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5 Abstract Algebra

5.1 Binary Operations on Sets

Definition A binary operation ∗ on a set A is an operation which, when
applied to any elements x and y of the set A, yields an element x ∗ y of A.

Example The arithmetic operations of addition, subtraction and multipli-
cation are binary operations on the set R of real numbers which, when ap-
plied to real numbers x and y, yield the real numbers x + y, x − y and xy
respectively.

1



However division is not a binary operation on the set of real numbers,
since the quotient x/y is not defined when y = 0. (Under a binary operation ∗
on a set must determine an element x∗ y of the set for every pair of elements
x and y of that set.)

5.2 Commutative Binary Operations

Definition A binary operation ∗ on a set A is said to be commutative if
x ∗ y = y ∗ x for all elements x and y of A.

Example The operations of addition and multiplication on the set R of real
numbers are commutative, since x+ y = y + x and x× y = y× x for all real
numbers x and y. However the operation of subtraction is not commutative,
since x− y 6= y− x in general. (Indeed the identity x− y = y− x holds only
when x = y.)

5.3 Associative Binary Operations

Let ∗ be a binary operation on a set A. Given any three elements x, y and
z of a set A, the binary operation, applied to the elements x ∗ y and z of A,
yields an element (x ∗ y) ∗ z of A, and, applied to the elements x and y ∗ z of
A, yields an element x ∗ (y ∗ z) of A.

Definition A binary operation ∗ on a set A is said to be associative if
(x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y and z of A.

Example The operations of addition and multiplication on the set R of real
numbers are associative, since (x+y) + z = x+ (y+ z) and (x×y)× z = x×
(y× z) for all real numbers x, y and z. However the operation of subtraction
is not associative. For example (1− 2)− 3 = −4, but 1− (2− 3) = 2.

When a binary operation ∗ is associative it is not necessary to retain
the parentheses in expressions such as (x ∗ y) ∗ z or x ∗ (y ∗ z). These two
expressions may both be written without ambiguity as x ∗ y ∗ z.

5.4 Semigroups

Definition A semigroup consists of a set on which is defined an associative
binary operation.

We may denote by (A, ∗) a semigroup consisting of a set A together with
an associative binary operation ∗ on A.
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Definition A semigroup (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of natural numbers, with the operation of addition, is a
commutative semigroup, as is the set of natural numbers with the operation
of multiplication.

Let (A, ∗) be a semigroup. Given any element a of A, we define

a1 = a,

a2 = a ∗ a,
a3 = a ∗ a2 = a ∗ (a ∗ a),

a4 = a ∗ a3 = a ∗ (a ∗ (a ∗ a)),

a5 = a ∗ a4 = a ∗ (a ∗ (a ∗ (a ∗ a))),
...

In general we define an recursively for all natural numbers n so that a1 = a
and an = a ∗ an−1 whenever n > 1.

Remark In the case of the semigroup consisting of the set of natural num-
bers with the operation of multiplication, the value of ‘an’ given by the above
rule is the nth power of a natural number a. However in the case of the semi-
group consisting of the set of natural numbers with the operation of addition
it is not the nth power of a, but is na.

Theorem 5.1 Let (A, ∗) be a semigroup, and let a be an element of A. Then
am ∗ an = am+n for all natural numbers m and n.

Proof We prove this theorem by induction on m.
Now it follows immediately from the definition of an+1 that a ∗ an = a1+n

for all natural numbers n. Thus the theorem is true in the case when m = 1.
Suppose that the required result is true in the case when m = s for some

natural number s, so that as ∗ an = as+n for all natural numbers n. Then

as+1 ∗ an = (a ∗ as) ∗ an = a ∗ (as ∗ an) = a ∗ as+n = as+1+n

for all natural numbers n. Thus if the required result is true when m = s
then it is also true when m = s + 1. We conclude using the Principle of
Mathematical Induction that the identity am∗an = am+n holds for all natural
numbers m and n, as required.
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Theorem 5.2 Let (A, ∗) be a semigroup, and let a be an element of A. Then
(am)n = amn for all natural numbers m and n.

