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2 Sets and Functions

2.1 Sets

A set is a collection of entities. (This collection may be empty.) The entities
belonging to a set are referred to as elements of the set. If a is an element
of a set A then we denote this fact by writing a ∈ A.

Two sets are said to be identical, or to be equal to one another, if and
only if they have the same elements. Thus if A and B denote sets, then
A = B if and only if every element of A is an element of B and every element
of B is an element of A.

If we have a list of entities, we denote the set consisting of these entities
by enclosing the list within braces {. . .}. For example the set consisting of
the colours red, green and blue can be denoted by {red, green, blue}.

Note that the order in which elements are specified in such a list is irrel-
evant. For example, the set consisting of the two people Alice and Bob may
be written either as {Alice,Bob} or as {Bob,Alice}. In other words,

{Alice,Bob} = {Bob,Alice}.

A set is said to be finite if it contains a finite number of elements. Oth-
erwise the set is said to be infinite.

Example The set N consisting of all natural numbers is an infinite set, as
is the set Z consisting of all integers.

One set, the empty set, deserves special mention. This set is denoted
by ∅. It has no elements.

The elements of a given set may themselves be sets (and thus have ele-
ments of their own).

2.2 Unions, Intersections and Complements of Sets

Let A and B be sets. We define the union A ∪ B of A and B to be the set
consisting of all elements that belong to A or to B (or to both). We define
the intersection A ∩ B of A and B to be the set consisting of all elements
that belong to both A and B. We also define A \ B to be the set consisting
of elements of A that do not belong to B. If every element of B belongs to
A (so that B is a subset of A), then A \ B is customarily referred to as the
complement of B in A.
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Example Let A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8}. Then

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8},
A ∩B = {4, 5},
A \B = {1, 2, 3},
B \ A = {6, 7, 8}.

Example Let Z be the set of all integers, and let 2Z denote the set of all
even integers (i.e., all integers that are divisible by two). Then Z \ 2Z is the
set of all odd integers (i.e., all integers that are not divisible by two). We
see that 2Z ∪ (Z \ 2Z) = Z (i.e., the set of integers is the union of the set of
even integers and the set of even integers, or in other words, every integer is
even or odd). Also 2Z∩ (Z \ 2Z) = ∅ (i.e., the intersection of the set of even
integers and the set of odd integers is empty, or in other words, no integer is
both even and odd).

One may also form unions and intersections of three or more sets. If A,
B and C are sets, then A ∪ B ∪ C denotes the union of the three sets A,
B and C, and consists of all elements that belong either to A or to B or to
C. Similarly A ∩ B ∩ C denotes the intersection of the three sets A, B, C.
An entity x is an element of the intersection A ∩ B ∩ C if and only if it is
an element of A and also of B and of C. Analogous notations are used for
unions and intersections of four or more sets.

Let A, B and C be sets. One can readily verify the following identities:

A ∪ A = A,

A ∩ A = A,

A ∪B = B ∪ A,
A ∩B = B ∩ A,

(A ∪B) ∪ C = A ∪ (B ∪ C) = A ∪B ∪ C,
(A ∩B) ∩ C = A ∩ (B ∩ C) = A ∩B ∩ C,
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

(A ∩B) ∪ (A \B) = A,

(A ∩B) ∩ (A \B) = ∅,
A ∪B = (A ∩B) ∪ (A \B) ∪ (B \ A),

A \ (B ∪ C) = (A \B) ∩ (A \ C),

A \ (B ∩ C) = (A \B) ∪ (A \ C).
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Example Let us verify that A∩ (B ∪C) = (A∩B)∪ (A∩C) for all sets A,
B and C. Now, given any sets D and E a standard and useful method for
proving that they are in fact the same set is to show that every element of D
belongs to E and that every element of E belongs to D. For then it follows
that the sets D and E have the same elements, and therefore D = E.

So letA, B and C be sets, letD = A∩(B∪C) and let E = (A∩B)∪(A∩C).
Let x be an element of D. Then x ∈ A. Also either x ∈ B or x ∈ C (or
both). If x ∈ B then x ∈ A∩B, (since we also know that x ∈ A). But every
element of A ∩B is an element of the union (A ∩B) ∪ (A ∩ C), which is E.
Therefore x ∈ E. Similarly if x ∈ C, then x ∈ A ∩ C, and hence x ∈ E.
Thus we have seen that an element of D belongs to E in each of the two
cases when x ∈ B and when x ∈ C. We conclude that every element of D
belongs to E.

Now let x be an element of E. Then either x ∈ A ∩ B or x ∈ A ∩ C. In
the first case x ∈ B, and in the second case x ∈ C, so that in either case
x ∈ B ∪ C. Moreover x ∈ A in both cases. It follows that every element of
E belongs to the intersection of A and B ∪C. This intersection is the set D.
Thus every element of E belongs to D.

We have shown that the sets D and E have the same elements. Therefore
D and E are in fact the same set, and so A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).

Example Let us verify that A \ (B ∪C) = (A \B) ∩ (A \C) for all sets A,
B and C. Let x be an element of A \ (B ∪C). We must show that x belongs
to the set of the right hand side of the above equality. Now x ∈ A \ (B ∪C),
and therefore x belongs to A but does not belong to B ∪C. In particular, x
does not belong to B, nor to C. It follows that x ∈ A\B, and also x ∈ A\C.
But then x ∈ (A \ B) ∩ (A \ C). We have thus shown that every element of
A \ (B ∪ C) is an element of (A \B) ∩ (A \ C).

