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6 Vectors

Vector quantities are objects that have attributes of magnitude and direction.
Many physical quantities, such as velocity, acceleration, force, electric field
and magnetic field are examples of vector quantities. Displacements between
points of space may also be represented using vectors.

Quantities that do not have a sense of direction associated with them
are known as scalar quantities. Such physical quantities as temperature and
energy are scalar quantities. Scalar quantities are usually represented by real
numbers.

6.1 Displacement Vectors

Displacements measure the distance and direction necessary to get from one
point of space to some other point. Consider the relative locations of the
offices of Dr. Smith and Professors Jones and Robinson, which are all to
be found within some university building. Let the office of Dr. Smith be
on the 2nd floor of the building, and that of Prof. Jones on the 3rd floor.
To get from the office of Dr. Smith to that of Prof. Jones it is necessary to
walk 40 meters eastwards along a corridor, then up a flight of steps to the
floor 4 meters above, and then walk 10 meters westwards, turn a corner, and
walk 40 meters northwards. The office of Prof. Jones is therefore situated 30
meters to the east of, 40 meters to the north of, and 4 meters above that of
Dr. Smith; and the displacement between the two offices may be represented
(in appropriate units), by the ordered triple (30, 40, 4) of real numbers. If the
office of Prof. Robinson is located directly beneath that of Prof. Jones, on
the 1st floor, then the displacement from the office of Prof. Jones to that of
Prof. Robinson is represented by the ordered triple (0, 0,−8) (assuming that
the floors of the building are 4 meters apart), and the displacement from the
office of Dr. Smith to that of Prof. Robinson is represented by the ordered
triple (30, 40,−4).

What is the distance from the office of Dr. Smith to that of Prof. Jones?
Let d denote this distance, in metres. And let d′ denote the distance, in
meters, from Dr. Smith’ office to a point on the 2nd floor directly below
Prof. Jones’s office. Then d′ is the length of the hypotenuse of a right-angled
triangle whose other sides are of lengths 30 and 40 meters. It follows from
Pythagoras’s Theorem that d′2 = 302 + 402, and therefore d′ = 50. Similarly
d2 = d′2 + 42 = 2516, and therefore the direct distance d between the offices
of Dr. Smith and Prof. Jones is approximately 50.16 metres.

The ordered triple (30, 50, 4) is said to represent a displacement vector of
length 50.16 (to two decimal places), and measures the displacement between
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the offices of Dr. Smith and Prof. Jones.

Now let us approach the notion of displacement vector more formally.
Points of three-dimensional space may be represented, in a Cartesian co-
ordinate system, by ordered triples (x, y, z) of real numbers. Two ordered
triples (x1, y1, z1) and (x2, y2, z2) of real numbers represent the same point of
three-dimensional space if and only if x1 = x2, y1 = y2 and z1 = z2. The
point whose Cartesian coordinates are given by the ordered triple (0, 0, 0) is
referred to as the origin of the Cartesian coordinate system.

It is usual to employ a Coordinate system such that the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1) are situated at a unit distance from the origin (0, 0, 0),
and so that the three lines that join the origin to these points are mutually
perpendicular. Moreover it is customary to require that if the thumb of
your right hand points in the direction from the origin to the point (1, 0, 0),
and if the first finger of that hand points in the direction from the origin to
the point (0, 1, 0), and if the second finger of that hand points in a direction
perpendicular to the directions of the thumb and first finger, then that second
finger points in the direction from the origin to the point (0, 0, 1). (Thus if,
at a point on the surface of the earth, away from the north and south pole,
the point (1, 0, 0) is located to the east of the origin, and the point (0, 1, 0)
is located to the north of the origin, then the point (0, 0, 1) will be located
above the origin.

Let P1, P2, P3 and P4 denote four points of three-dimensional space,
represented in a Cartesian coordinate system by ordered triples as follows:

P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3), P4 = (x4, y4, z4).

The displacement vector
−→

P1, P2 from the point P1 to the point P2 measures
the distance and the direction in which one would have to travel in order
to get from P1 to P2. This displacement vector may be represented by an
ordered triple as follows:

−→
P1P2 = (x2 − x1, y2 − y1, z2 − z1).

The displacement vector
−→
P3P4 is equal to the displacement vector

−→
P1P2 if and

only if

x2 − x1 = x4 − x3, y2 − y1 = y4 − y3, z2 − z1 = z4 − z3,

in which case we represent the fact that these two displacement vectors are
equal by writing

−→
P1P2 =

−→
P3P4.
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Geometrically, these two displacement vectors are equal if and only if P1, P2,
P4 and P3 are the vertices of a parallelogram in three-dimensional space, in
which case

x3 − x1 = x4 − x2, y3 − y1 = y4 − y2, z3 − z1 = z4 − z2,

and thus −→
P1P3 =

−→
P2P4.