Proof The result may be proved by induction on the natural number n.
The identity (am)n = amn clearly holds whenever n = 1. Suppose that
s is a natural number with the property that (am)s = ams for all natural
numbers m. Then

(am)s+1 = (am)s ∗ am = ams ∗ am = ams+m = am(s+1).

Thus if the identity (am)n = amn holds when n = s then it also holds when
n = s + 1. We conclude from the Principle of Mathematical Induction that
this identity holds for all natural numbers n.

Remark Note that the above proof made use of the fact that the binary
operation on a semigroup is associative.

5.5 The General Associative Law

Let (A, ∗) be a semigroup, and let x, y, z and w be elements of A. We can use
the associative property of ∗ to show that the value of a product involving
x, y, z, w is independent of the manner in which that product is bracketed,
though it generally depends on the order in which x, y, z and w occur in that
product (unless that binary operation is also commutative). For example,

(x ∗ (y ∗ z)) ∗ w = ((x ∗ y) ∗ z) ∗ w
= (x ∗ y) ∗ (z ∗ w)

= x ∗ (y ∗ (z ∗ w))

= x ∗ ((y ∗ z) ∗ w)

All the above products may therefore be denoted without ambiguity by the
expression x ∗ y ∗ z ∗ w from which the parentheses have been dropped.

The analogous property holds for products involving five or more elements
of the semigroup.

In any semigroup, the value of a product of three or more elements of the
semigroup depends in general on the order in which those elements occur in
the product (unless the binary operation is commutative), but the value of
the product is independent of the manner in which the product is bracketed.
This general result is often referred to as the General Associative Law, and
can be proved using induction on the number of elements that occur in the
product.
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5.6 Identity elements

Definition Let (A, ∗) be a semigroup. An element e of A is said to be an
identity element for the binary operation ∗ if e∗x = x∗e = x for all elements
x of A.

Example The number 1 is an identity element for the operation of multi-
plication on the set N of natural numbers.

Example The number 0 is an identity element for the operation of addition
on the set Z of integers.

Theorem 5.3 A binary operation on a set cannot have more than one iden-
tity element.

Proof Let e and f be identity elements for a binary operation ∗ on a set A.
Then e = e∗f = f . Thus there cannot be more than one identity element.

5.7 Monoids

Definition A monoid consists of a set on which is defined an associative
binary operation with an identity element.

We see immediately from the above definition that a semigroup is a
monoid if and only if it has an identity element.

Definition A monoid (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set N of natural numbers with the operation of multiplica-
tion is a commutative monoid. Indeed the operation of multiplication is
both commutative and associative, and the identity element is the natural
number 1.

Example The set N of natural numbers with the operation of addition is
not a monoid, since there is no identity element for the operation of addition
that belongs to the set of natural numbers.

Let a be an element of a monoid (A, ∗). We define a0 = e, where e is the
identity element.

Theorem 5.4 Let (A, ∗) be a monoid, and let a be an element of A. Then
am ∗ an = am+n for all non-negative integers m and n.
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Proof Any monoid is a semigroup. It therefore follows from Theorem 5.1
that am ∗ an = am+n when m > 0 and n > 0. It also follows directly from
the definition of the identity element that the result is also true if m = 0 or
if n = 0.

Theorem 5.5 Let (A, ∗) be a monoid, and let a be an element of A. Then
(am)n = amn for all non-negative integers m and n.

Proof It follows directly from Theorem 5.2 that (am)n = amn whenever m
and n are both positive. But this identity holds also when m or n is zero,
since both sides of the identity are then equal to the identity element of the
monoid.

5.8 Inverses

Definition Let (A, ∗) be a monoid with identity element e, and let x be an
element of A. An element y of A is said to be the inverse of x if x ∗ y =
y ∗x = e. An element x of A is said to be invertible if there exists an element
of A which is an inverse of x.

Theorem 5.6 An element of a monoid can have at most one inverse.

