For each complex number z, and for all positive integers m
and n, let us define an(z) = zn/n! and

pm(z) =
m∑
n=0

an(z) =
m+1∑
m=0

zn

n!
.

(Thus pm(z) denotes the sum of the first m + 1 terms of the infinite series
defining exp(z).) Let R be a real number satisfying R ≥ 0. Then |an(z)| ≤
an(R) and

|pm+k(z)− pm(z)| ≤ pm+k(R)− pm(R)

for all non-negative integers m, n and k and for all complex numbers z
satisfying |z| ≤ R.

Proof Let z be a complex number satisfying |z| ≤ R, where R is some real
number satisfying R ≥ 0, and let n, m and k be non-negative integers. Then

|an(z)| = |zn/n!| = |z|n/n! = an(|z|) ≤ an(R).

Moreover a straightforward application of Lemma 7.4 shows that

|pm+k(z)− pm(z)| =

∣∣∣∣∣
m+k∑

n=m+1

an(z)

∣∣∣∣∣ ≤
m+k∑

n=m+1

|an(z)| ≤
m+k∑

n=m+1

an(R)

≤ pm+k(R)− pm(R),

as required.
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Corollary 7.6 Let R and ε be real numbers satisfying R ≥ 0 and ε > 0.
If N is any natural number N chosen large enough to ensure that N > 2R
and aN(R) < ε (which is always possible), then |pN+k(z)− pN(z)| < ε for all
complex numbers z satisfying |z| ≤ R.

Proof It follows from Corollary 7.3 that pN+k(R) − pN(R) < ε for all non-
negative integers k, provided that N > 2R and aN(R) < ε. The required
result therefore follows directly from Proposition 7.5.

The result stated in Corollary 7.6 is sufficient to ensure that, given any
complex number z, the sequence p1(z), p2(z), p3(z), . . . converges to a well-
defined complex number exp z. For, in order that a complex number be
well-defined, we need to have a definite procedure that would enable one to
calculate the real and imaginary parts of this complex number to any desired
degree of accuracy. Suppose that the maximum allowable margin of error
is represented by ε, where ε > 0. Then we could choose a non-negative
real number R satisfying |z| ≤ R, and determine a positive integer N that
is large enough to satisfy the conditions stated in Corollary 7.6. Then the
distance in the complex plane between pN(z) and any subsequent member
pN+k(z) of the above sequence is always less than ε, and therefore the real
and imaginary parts of the complex number pN(z) will determine those of
the limit exp z to an error of at most ε. Thus the value of exp z may be
determined to whatever degree of accuracy is required, simply by choosing a
sufficiently large value of N .

The following result now follows immediately from Corollary 7.6.

Corollary 7.7 Let R and ε be real numbers satisfying R ≥ 0 and ε > 0. If
N is any natural number N chosen large enough to ensure that N > 2R and
aN(R) < ε (which is always possible), then∣∣∣∣∣exp z −

N∑
n=0

zn

n!

∣∣∣∣∣ ≤ ε,

for all complex numbers z satisfying |z| ≤ R.

Corollary 7.7 ensures that if real numbers R and ε are given, where R ≤
0 and ε > 0, and if a natural number N is determined that satisfies the
conditions stated in that corollary, then the sum of the first N + 1 terms of
the infinite series defining exp z will agree with the value of exp z to within an
error of at most ε throughout the disk in the complex plane that is bounded
by a circle of radius R centred at 0.
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Example Here are the first fifteen values of the infinite series that defines
exp(1 + 1