These displacement vectors may be regarded as objects in their own right,
and denoted by symbols of their own: we use a symbol such as ~a to denote

the displacement vector
−→
P1P2 from the point P1 to the point P2, and we write

~a = (ax, ay, az) where ax = x2 − x1, ay = y2 − y1 and az = z2 − z1.

6.2 The Parallelogram Law of Vector Addition

Let P1, P2, P3 and P4 denote four points of three-dimensional space, located

such that
−→
P1P2 =

−→
P3P4. Then (as we have seen)

−→
P1P3 =

−→
P2P4 and the

geometrical figure P1P2P4P3 is a parallelogram. Let

~a =
−→
P1P2 =

−→
P3P4, ~b =

−→
P1P3 =

−→
P2P4.

Let

P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 = (x3, y3, z3), P4 = (x4, y4, z4).

Then ~a = (ax, ay, az) and ~b = (bx, by, bz), where

ax = x2 − x1 = x4 − x3, ay = y2 − y1 = y4 − y3, az = z2 − z1 = z4 − z3,

bx = x3 − x1 = x4 − x2, by = y3 − y1 = y4 − y2, bz = z3 − z1 = z4 − z2,

Let ~e =
−→
P1P4. Then ~e = (ex, ey, ez), where

ex = x4 − x1 = ax + bx, ey = y4 − y1 = ay + ey, ez = z4 − z1 = az + ez,

We say that the vector ~e is the sum of the vectors ~a and ~b, and denote this
fact by writing

~e = ~a+~b.

This rule for addition of vectors is known as the parallelogram rule, due to
its association with the geometry of parallelograms. Note that vectors are

102



added, by adding together the corresponding components of the two vectors.
For example,

(0, 3, 2) + (4, 8,−5) = (4, 11,−3).

Note that −→
AB +

−→
BC =

−→
AC

for all points A, B and C of space. Also

~a+~b = ~b+ ~a

and
(~a+~b) + ~c = ~a+ (~b+ ~c)

for all vectors ~a, ~b and ~c in three-dimensional space. Thus addition of vectors
satisfies the Commutative Law and the Associative Law.

The zero vector ~0 is the vector (0, 0, 0) that represents the displacement
from any point in space to itself. The zero vector ~0 has the property that

~a+~0 = ~a

for all vectors ~a. Moroever, given any vector ~a, there exists a vector, denoted
by −~a, characterized by the property that

~a+ (−~a) = ~0.

If ~a = (ax, ay, az), then −~a = (−ax,−ay,−az).

6.3 The Length of Vectors

Let P1 and P2 be points in space, and let ~a denote the displacement vector
−→
P1P2 from the point P1 to the point P2. If P1 = (x1, y1, z1) and P2 =
(x2, y2, z2) then ~a = (ax, ay, az) where ax = x2 − x1, ay = y2 − y1 and
az = z2 − z1.

The length (or magnitude) of the vector ~a is defined to be the distance
from the point P1 to the point P2. This distance may be calculated using
Pythagoras’s Theorem. Let Q = (x2, y2, z1) and R = (x2, y1, z1). If the
points P1 and P2 are distinct, and if z1 6= z2, then the triangle P1QP2 is a
right-angled triangle with hypotenuse P1P2, and it follows from Pythagoras’s
Theorem that

P1P
2
2 = P1Q

2 +QP 2
2 = P1Q

2 + (z2 − z1)
2.
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This identity also holds when P1 = P2, and when z1 = z2, and therefore holds
wherever the points P1 and P2 are located. Similarly

P1Q
2 = P1R

2 +RQ2 = (x2 − x1)
2 + (y2 − y1)

2

(since P1RQ is a right-angled triangle with hypotenuse P1Q whenever the
points P1, R and Q are distinct), and therefore the length |~a| of the displace-
ment vector ~a from the point P1 to the point P2 satisfies the equation

|~a|2 = P1P
2
2 = (x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 = a2
x + a2

y + a2
z.

In general we define the length, or magnitude, |~v| of any vector quantity
~v by the formula

|~v| =
√
v2

x + v2
y + v2

z ,

where ~v = (vx, vy, vz). This ensures that the length of any displacement
vector is equal to the distance between the two points that determine the
displacement.

Example The vector (3, 4, 12) is of length 13, since

32 + 42 + 122 = 52 + 122 = 132.

A vector whose length is equal to one is said to be a unit vector.