Proof Let (A, ∗) be a monoid with identity element e, and let x, y and z be
elements of A. Suppose that x ∗ y = y ∗ x = e and x ∗ z = z ∗ x = e. Then

y = y ∗ e = y ∗ (x ∗ z) = (y ∗ x) ∗ z = e ∗ z = z,

and thus y = z. Thus an element of a monoid cannot have more than one
inverse.

Remark The above proof shows in fact that if x is an element of a monoid
(A, ∗), and if y and z are elements of A satisfying y ∗ x = x ∗ z = e, where e
is the identity element of the monoid, then y = z.

Let (A, ∗) be a monoid, and let x be an invertible element of A. We
shall denote the inverse of x by x−1. (This inverse element x−1 is uniquely
determined by x, by Theorem 5.6.)

Theorem 5.7 Let (A, ∗) be a monoid, and let x and y be invertible elements
of A. Then x ∗ y is also invertible, and (x ∗ y)−1 = y−1 ∗ x−1.
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Proof Let e denote the identity element of the monoid. Then x ∗ x−1 =
x−1 ∗ x = e and y ∗ y−1 = y−1 ∗ y = e, and therefore

(x ∗ y) ∗ (y−1 ∗ x−1) = ((x ∗ y) ∗ y−1) ∗ x−1 = (x ∗ (y ∗ y−1)) ∗ x−1

= (x ∗ e) ∗ x−1 = x ∗ x−1 = e,

(y−1 ∗ x−1) ∗ (x ∗ y) = y−1 ∗ (x−1 ∗ (x ∗ y)) = y−1 ∗ ((x−1 ∗ x) ∗ y)

= y−1 ∗ (e ∗ y) = y−1 ∗ y = e.

and thus the element y−1 ∗ x−1 has the properties required of an inverse of
the element x∗y. We conclude that x∗y is indeed invertible, and (x∗y)−1 =
y−1 ∗ x−1.

Theorem 5.8 Let (A, ∗) be a monoid, let a and b be elements of A, and let
x be an invertible element of A. Then a = b ∗ x if and only if b = a ∗ x−1.
Similarly a = x ∗ b if and only if b = x−1 ∗ a.

Proof Let e denote the identity element of the monoid. Suppose that a =
b ∗ x. Then

a ∗ x−1 = (b ∗ x) ∗ x−1 = b ∗ (x ∗ x−1) = b ∗ e = b.

Conversely, if b = a ∗ x−1, then

b ∗ x = (a ∗ x−1) ∗ x = a ∗ (x−1 ∗ x) = a ∗ e = a.

Similarly if a = x ∗ b then

x−1 ∗ a = x−1 ∗ (x ∗ b) = (x−1 ∗ x) ∗ b = e ∗ b = b,

and, conversely, if b = x−1 ∗ a then

x ∗ b = x ∗ (x−1 ∗ a) = (x ∗ x−1) ∗ a = e ∗ a = a.

Let (A, ∗) be a monoid, and let a be an invertible element of A. We
extend the definition of an to negative integers n by defining an to be the
inverse (aq)−1 of aq whenever q > 0 and n = −q.

Theorem 5.9 Let (A, ∗) be a monoid, and let a be an invertible element of
A. Then am ∗ an = am+n for all integers m and n.

Proof The proof breaks down into a case-by-case analysis, depending on the
signs of the integers m and n.
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The appropriate definitions ensure that the identity am ∗an = am+n holds
if m = 0 or if n = 0.

The result has already been verified if both m and n are positive (see
Theorem 5.1 and Theorem 5.4).

Suppose that m and n are both negative. Then am = (a−m)−1, an =
(a−n)−1 and am+n = (a−(m+n))−1. Now a−n ∗ a−m = a−n−m = a−(m+n). It
follows from Theorem 5.7 that

am+n = (a−(m+n))−1 = (a−n ∗ a−m)−1 = (a−m)−1 ∗ (a−n)−1 = am ∗ an.

The only remaining cases to consider are those when m and n have dif-
ferent signs.