2
i):

p0(1 + 0.5i) = 1,

p1(1 + 0.5i) = 2 + 0.5i,

p2(1 + 0.5i) = 2.375 + i,

p3(1 + 0.5i) = 2.41666666667 + 1.22916666667i,

p4(1 + 0.5i) = 2.3984375 + 1.29166666667i,

p5(1 + 0.5i) = 2.38854166667 + 1.30234375i,

p6(1 + 0.5i) = 2.38600260417 + 1.30329861111i,

p7(1 + 0.5i) = 2.38557167659 + 1.30325365823i,

p8(1 + 0.5i) = 2.38552062019 + 1.30322110615i,

p9(1 + 0.5i) = 2.38551675571 + 1.30321465279i,

p10(1 + 0.5i) = 2.38551669193 + 1.30321381423i,

p11(1 + 0.5i) = 2.38551672425 + 1.30321373509i,

p12(1 + 0.5i) = 2.38551673024 + 1.30321372985i,

p13(1 + 0.5i) = 2.3855167309 + 1.30321372967i,

p14(1 + 0.5i) = 2.38551673096 + 1.30321372968i,

Now |1 + 0.5i| < 2. Now a10(2) = 0.0002821869488536155. It follows that
the real and imaginary parts of pm(1 + 0.5i) should agree with those of
exp(1+0.5i) to at least three decimal places, provided that m ≥ 10, and this
is borne out on examining the above table of values of pm(1 + 0.5i).

The quantity exp z is customarily denoted by ez for any complex num-
ber z.

7.7 Euler’s Formula

Theorem 7.8 (Euler’s Formula)

eiθ = cos θ + i sin θ

for all real numbers θ.

Proof Let us take the real and imaginary parts of the infinite series that
defines eiθ. Now i2 = −1, i3 = −i and i4 = 1, and therefore

eiθ =
∞∑
n=0

inθn

n!
= C(θ) + iS(θ),

13



where

C(θ) = 1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
− θ10

10!
+
θ12

12!
− · · ·

S(θ) = θ − θ3

3!
+
θ5

5!
− θ7

7!
+
θ9

9!
− θ11

11!
+
θ13

13!
− · · · .

However the infinite series that define these functions C(θ) and S(θ) are the
Taylor series for the trigonometric functions cos θ and sin θ. Thus C(θ) =
cos θ and S(θ) = sin θ for all real numbers θ, and therefore eiθ = cos θ+i sin θ,
as required.

Note that if we set θ = π in Euler’s formula we obtain the identity

eiπ + 1 = 0.

The following identities follow directly from Euler’s formula.

Corollary 7.9

cos θ =
1

2

(
eiθ + e−iθ

)
, sin θ =

1

2i

(
eiθ − e−iθ

)
for all real numbers θ.

It is customary to define the values cos z and sin z of the cosine and sine
functions at any complex number z by the formulae

cos z =
1

2

(
eiz + e−iz

)
, sin z =

1

2i

(
eiz − e−iz

)
.

Corollary 7.9 ensures that the cosine and sine functions defined for complex
values of the argument in this fashion agree with the standard functions for
real values of the argument defined through trigonometry.

7.8 Multiplication of Complex Exponentials

Let z and w be complex numbers. Then

ez ew =

(
∞∑
j=0

zj

j!

)(
∞∑
k=0

wk

k!

)
=
∞∑
j=0

∞∑
k=0

zjwk

j!k!
.

Thus the value of the product ez ew is equal to the value of the infinite
double sum that is obtained on adding together the quantities zjwk/(j!k!)
for all ordered pairs (j, k) of non-negative integers. This double sum may
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be evaluated by adding together, for each non-negative integer n, the values
of the quantities zjwk/(j!k!) for all ordered pairs (j, k) of negative numbers
with j + k = n, and then adding together the resultant quantities for all
non-negative values of the integer n. Thus

ezew =
∞∑
n=0

 ∑
(j,k)
j+k=n

zjwk

j!k!

 =
∞∑
n=0

1

n!

(
n∑
j=0

n!

j!(n− j)!
zjwn−j

)
.

(Here we have used the fact that if j + k = n then k = n − j.) Now

the quantity
n!

j!(n− j)!
is the binomial coefficient

(
n

j

)
. It follows from the

Binomial Theorem that
n∑
j=0

n!

j!(n− j)!
zjwn−j = (z + w)n.