6.4 Scalar Multiples of Vectors

Let ~v be a vector, represented by the ordered triple (vx, vy, vz), and let t be
a real number. We define t~v to be the vector represented by the ordered
triple (tvx, tvy, tvz). Thus t~v is the vector obtained on multiplying each of
the components of ~v by the real number t.

Note that if t > 0 then t~v is a vector, pointing in the same direction as ~v,
whose length is obtained on multiplying the length of ~v by the positive real
number t.

Similarly if t < 0 then t~v is a vector, pointing in the opposite direction
to ~v, whose length is obtained on multiplying the length of ~v by the positive
real number |t|.

Note that

(s+ t)~a = s~a+ t~a, t(~a+~b) = t~a+ t~b, and s(t~a) = (st)~a,

for all vectors ~a and ~b and real numbers s and t.
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6.5 Linear Combinations of Vectors

Let ~v1, ~v2, . . . , ~vk be vectors in three-dimensional space. A vector ~v is said to
be a linear combination of the vectors ~v1, ~v2, . . . , ~vk if there exist real numbers
t1, t2, . . . , tk such that

~v = t1~v1 + t2~v2 + · · ·+ tk~vk.

Let O, P1 and P2 be distinct points of three-dimensional space that are
not colinear (i.e., that do not all lie on any one line in that space). The

displacement vector
−→
OP of a point P in three-dimensional space is a linear

combination of the displacement vectors
−→
OP1 and

−→
OP2 if and only if the

point P lies in the unique plane that contains the points O, P1 and P2.

6.6 Linear Dependence and Independence

Vectors ~v1, ~v2, . . . , ~vk are said to be be linearly dependent if there exist real
numbers t1, t2, . . . , tk, not all zero, such that

t1~v1 + t2~v2 + · · ·+ ~vk = ~0.

If the vectors ~v1, ~v2, . . . , ~vk are not linearly dependent, then they are said to
be linearly independent.

Note that if any of the vectors ~v1, ~v2, . . . ~vk is the zero vector, then those
vectors are linearly dependent. Indeed if ~vi = 0 then these vectors satisfy a
relation of the form

t1~v1 + t2~v2 + · · ·+ ~vk = ~0.

where tj = 0 if j 6= i and ti 6= 0. We conclude that, in any list of linearly
independent vectors, the vectors are all non-zero.

Also if any two of the vectors in the list ~v1, ~v2, . . . ~vk are colinear, then
these vectors are linearly dependent. For example, if ~v1 and ~v2 are colinear,
then they satisfy a relation of the form t1 ~v1 + t2 ~v2 = ~0, where t1 and t2 are

not both zero. If we then set ti = 0 when i > 2, then
k∑

i=1

ti~vi = ~0.

If a vector ~v is expressible as a linear combination of vectors ~v1, . . . , ~vk

then the vectors ~v1, . . . , ~vk, ~v are linearly dependent. For there exist real
numbers s1, . . . , sk such that

~v = s1 ~v1 + s2 ~v2 + · · ·+ sk ~vk,

and then
s1 ~v1 + s2 ~v2 + · · ·+ sk ~vk − ~v = 0.
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Theorem 6.1 Let ~a, ~b and ~c be three vectors in three-dimensional space
which are linearly independent. Then, given any vector ~v, there exist unique
real numbers p, q and r such that

~v = p~a1 + q~b+ r~c.

Proof First we note that the vectors ~a,~b and ~c are all non-zero, and no two of
these vectors are colinear. Let O denote the origin of a Cartesian coordinate
system, and let A, B, C and V denote the points of three-dimensional space
whose displacement vectors from the origin O are ~a, ~b ~c and ~v respectively.
The points O, A, B and C are then all distinct, and there is a unique plane
which contains the three points O, A and B. The point C does not lie in
that plane, since otherwise the displacement vector ~c of this point from the
origin would be expressible as a linear combination of the vectors ~a and ~b,
and the three vectors ~a, ~b and ~c would not then be linearly independent. The
set of all points P for which the line PV is parallel to the line OC form a line
in three-dimensional space, and this line cannot lie in the plane OAB, and
must therefore intersect this plane in a single point Q. Now the displacement

vector
−→
QV must be a scalar multiple of the vector ~c, and therefore

−→
QV = r~c

for some real number r. But then
−→
OQ =

−→
OV +

−→
V Q =

−→
OV −

−→
QV = ~v − r~c.

However the point Q also lies in the plane OAB, and therefore the displace-

ment vector
−→
OQ may be expressed as a linear combination of the vectors ~a

and ~b. Thus there exist real numbers p and q such that

−→
OQ = p~a+ q~b.

But then
~v = p~a+ q~b+ r~c.