Let p and q be non-negative integers. Now ap+q = ap ∗ aq = aq ∗ ap. It
follows from Theorem 5.8 that

ap = ap+q ∗ a−q = a−q ∗ ap+q, aq = ap+q ∗ a−p = a−p ∗ ap+q,

and hence

a−p = aq ∗ a−(p+q) = a−(p+q) ∗ aq, a−q = ap ∗ a−(p+q) = a−(p+q) ∗ ap.

Suppose that m < 0, n > 0 and m + n ≥ 0. On setting p = −m and
q = m + n we see that am+n = aq = a−p ∗ ap+q = am ∗ an. Next suppose
that m < 0, n > 0 and m + n < 0. On setting p = −m − n and q = n
we see that am+n = a−p = a−(p+q) ∗ aq = am ∗ an. Next suppose that
m > 0, n < 0 and m + n ≥ 0. On setting p = m + n and q = −n we
see that am+n = ap = ap+q ∗ a−q = am ∗ an. Finally suppose that m > 0,
n < 0 and m + n < 0. On setting p = m and q = −m − n we see that
am+n = a−q = ap ∗ a−(p+q) = am ∗ an. The result has now been verified for all
integers m and n, as required.

Theorem 5.10 Let (A, ∗) be a monoid, and let a be an invertible element
of A. Then (am)n = amn for all integers m and n.

Proof Let m be an integer. First we prove by induction on n that (am)n =
amn for all positive integers n. The result clearly holds when n = 1. Suppose
(am)s = ams for some positive integer s. It then follows from Theorem 5.9
that

(am)s+1 = (am)s ∗ am = ams ∗ am = am(s+1).

It follows from the Principle of Mathematical Induction that (am)n = amn

for all positive integers n. The result is also true when n = 0, since both
sides of the identity are then equal to the identity element of the monoid.
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Finally suppose that n is a negative integer. Then n = −q for some positive
integer q, and (am)q = amq. On taking the inverses of both sides of this
identity, we find that

(am)n = ((am)q)−1 = (amq)−1 = a−mq = amn,

as required. We can now conclude that the identity (am)n = amn holds for
all integers m and n.

5.9 Groups

Definition A group consists of a set A together with a binary operation ∗
on A with the following properties:—

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all elements x, y and z of A (i.e., the
operation ∗ is associative);

(ii) there exists an element e of A with the property that e ∗ x = x ∗ e = x
for all elements x of A (i.e., there exists an identity element e for the
binary operation ∗ on A);

(iii) given any element x of A, there exists an element y of A satisfying
x ∗ y = y ∗ x = e (i.e., every element of A is invertible).

We see immediately from this definition that a group can be characterized
as a monoid in which every element is invertible.

Definition A group (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of integers with the operation of addition is a commutative
group.

Example The set of real numbers with the operation of addition is a com-
mutative group.

Example The set of non-zero real numbers with the operation of multipli-
cation is a commutative group.

Example The set of integers with the operation of multiplication is not a
group, since not every element is invertible. Indeed the only integers that
are invertible are +1 and −1.
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Example Let n be a natural number, and let

Zn = {0, 1, . . . , n− 1}.

Any integer k may be expressed uniquely in the form k = qn + r for some
integers q and r with 0 ≤ r < n. (When k is positive, q and r are the quotient
and remainder respectively, when k is divided by n in integer arithmetic.)
Then r is the unique element of Zn for which k − r is divisible by n. In
particular, given any elements x and y of Zn, there exist unique elements s
and p of Zn such that x + y − s and xy − p are divisible by n. We define
x ⊕n y = s and x ⊗n y = p. Then ⊕n and ⊗n are binary operations on the
set Zn.

We show that the binary operation ⊕n is associative. Let x, y and z be
integers belonging to Zn, and let u = x⊕n y and v = y⊕n z. Then x+ y− u
and y + z − v are both divisible by n. Now

(u+ z)− (x+ v) = (y + z − v)− (x+ y − u).