If we substitute this identity in the formula for the product ezew, we find
that

ezew =
∞∑
n=0

(z + w)n

n!
= ez+w.

We have thus obtained the following result.

Theorem 7.10

ezew = ez+w

for all complex numbers z and w.

Remark The above theorem was derived by evaluating a double sum by
grouping together terms in a certain fashion. One could question whether or
not such processes can be justified when one is working with infinite series.
In this particular case they can. But a more rigorous proof of Theorem 7.10
may be constructed by showing that, given any complex numbers z and w,
we can make the quantity |p2N(z + w)− pN(z)pN(w)| as small as we please,
provided that we choose a sufficiently large value of N . To see this, let

SN = {(j, k) ∈ Z2 : 0 ≤ j ≤ N and 0 ≤ k ≤ N}
TN = {(j, k) ∈ Z2 : j ≥ 0, k ≥ 0 and j + k ≤ N}

for all non-negative integers N . Then SN ⊂ T2N ⊂ S2N for all non-negative
integers N . Moreover

pN(z)pN(w) =
∑

(j,k)∈SN

zjwk

j!k!
, p2N(z + w) =

∑
(j,k)∈T2N

zjwk

j!k!
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It follows that

p2N(z + w)− pN(z)pN(w) =
∑

(j,k)∈T2N\SN

zjwk

j!k!

and therefore

|p2N(z + w)− pN(z)pN(w)| ≤
∑

(j,k)∈T2N\SN

|z|j|w|k

j!k!
≤

∑
(j,k)∈S2N\SN

|z|j|w|k

j!k!

=
∑

(j,k)∈S2N

|z|j|w|k

j!k!
−

∑
(j,k)∈SN

|z|j|w|k

j!k!

= p2N(|z|)p2N(|w|)− pN(|z|)pN(|w|).

Now the quantities p2N(|z|)p2N(|w|) and pN(|z|)pN(|w|) both converge to
the value e|z|e|w| as N → ∞, and therefore approach one another ever
more closely as N increases. It follows from this that p2N(|z|)p2N(|w|) −
pN(|z|)pN(|w|) may be made as small as we please by choosing a suffi-
ciently large value of N . We can therefore make the quantity |p2N(z + w)−
pN(z)pN(w)| as small as we please by choosing N sufficiently large. It then
follows that ez+w = ezew, since p2N(z + w)→ ez+w and pN(z)pN(w)→ ezew

as N →∞.

On combining the results of Theorem 7.10 and Euler’s Formula (Theo-
rem 7.8), we obtain the following identity for the value of the exponential of
a complex number.

Corollary 7.11

ex+iy = ex(cos y + i sin y)

for all complex numbers x+ iy.

7.9 Complex Roots of Unity

Lemma 7.12 Let ω be a complex number satisfying the equation ωn = 1 for
some positive integer n. Then

ω = e
2πmi
n = cos

2πm

n
+ i sin

2πm

n

for some integer m.
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Proof The modulus |ω| of ω is a positive real number satisfying the equation
|ω|n = |ωn| = 1. It follows that ω = eiθ = cos θ + i sin θ for some real
number θ. Now

(eiθ)2 = eiθeiθ = e2iθ, (eiθ)3 = e2iθeiθ = e3iθ, etc.,

and a straightforward proof by induction on r shows that

(eiθ)r = eriθ = cos rθ + i sin rθ

for all positive integers r. Now ωn = 1. It follows that

1 = (eiθ)n = eniθ = cosnθ + i sinnθ,

and thus cosnθ = 1 and sinnθ = 0. But these conditions are satisfied if
and only if nθ = 2πm for some integer m, in which case ω = e2πmi/n, as
required.

We see that, for any positive integer n, there exist exactly n complex num-
bers ω satisfying ωn = 1. These are of the form e2πmi/n for m = 0, 1, . . . , n−1.
They lie on the unit circle in the complex plane (i.e., the circle of radius 1
centred on 0 in the complex plane) and are the vertices of a regular n-sided
polygon in that plane.
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