These real numbers p, q and r are uniquely determined by the vector ~v, for
if

~v = p1~a+ q1~b+ r1~c = p2~a+ q2~b+ r2~c

for some real numbers p1, q1, r1, p2, q2 and r2, then

(p2 − p1)~a+ (q2 − q1)~b+ (r2 − r1)~c = ~0.

It then follows from the linear independence of the vectors ~a, ~b and ~c that

p2 − p1 = q2 − q1 = r2 − r1 = 0,

and therefore p1 = p2, q1 = q2 and r1 = r2. This shows the real numbers p,
q and r are uniquely determined by the vector ~v, as required.
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It follows from this theorem that no linearly independent list of vectors
in three-dimensional space can contain more than three vectors, since were
there a fourth vector in the list, then it would be expressible as a linear
combination of the other three, and the vectors would not then be linearly
independent.

6.7 The Scalar Product

Let ~a and~b be vectors in three-dimensional space, represented in some Carte-
sian coordinate system by the ordered triples (a1, a2, a3) and (b1, b2, b3) re-

spectively. The scalar product of the vectors ~a and ~b is defined to be the real
number ~a .~b defined by the formula

~a .~b = a1b1 + a2b2 + a3b3.

In particular,
~a . ~a = a2

1 + a2
2 + a2

3 = |~a|2,

for any vector ~a, where |~a| denotes the length of the vector ~a.

Note that ~a .~b = ~b . ~a for all vectors ~a and ~b. Also

(s~a+ t~b) . ~c = s~a . ~c+ t~b . ~c, ~a . (s~b+ t~c) = s~a .~b+ t~a . ~c

for all vectors ~a, ~b and ~c and real numbers s and t.

Lemma 6.2 Let ~a and ~b be non-zero vectors in three-dimensional space that
are perpendicular to one another. Then ~a .~b = 0.

Proof Let O, A and C be the points of three-dimensional space with Carte-
sian coordinates

0 = (0, 0, 0), A = (a1, a2, a3), C = (a1 + b1, a2 + b2, a3 + b3).

Then
−→
OA = ~a,

−→
AC = ~b and

−→
OC = ~a+~b. The directions of the sides OA and

AC of the triangle OAC are those of the vectors ~a and ~b, and therefore the
triangle OAC is a right-angled triangle (with the right angle located at the
vectex A). It follows from well-known geometry (Pythagoras’ Theorem) that

OC2 = OA2 + AC2.

But OA2 = |~a|2, AC2 = |~b|2 and OC2 = |~a+~b|2. It follows that

|~a+~b|2 = |~a|2 + |~b|2
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whenever the vectors ~a and ~b are perpendicular to one another.
However the lengths |~a|, |~b| and |~a+~b| of the vectors ~a, ~b and ~a+~b satisfy

the equations

|~a|2 = a2
1 + a2

2 + a2
3, |~b|2 = b21 + b22 + b23,

and

|~a+~b|2 = (a1 + b1)
2 + (a2 + b2)

2 + (a3 + b3)
2,

= a2
1 + a2

2 + a2
3 + b21 + b22 + b23 + 2a1b1 + 2a2b2 + 2a3b3

= |~a|2 + |~b|2 + 2~a .~b

Thus if the vectors ~a and ~b are perpendicular, then |~a + ~b|2 = |~a|2 + |~b|2,
and therefore the scalar product of these vectors must satisfy the equation
~a .~b = 0.

Lemma 6.3 Let O, A and B be points in three-dimensional space, where
neither A nor B coincides with the point O, and let D be the point, lying on
the line passing through the points O and A, that is the closest point on that

line to the point B. Let ~a, ~b and ~d denote the displacement vectors
−→
OA,

−→
OB

and
−→
OD of the points A, B and D respectively from the point O. Then

~d =

(
|~b|
|~a|

cos θ

)
~a,

where θ denotes the angle between the vectors ~a and ~b. Also ~a .~b = ~a . ~d.

Proof If the vector ~b points in the same direction as the vector ~a then ~d = ~b,
cos θ = 1 and ~b = t~a, where t = |~b|/|~a|, and the formula for ~d holds.

If the vectors ~a and ~b point in opposite directions then ~d = ~b, cos θ = −1
and ~b = t~a, where t = −|~b|/|~a|, and the formula for ~d holds.

If the vectors ~a and ~b are perpendicular then the point D is located at the
point O (since in this case the point O is closer to B than any other point

on the line passing through O and A), and thus ~d = 0. Also cos θ = 0. Both

sides of the formula for ~d are equal to the zero vector in this case, and are
therefore equal to one another.