It follows that (u+ z)− (x+ v) is divisible by n, and hence u⊕n z = x⊕n v.
Thus (x⊕n y)⊕n z = x⊕n (y ⊕n z).

We also show that the binary operation ⊗n is associative. Let x, y and z
be integers belonging to Zn, and let p = x⊗n y and q = y⊗n z. Then xy− p
and yz − q are both divisible by n. Now

pz − xq = x(yz − q)− (xy − p)z.

It follows that pz − xq is divisible by n, and hence p ⊗n z = x ⊗n q. Thus
(x⊗n y)⊗n z = x⊗n (y ⊗n z).

Now 0 ⊕n x = x ⊕n 0 = x and 1 ⊗n x = x ⊗n 1 = x for all x ∈ Zn. It
follows that (Zn,⊕n) is a monoid with identity element 0, and (Zn,⊗n) is a
monoid with identity element 1.

Every element x of the monoid (Zn,⊕n) is invertible: the inverse of x is
n− x if x 6= 0, and is 0 if x = 0. Thus (Zn,⊕n) is a group.

However (Zn,⊗n) is not a group if n > 1. Indeed 0 is not an invertible
element, since 0⊗n x = 0 for all elements x of Zn, and therefore there cannot
exist any element x of Zn for which 0⊗n x = 1.

It can be shown that an element x of (Zn,⊗n) is invertible in this monoid
if and only if the highest common factor of x and n is equal to 1. It follows
from this that the non-zero elements of Zn constitute a group under ⊗n if
and only if the natural number n is a prime number.

Let us consider the particular case when n = 9. The ‘multiplication table’
for the monoid (Z9,⊗9) is the following:—
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⊗9 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

From this table we see that the invertible elements are 1, 2, 4, 5, 7 and 8.
Indeed 1⊗9 1 = 1, 2⊗9 5 = 1, 4⊗9 7 = 1, 8⊗9 8 = 1.

5.10 Homomorphisms and Isomorphisms

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f :A → B from A to B is said to be a homomorphism if f(x ∗ y) =
f(x) ∗ f(y) for all elements x and y of A.

Example Let q be an integer, and let f :Z→ Z be a the function from the
set of integers to itself defined by f(n) = qn for all integers n. Then f is a
homomorphism from the group (Z,+) to itself, since

f(m+ n) = q(m+ n) = qm+ qn = f(m) + f(n)

for all integers m and n.

Example Let R∗ denote the set of non-zero real numbers, let a be a non-
zero real number, and let f :Z → R

∗ be the function defined by f(n) = an

for all integers m and n. Then f :Z → R
∗ is a homomorphism from the

group (Z,+) of integers under addition to the group (R∗,×) of non-zero real
numbers under multiplication, since

f(m+ n) = am+n = aman = f(m)f(n)

for all integers m and n.

Example This last example can be generalized. Let a be an invertible
element of a monoid (A, ∗), and let f :Z → A be the function from Z to
A defined by f(n) = an. Then this function is a homomorphism from the
group (Z,+) of integers under addition to the monoid (A, ∗) since it follows
from Theorem 5.9 that

f(m+ n) = am+n = am ∗ an = f(m) ∗ f(n)

for all integers m and n.
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We recall that a function f :A → B is said to be injective if distinct
elements of A get mapped to distinct elements of B (i.e., if x and y are
elements of A and if x 6= y then f(x) 6= f(y)). Also a function f :A → B is
said to be surjective if each element of B is the image f(a) of at least one
element a of A. A function f :A → B is said to be bijective if it is both
injective and surjective. One can prove that a function f :A → B has a
well-defined inverse f−1:B → A if and only if it is bijective.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f :A → B from A to B is said to be an isomorphism if it is both a
homomorphism and a bijective function.

Theorem 5.11 Let (A, ∗) and (B, ∗) be semigroups, monoids or groups.
Then the inverse f−1:B → A of any isomorphism f :A → B is itself an
isomorphism.

Proof The inverse f−1:B → A of an isomorphism f :A → B is itself a
bijective function whose inverse is the function f :A → B. It remains to
show that f−1:B → A is a homomorphism. Let u and v be elements of B,
and let x = f−1(u) and y = f−1(v). Then u = f(x) and v = f(y), and
therefore

f(x ∗ y) = f(x) ∗ f(y) = u ∗ v

and therefore
f−1(u ∗ v) = x ∗ y = f−1(u) ∗ f−1(v),

showing that the function f−1:B → A is a homomorphism from (B, ∗) to
(A, ∗), as required.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. If there
exists an isomorphism from (A, ∗) to (B, ∗) then (A, ∗) and (B, ∗) are said
to be isomorphic.

5.11 Quaternions

A quaternion may be defined to be an expression of the form w+xi+yj+zk,
where w, x, y and z are real numbers. There are operations of addition,
subtraction and multiplication defined on the set H of quaternions. These
are binary operations on that set.

Quaternions were introduced into mathematics in 1843 by William Rowan
Hamilton (1805–1865).
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The definitions of addition and subtraction are straightforward. The sum
and difference of two quaternions w + xi + yj + zk and w′ + x′i + y′j + z′k
are given by the formulae

(w + xi+ yj + zk) + (w′ + x′i+ y′j + z′k)

= (w + w′) + (x+ x′)i+ (y + y′)j + (z + z′)k;

(w + xi+ yj + zk)− (w′ + x′i+ y′j + z′k)

= (w − w′) + (x− x′)i+ (y − y′)j + (z − z′)k.

If the quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k are denoted by q
and q′ respectively, then we may denote the sum and the difference of these
quaternions by q + q′ and q − q′.

These operations of addition and subtraction of quaternions are binary
operations on the set H of quaternions. It is easy to see that the operation
of addition is commutative and associative, and that the zero quaternion 0+
0i+0j+0k is an identity element for the operation of addition. In particular
the quaternions constitute a monoid under the operation of addition.

The operation of subtraction of quaternions is neither commutative nor
associative. This results directly from the fact that the operation of subtrac-
tion on the set of real numbers is neither commutative nor associative.

Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z, and there is a corresponding quaternion −q, with −q =
(−w) + (−x)i+ (−y)j+ (−z)k. Then q+ (−q) = (−q) + q = 0, where 0 here
denotes the zero quaternion 0+0i+0j+0k. Thus, in the monoid (H,+) every
quaternion is invertible. It follows that the quaternions constitute a group
(H,+), the binary operation on this group being the operation of addition
of quaternions.

The definition of quaternion multiplication is somewhat more compli-
cated than the definitions of addition and subtraction. The product of two
quaternions w+ xi+ yj + zk and w′+ x′i+ y′j + z′k is given by the formula

(w + xi+ yj + zk)× (w′ + x′i+ y′j + z′k)

= (ww′ − xx′ − yy′ − zz′) + (wx′ + xw′ + yz′ − zy′)i
+(wy′ + yw′ + zx′ − xz′)j + (wz′ + zw′ + xy′ − yx′)k.

We shall often denote the product q × q′ of quaternions q and q′ by qq′.
Given any real number w, let us denote the quaternion w+0i+0j+0k by

w itself. Let us also denote the quaternions 0 + 1i+ 0j+ 0k, 0 + 0i+ 1j+ 0k
and 0 + 0i + 0j + 1k by i, j and k respectively. It follows directly from the
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above formula defining multiplication of quaternions that

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j,

where i2 = i× i, ij = i× j etc. It follows directly from these identities that

ijk = −1,

where ijk = i× (j × k) = (i× j)× k.
Let q be a quaternion, given by the expression w + xi + yj + zk, where

w, x, y and z are real numbers. One can easily verify that the quaternion q
can be formed from the seven quaternions w, x, y, z, i, j and k according to
the formula

q = w + (x× i) + (y × j) + (z × k).

The operation of multiplication on the set H of quaternions is not com-
mutative. Indeed i× j = k, but j × i = −k.