It remains to consider the case when the vector ~b is neither parallel nor
perpendicular to the vector ~a. In this case the points O, D and B are
distinct, and are the vertices of a triangle. Moreover this triangle is a right-
angled triangle, with a right angle at the vertex D. (Indeed if this angle were
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not a right angle, then one could construct a right-angled triangle BED
with hypotenuse BD, and with a vertex E situated on the line that passes
through the points O, A and D. The point E would then be a point on that
line which was closer to B than the point D, and this is impossible since D is
the closest point to B on that line.) If follows from basic trigonometry that
the lengths of the sides OB and OD of the right-angled triangle ODB satisfy
the relation OD = OB| cos θ|, from which it follows that |~d| = |~b|| cos θ|.

If cos θ > 0 then the angle θ is less than a right angle, the points D and
A lie on the same side of point O (on the line that passes through the points
O, A and D), and

~d ==
|~d|
|~a|
~a =

(
|~b|
|~a|

cos θ

)
~a.

If cos θ < 0 then the angle θ is more than a right angle, the points D and A
lie on opposite sides of point O, and

~d == −|
~d|
|~a|
~a = −

(
|~b|
|~a|
| cos θ|

)
~a =

(
|~b|
|~a|

cos θ

)
~a.

We have therefore verified our formula for the vector ~d in all cases.
One can easily check that if any two of the points O, B and D coincide

then either B = D or else ~a . ~b = ~a . ~d = 0. Thus ~a . ~b = ~a . ~d in all cases
where any two of the points O, B and D coincide. It only remains to verify
the identity ~a .~b = ~a . ~d in the case when the points O, B and D are distinct.
In that case the triangle OBD is a right-angled triangle, and its sides OD
and DB are perpendicular. But the points O, A and D are colinear. It

follows that the displacement vectors
−→
OA and

−→
DB are perpendicular. Now

−→
OA = ~a and

−→
DB = ~b − ~d. It follows from Lemma 6.2 that ~a . (~b − ~d) = 0.

But ~a . (~b− ~d) = ~a .~b− ~a . ~d. Therefore ~a .~b = ~a . ~d, as required.

Proposition 6.4 Let ~a and~b be vectors in three-dimensional space R3. Then
their scalar product ~a .~b is given by the formula

~a .~b = |~a| |~b| cos θ,

where θ denotes the angle between the vectors ~a and ~b.

Proof We suppose that the vectors ~a and ~b are both non-zero (since if either
is the zero vector then both sides of the identity to be proved have the value
zero, and the result follows immediately). Let A and B denote the points
in three-dimensional space whose displacement vectors from the origin O are
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given by the vectors ~a and ~b. (Thus A = (a1, a2, a3) and B = (b1, b2, b3)
where a1, a2 and a3 are the Cartesian components of the vector ~a, and b1,
b2 and b3 are the Cartesian components of the vector ~b.) Let D denote the
point, situated on the line through the origin and the point A, that is the

closest point on that line to the point B, and let ~d =
−→
OD. Then it follows

from Lemma 6.3 that

~d =

(
|~b|
|~a|

cos θ

)
~a

and ~a .~b = ~a . ~d. But then

~a .~b = ~a . ~d =

(
|~b|
|~a|

cos θ

)
(~a . ~a) =

(
|~b|
|~a|

cos θ

)
|~a|2 = |~a| |~b| cos θ,

as required.

Corollary 6.5 Two non-zero vectors ~a and ~b in three-dimensional space are
perpendicular if and only if ~a .~b = 0.

Proof It follows directly from Proposition 6.4 that ~a . ~b = 0 if and only if
cos θ = 0, where θ denotes the angle between the vectors ~a and ~b. This is the
case if and only if the vectors ~a and ~b are perpendicular.

Example We can use the scalar product to calculate the angle θ between
the vectors (2, 2, 0) and (0, 3, 3) in three-dimensional space. Let ~u = (2, 2, 0)
and ~v = (3, 3, 0). Then |~u|2 = 22 + 22 = 8 and |~v|2 = 32 + 32 = 18. It follows
that (|~u| |~v|)2 = 8× 18 = 144, and thus |~u| |~v| = 12. Now ~u .~v = 6. It follows
that

6 = |~u| |~v| cos θ = 12 cos θ.

Therefore cos θ = 1
2
, and thus θ = 1

3
π.

We can use the scalar product to find the distance between points on a
sphere. Now the Cartesian coordinates of a point P on the unit sphere about
the origin O in three-dimensional space may be expressed in terms of angles
θ and ϕ as follows:

P = (sin θ cosϕ, sin θ sinϕ, cos θ).