One can however verify by a straightforward but somewhat tedious cal-
culation that this operation of multiplication of quaternions is associative.
Moreover the quaternion 1 + 0i+ 0j + 0k is an identity element for this op-
eration of multiplication. It follows therefore that the quaternions form a
monoid under multiplication.

A quaternion w + xi + yj + zk is said to be real if x = y = z = 0. Such
a quaternion may be identified with the real number w. In this way the set
of real numbers may be regarded as a subset of the set of quaternions.

Although quaternion multiplication is not commutative, one can readily
show that a × q = q × a for all real numbers a and for all quaternions q.
Indeed if q = w + xi + yj + zk, where w, x, y and z are real numbers, then
the rules of quaternion multiplication ensure that

a× q = q × a = (aw) + (ax)i+ (ay)j + (az)k.

Let q be a quaternion. Then q = w+ xi+ yj + zk for some real numbers
w, x, y and z. We define the conjugate q of q to be the quaternion q =
w − xi − yj − zk. The definition of quaternion multiplication may then be
used to show that

q × q = q × q = w2 + x2 + y2 + z2.

We define the modulus |q| of the quaternion q by the formula

|q| =
√
w2 + x2 + y2 + z2.

14



Then qq = qq = |q|2 for all quaternions q. Moreover |q| = 0 if and only if
q = 0.

If q and r are quaternions, and if q and r denote the conjugates of q and
r respectively, then the conjugate q × r of the product q × r is given by the
formula q × r = r × q.

If q is a non-zero quaternion, and if the quaternion q−1 is defined by the
formula q−1 = |q|−2q, then qq−1 = q−1q = 1. We conclude therefore that
every non-zero quaternion is invertible in the monoid (H,×).

It follows directly from this that the non-zero quaternions constitute a
group with respect to the operation of multiplication.

5.12 Quaternions and Vectors

Let q be a quaternion. We can write

q = q0 + q1i+ q2j + q3k,

where q0, q1, q2 and q3 are real numbers. We can then write

q = q0 + ~q

where
~q = q1i+ q2j + q3k.

Following Hamilton, we can refer to q0 as the scalar part of the quaternion q,
and we can refer to ~q as the vector part of the quaternion q. Moreover ~q may
be identified with the vector (q1, q2, q3) in three-dimensional space whose
components (with respect to some fixed orthonormal basis) are q1, q2 and
q3. Thus a quaternion may be regarded as, in some sense, a formal sum of a
scalar and a vector.

In particular, we can regard vectors as a special type of quaternion: a
quaternion q0 + q1i + q2j + q3k represents a vector ~q in three-dimensional
space if and only if q0 = 0. Thus vectors are identified with those quaternions
whose scalar part is zero.

Now let ~q and ~r be vectors, with Cartesian components (q1, q2, q3) and
(r1, r2, r3) respectively. If we consider ~q and ~r to be quaternions (with zero
scalar part), and multiply them together in accordance with the rules of
quaternion multiplication, we find that

~q ~r = −(~q . ~r) + (~q ∧ ~r),

where ~q .~r denotes the scalar product of the vectors ~q and ~r, and ~q∧~r denotes
the vector product of these vectors. Thus the scalar part of the quaternion
~q ~r is −~q . ~r, and the vector part is ~q ∧ ~r.

15



Note that ~q ~r is itself a vector if and only if the vectors ~q and ~r are
orthogonal.

More generally, let q and r be quaternions with scalar parts q0 and r0 and
with vector parts ~q and ~r, so that

q = q0 + ~q, r = r0 + ~r.

Then
qr = q0r0 − ~q . ~r + q0~r + r0~q + ~q ∧ ~r,

and thus the scalar part of the quaternion qr is

q0r0 − ~q . ~r,

and the vector part of the quaternion qr is

q0~r + r0~q + ~q ∧ ~r.