The angle θ is that between the displacement vector
−→
OP and the vectical

vector (0, 0, 1). Thus the angle 1
2
π−θ represents the ‘latitude’ of the point P ,

when we regard the point (0, 0, 1) as the ‘north pole’ of the sphere. The
angle ϕ measures the ‘longitude’ of the point P .
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Now let P1 and P2 be points on the unit sphere, where

P1 = (sin θ1 cosϕ1, sin θ1 sinϕ1, cos θ1),

P2 = (sin θ2 cosϕ2, sin θ2 sinϕ2, cos θ2).

We wish to find the angle ψ between the displacement vectors
−→
OP1 and

−→
OP2

of the points P1 and P2 from the origin. Now |
−→
OP1| = 1 and |

−→
OP2| = 1. On

applying Proposition 6.4, we see that

cosψ =
−→
OP1 .

−→
OP2

= sin θ1 sin θ2 cosϕ1 cosϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2

+ cos θ1 cos θ2

= sin θ1 sin θ2 (cosϕ1 cosϕ2 + sinϕ1 sinϕ2) + cos θ1 cos θ2

= sin θ1 sin θ2 cos(ϕ1 − ϕ2) + cos θ1 cos θ2.

6.8 The Vector Product

Definition Let ~a and~b be vectors in three-dimensional space, with Cartesian
components given by the formulae ~a = (a1, a2, a3) and ~b = (b1, b2, b3). The

vector product ~a×~b of the vectors ~a and~b is the vector defined by the formula

~a×~b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Note that ~a ×~b = −~b × ~a for all vectors ~a and ~b. Also ~a × ~a = ~0 for all
vectors ~a. It follows easily from the definition of the vector product that

(s~a+ t~b)× ~c = s~a× ~c+ t~b× ~c, ~a× (s~b+ t~c) = s~a×~b+ t~a× ~c

for all vectors ~a, ~b and ~c and real numbers s and t.

Proposition 6.6 Let ~a and~b be vectors in three-dimensional space R3. Then
their vector product ~a×~b is a vector of length |~a| |~b| | sin θ|, where θ denotes the

angle between the vectors ~a and ~b. Moreover the vector ~a×~b is perpendicular
to the vectors ~a and ~b.

Proof Let ~a = (a1, a2, a3) and ~b = (b1, b2, b3), and let l denote the length

|~a×~b| of the vector ~a×~b. Then

l2 = (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2

= a2
2b

2
3 + a2

3b
2
2 − 2a2a3b2b3
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+ a2
3b

2
1 + a2

1b
2
3 − 2a3a1b3b1

+ a2
1b

2
2 + a2

2b
2
1 − 2a1a2b1b2

= a2
1(b

2
2 + b23) + a2

2(b
2
1 + b23) + a2

3(b
2
1 + b22)

− 2a2a3b2b3 − 2a3a1b3b1 − 2a1a2b1b2

= (a2
1 + a2

2 + a2
3)(b

2
1 + b22 + b23)

− a2
1b

2
1 − a2

2b
2
2 − a2

3b
2
3 − 2a2b2a3b3 − 2a3b3a1b1 − 2a1b1a2b2

= (a2
1 + a2

2 + a2
3)(b

2
1 + b22 + b23)− (a1b1 + a2b2 + a3b3)

2

= |~a|2|~b|2 − (~a .~b)2

since

|~a|2 = a2
1 + a2

2 + a2
3, |~b|2 = b21 + b22 + b23, ~a .~b = a1b1 + a2b2 + a3b3

But ~a .~b = |~a| |~b| cos θ (Proposition 6.4). Therefore

l2 = |~a|2|~b|2(1− cos2 θ) = |~a|2|~b|2 sin2 θ

(since sin2 θ + cos2 θ = 1 for all angles θ) and thus l = |~a| |~b| | sin θ|. Also

~a . (~a×~b) = a1(a2b3 − a3b2) + a2(a3b1 − a1b3) + a3(a1b2 − a2b1) = 0

and

~b . (~a×~b) = b1(a2b3 − a3b2) + b2(a3b1 − a1b3) + b3(a1b2 − a2b1) = 0

and therefore the vector ~a×~b is perpendicular to both ~a and~b (Corollary 6.5),
as required.

Using elementary geometry, and the formula for the length of the vector
product ~a × ~b given by Proposition 6.6 it is not difficult to show that the
length of this vector product is equal to the area of a parallelogram in three-
dimensional space whose sides are represented, in length and direction, by
the vectors ~a and ~b.

Remark Let ~a and ~b be non-zero vectors that are not colinear (i.e., so that
they do not point in the same direction, or in opposite directions). The direc-

tion of ~a×~b may be determined, using the thumb and first two fingers of your
right hand, as follows. Orient your right hand such that the thumb points
in the direction of the vector ~a and the first finger points in the direction
of the vector ~b, and let your second finger point outwards from the palm of
your hand so that it is perpendicular to both the thumb and the first finger.
Then the second finger points in the direction of the vector product ~a×~b.
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Indeed it is customary to describe points of three-dimensional space by
Cartesian coordinates (x, y, z) oriented so that if the positive x-axis and
positive y-axis are pointed in the directions of the thumb and first finger
respectively of your right hand, then the positive z-axis is pointed in the
direction of the second finger of that hand, when the thumb and first two
fingers are mutually perpendicular. For example, if the positive x-axis points
towards the East, and the positive y-axis points towards the North, then the
positive z-axis is chosen so that it points upwards. Moreover if ~ı = (1, 0, 0)
and ~ = (0, 1, 0) then these vectors ~ı and ~ are unit vectors pointed in the

direction of the positive x-axis and positive y-axis respectively, and~ı×~ = ~k,
where ~k = (0, 0, 1), and the vector ~k points in the direction of the positive
z-axis. Thus the ‘right-hand’ rule for determining the direction of the vector
product ~a ×~b using the fingers of your right hand is valid when ~a = ~ı and
~b = ~.

If the directions of the vectors ~a and ~b are allowed to vary continuously,
in such a way that these vectors never point either in the same direction or in
opposite directions, then their vector product ~a×~b will always be a non-zero
vector, whose direction will vary continuously with the directions of ~a and ~b.
It follows from this that if the ‘right-hand rule’ for determining the direction
of ~a ×~b applies when ~a = ~ı and ~b = ~, then it will also apply whatever the
directions of ~a and ~b, since, if your right hand is moved around in such a
way that the thumb and first finger never point in the same direction, and if
the second finger is always perpendicular to the thumb and first finger, then
the direction of the second finger will vary continuously, and will therefore
always point in the direction of the vector product of two vectors pointed in
the direction of the thumb and first finger respectively.

Example We shall find the area of the parallelogram OACB in three-
dimensional space, where

O = (0, 0, 0), A = (1, 2, 0), B = (−4, 2,−5), C = (−3, 4,−5).

Note that
−→
OC =

−→
OA +

−→
OB. Let ~a =

−→
OA = (1, 2, 0) and ~b =

−→
OB =

(−4, 2,−5). Then ~a × ~b = (−10, 5, 10). Now (−10, 5, 10) = 5(−2, 1, 2),
and |(−2, 1, 2)| =

√
9 = 3. It follows that

areaOACB = |~a×~b| = 15.

Note also that the vector (−2, 1, 2) is perpendicular to the parallelogram
OACB.
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Example We shall find the equation of the plane containing the points A, B

and C where A = (3, 4, 1), B = (4, 6, 1) and C = (3, 5, 3). Now if ~u =
−→
AB =

(1, 2, 0) and ~v =
−→
AC = (0, 1, 2) then the vectors ~u and ~v are parallel to the

plane. It follows that the vector ~u × ~v is perpendicular to this plane. Now
~u × ~v = (4,−2, 1), and therefore the displacement vector between any two
points of the plane must be perpendicular to the vector (4,−2, 1). It follows
that the function mapping the point (x, y, z) to the quantity 4x−2y+z must
be constant throughout the plane. Thus the equation of the plane takes the
form

4x− 2y + z = k,

for some constant k. We can calculate the value of k by substituting for x,
y and z the coordinates of any chosen point of the plane. On taking this
chosen point to be the point A, we find that k = 4× 3− 2× 4 + 1 = 5. Thus
the equation of the plane is the following:

4x− 2y + z = 5.

(We can check our result by verifying that the coordinates of the points A,
B and C do indeed satisfy this equation.)

6.9 Scalar Triple Products

Given three vectors ~a, ~b and ~c in three-dimensional space, we can form the
scalar triple product ~a . (~b×~c). This quantity can be expressed as the deter-
minant of a 3 × 3 matrix whose rows contain the Cartesian components of
the vectors ~a, ~b and ~c. Indeed

~b× ~c = (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1),

and thus

~a . (~b× ~c) = a1(b2c3 − b3c2) + a2(b3c1 − b1c3) + a3(b1c2 − b2c1).

The quantity on the right hand side of this equality defines the determinant
of the 3× 3 matrix  a1 a2 a3

b1 b2 b3
c1 c2 c3

 .