Now let ~u, ~v and ~w be an orthonormal triad of vectors in three dimensional
space, with

|~u| = |~v| = |~w| = 1,

~u ∧ ~v = −~v ∧ ~u = ~w,

~v ∧ ~w = −~w ∧ ~v = ~u,

~w ∧ ~u = −~u ∧ ~w = ~v,

If we multiply these with one another in accordance with the rules for quater-
nion multiplication, we find that

~u2 = ~v2 = ~w2 = −1,

~u~v = −~v ~u = ~w,

~v ~w = −~w~v = ~u,

~w ~u = −~u ~w = ~v,

(Note that the rules for multiplying ~u, ~v and ~w with one another correspond
to Hamilton’s rules for multiplying the basic quaternions i, j and k with
one another, whenever ~u, ~v and ~w constitute a positively oriented basis of
three-dimensional space.)
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5.13 Quaternions and Rotations

Let us consider the effect of a rotation through an angle θ about an axis in
three-dimensional space passing through the origin. Let l, m and n be the
cosines of the angles between the axis of the rotation and the three coordinate
axes. In Cartesian coordinates, the axis of rotation is then in the direction
of the vector (l,m, n), where l2 +m2 +n2 = 1. The angle θ and the direction
cosines l, m, n of the axis of the rotation together determine a quaternion q,
with

q = cos
θ

2
+ sin

θ

2
(li+mj + nk).

Let q be the conjugate of q, given by the formula

q = cos
θ

2
− sin

θ

2
(li+mj + nk).

Let (x, y, z) and (x′, y′, z′) be the Cartesian coordinates of two points in three-
dimensional space, and let r and r′ be the quaternions r and r′ be defined
by

r = xi+ jy + zk and r′ = x′i+ y′j + z′k.

We shall show that if r′ = qrq then a rotation about the axis (l,m, n) through
an angle θ will send the point (x, y, z) to the point (x′, y′, z′). (The effect
of a rotation through an angle θ in the opposite sense can be calculated by
replacing θ by −θ in the definition of the quaternion q.)

In this way the algebra of quaternions may be used in areas of appli-
cation such as computer-aided design and the programming of computer
games, in order to calculate the results of rotations applied to points in
three-dimensional space.

Let ~u, ~v, ~w be an orthonormal basis of three-dimensional space with
~w = ~u ∧ ~v (as above), and with ~u directed along the axis of the rotation.
Let θ be a real number, specifying the angle of rotation, and let q be the
quaternion

q = cos
θ

2
+

(
sin

θ

2

)
~u

= cos
θ

2
+ l sin

θ

2
i+m sin

θ

2
j + n sin

θ

2
k,

where
~u = (l,m, n), l2 +m2 + n2 = 1.

Then

q−1 = q = cos
θ

2
−
(

sin
θ

2

)
~u,
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since

q q =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
− sin

θ

2
~u

)
= cos2 θ

2
+

(
sin2 θ

2

)
~u . ~u

−
(

sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
+ sin2 θ

2
= 1.

Also we find that

q2 =

(
cos

θ

2
+ sin

θ

2
~u

)(
cos

θ

2
+ sin

θ

2
~u

)
= cos2 θ

2
−
(

sin2 θ

2

)
~u . ~u

+ 2 sin
θ

2
cos

θ

2
~u+

(
sin2 θ

2

)
~u ∧ ~u

= cos2 θ

2
− sin2 θ

2
+ 2 sin

θ

2
cos

θ

2
~u

= cos θ + sin θ ~u.

Let us now calculate the quaternion products q~u q, q~v q and q ~w q. We
first note that

~u q = q ~u, ~v q = q~v, ~w q = q ~w.

Therefore

q~u q = qq ~u = ~u,

q~v q = q2~v = (cos θ + sin θ ~u)~v

= cos θ~v + sin θ ~w,

q ~w q = q2 ~w = (cos θ + sin θ ~u)~w

= cos θ ~w − sin θ~v

Thus if we define T :R3 → R
3 to be the transformation that sends a vector ~r

to q~r q, then T fixes the vector ~u, rotates the vector ~v about the direction
of ~u through an angle θ towards ~w, and rotates ~w about the direction of ~u
through an angle θ towards −~v. This transformation T is therefore a rotation
about the direction of ~u through an angle θ.
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