We have therefore obtained the following result.
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Lemma 6.7 Let ~a, ~b and ~c be vectors in three-dimensional space. Then

~a . (~b× ~c) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ .
Using basic properties of determinants, or by direct calculation, one can

easily obtain the identities

~a . (~b× ~c) = ~b . (~c× ~a) = ~c . (~a×~b)
= −~a . (~c×~b) = −~b . (~a× ~c) = −~c . (~b× ~a)

One can show that the absolute value of the scalar triple product ~a.(~b×~c)
is the volume of the parallelepiped in three-dimensional space whose vertices
are the points whose displacement vectors from some fixed point O are ~0, ~a,
~b, ~c, ~a+~b, ~a+~c, ~b+~c and ~a+~b+~c. (A parallelepiped is a solid like a brick,
but whereas the faces of a brick are rectangles, the faces of the parallelepiped
are parallelograms.)

Example We shall find the volume of the parallelepiped in 3-dimensional
space with vertices at (0, 0, 0), (1, 2, 0), (−4, 2,−5), (0, 1, 1), (−3, 4,−5),
(1, 3, 1), (−4, 3,−4) and (−3, 5,−4). The volume of this parallelepiped is

the absolute value of the scalar triple product ~a . (~b× ~c), where

~a = (1, 2, 0), ~b = (−4, 2,−5), ~c = (0, 1, 1).

Now

~a . (~b× ~c) = (1, 2, 0) . ( (−4, 2,−5)× (0, 1, 1) )

= (1, 2, 0) . (7, 4,−4) = 7 + 2× 4 = 15.

Thus the volume of the paralellepiped is 15 units.

6.10 The Vector Triple Product Identity

Proposition 6.8 Let ~a, ~b and ~c be vectors in three-dimensional space. Then

~a× (~b× ~c) = (~a . ~c)~b− (~a .~b)~c.

Proof Let ~d = ~a × (~b × ~c), and let ~a = (a1, a2, a3), ~b = (b1, b2, b3), ~c =

(c1, c2, c3), and ~d = (d1, d2, d3). Then

~b× ~c = (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1).
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and hence ~a× (~b× ~c) = ~d = (d1, d2, d3), where

d1 = a2(b1c2 − b2c1)− a3(b3c1 − b1c3)
= (a2c2 + a3c3)b1 − (a2b2 + a3b3)c1

= (a1c1 + a2c2 + a3c3)b1 − (a1b1 + a2b2 + a3b3)c1

= (~a . ~c)b1 − (~a .~b)c1

Similarly
d2 = (~a . ~c)b2 − (~a .~b)c2

and
d3 = (~a . ~c)b2 − (~a .~b)c3

(In order to verify the formula for d2 with an minimum of calculation, take
the formulae above involving d1, and cyclicly permute the subcripts 1, 2 and
3, replacing 1 by 2, 2 by 3, and 3 by 1. A further cyclic permutation of these
subscripts yields the formula for d3.) It follows that

~d = (~a . ~c)~b− (~a .~b)~c,

as required, since we have shown that the Cartesian components of the vec-
tors on either side of this identity are equal.

6.11 Orthonormal Triads of Unit Vectors

Let ~u and ~v be unit vectors (i.e., vectors of length one) that are perpendicular
to each other, and let ~w = ~u×~v. It follows immediately from Proposition 6.6
that |~w| = |~u| |~v| = 1, and that this unit vector ~w is perpendicular to both ~u
and ~v. Then

~u . ~u = ~v . ~v = ~w . ~w = 1

and
~u . ~v = ~v . ~w = ~w . ~u = 0.

On applying the Vector Triple Product Identity (Proposition 6.8) we find
that

~v × ~w = ~v × (~u× ~v) = (~v . ~v) ~u− (~v . ~u)~v = ~u,

and

~w × ~u = −~u× ~w = −~u× (~u× ~v) = −(~u . ~v) ~u+ (~u . ~u)~v = ~v,

Therefore

~u× ~v = −~v × ~u = ~w, ~v × ~w = −~w × ~v = ~u, ~w × ~u = −~u× ~w = ~v,
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Three unit vectors, such as the vectors ~u, ~v and ~w above, that are mutually
perpendicular, are referred to as an orthonormal triad of vectors in three-
dimensional space. The vectors ~u, ~v and ~w in any orthonormal triad are
linearly independent. It follows directly from Theorem 6.1 that any vector in
three-dimensional space may be expressed, uniquely, as a linear combination
of the form

p~u+ q~v + r ~w.

Any Cartesian coordinate system on three-dimensional space determines
an orthonormal triad ~ı, ~ and ~k, where

~ı = (1, 0, 0), ~ = (0, 1, 0), ~k = (0, 0, 1).

The scalar and vector products of these vectors satisfy the same relations
as the vectors ~u, ~v and ~w above. A vector represented in these Cartesian
components by an ordered triple (x, y, z) then satisfies the identity

(x, y, z) = x~ı+ y~+ z~k.
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