Now let x be any element of (A \ B) ∩ (A \ C). Then x ∈ (A \ B) and
x ∈ (A \ C). The element therefore cannot belong to B. Nor can it belong
to C. But x ∈ A. We conclude therefore that x is an element of A that does
not belong to B ∪ C. (Every element of B ∪ C must belong either to B or
to C.) Thus any element x of (A \B) ∩ (A \C) belongs to A \ (B ∪C). We
conclude that the sets A \ (B ∪C) and (A \B)∩ (A \C) are in fact the same
set, since we have shown that an element of either is an element of the other.
Thus A \ (B ∪ C) = (A \B) ∩ (A \ C).

2.3 Subsets and Power Sets

Definition Let A and B be sets. We say that the set B is a subset of A if
every element of B is an element of A. If B is a subset of A then we denote
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this fact by writing either B ⊂ A or A ⊃ B.

The empty set ∅ is a subset of every set. Morover any set is a subset of
itself (i.e., A ⊂ A for any set A). Thus a non-empty set A always has at least
two subsets, namely ∅ and A itself.

Let A and B be sets. If A ⊂ B and B ⊂ A then A = B. For if A ⊂ B and
B ⊂ A then every element of A is an element of B, and also every element
of B is an element of A. But then the sets A and B have the same elements,
and therefore these sets are in fact the same set.

Definition Let A be a set. The power set PA is the set whose elements are
the subsets of A.

Example Let A be a set consisting of exactly one element a, so that A =
{a}. Then the subsets of A are the empty set ∅ and A itself. It follows that
the power set PA of A is given by PA = {∅, A} in this case. Note that the
set A has 1 element and that its power set PA has 2 elements.

Example Let A = {1, 2}. Then PA = {∅, {1}, {2}, {1, 2}}. Note that the
set A has 2 elements and that its power set PA has 4 elements.

Example Let A be the set consisting of the three colours red, green and
blue. Let us for convenience denote these colours by R, G and B. Thus
A = {R,G,B}. Going systematically through the subsets of A with 0, 1, 2,
and 3 elements, we see that the power set of A is given by the following:

PA = {∅, {R}, {G}, {B}, {G,B}, {B,R}, {R,G}, {R,G,B}} .

Note that the set A has 3 elements and its power set PA has 8 elements.

Example Let A be a set consisting of the four elements a, b, c and d. Then
the power set PA of A consists of the following subsets of A: the empty
set ∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {b, c, d},
{a, c, d}, {a, b, d}, {a, b, c} and {a, b, c, d}. Thus the set A has one subset with
no elements, four subsets with exactly one element, six subsets with exactly
two elements, four subsets with exactly three elements, and one subset with
exactly four elements. Note that the set A has 4 elements and its power set
PA has 16 elements.

The pattern emerging from the above examples would lead one to con-
jecture the following theorem on the number of elements in the power set of
a finite set, which we now proceed to state and prove.
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Theorem 2.1 If a finite set A has exactly n elements, then its power set
PA has exactly 2n elements.

Proof Let A be a set with n elements, where n > 0. Choose an element a
of A, and let B be the subset of A consisting of all elements of A apart from
a (i.e., B is the complement A \ {a} of {a} in A). The set B has n − 1
elements. Now for each subset C of B there exist exactly two subsets of A
whose intersection with B is the set C; these subsets are C itself and C∪{a}
(i.e., the subset of A obtained by adjoining the element a to C). It follows
that the set A has twice as many subsets as the set B.

If A has just one element then its power set PA has two elements. Indeed
if A = {a} then PA = {∅, A}.

An easy application of the Principle of Mathematical Induction proves
that a if finite set has n elements then its power set has 2n elements. Indeed
this result holds for all sets with just one element, and if, for any natural
number m, the result holds for all sets with m elements, then it also holds
for all sets with m+ 1 elements, since we have already seen that the addition
of an element to a set doubles the number of subsets which it contains.

2.4 The Specification of Sets

We come now to consider a standard method for specifying sets in terms of
the properties satisfied by their elements.

Suppose we wish to specify the subset of a given set A consisting of all
elements of A that satisfy a given condition. Such a set is specified by the
following:

{a ∈ A : condition}
where ‘condition’ is to be replaced in the above by the specific condition that
an element a of the set A has to satisfy in order to belong to the subset being
specified, as in the following examples.

Example Suppose we wish to specify the set consisting of all natural num-
bers greater than 7. This set can be specified as

{n ∈ N : n > 7}.

Here N denotes the set of natural numbers. Note that this set can also be
specified as

{n ∈ Z : n > 7},
where Z denotes the set of integers (i.e., whole numbers). (Integers may be
positive, negative or zero, but those integers n which also satisfy the condition
n > 7 are positive, and are therefore natural numbers.)
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Example The set of real numbers is denoted by R. Therefore the set of real
numbers whose squares are greater than 7 may be denoted by

{x ∈ R : x2 > 7}.

Example What is {x ∈ R : x2 < −7}?
Now the square of a real number x is always non-negative, whether x be

positive, negative or zero. Therefore there are no real numbers x satisfying
x2 < −7. We conclude that {x ∈ R : x2 < −7} is simply a somewhat
complicated way of specifying the empty set ∅.

Example How many elements are there in the set {x ∈ R : x2 = 1}?
In other words, how many real numbers are there whose squares are equal

to 1. There are exactly two, namely +1 and −1. Thus {x ∈ R : x2 = 1} =
{−1, 1}. This set has two elements.

Example The set of real numbers that are less than −7 or greater than 4
may be denoted by

{x ∈ R : x < −7 or x > 4}

Example Note that {x ∈ R : x < −7 and x > 4} is simply another some-
what complicated way of specifying the empty set.

Definition Let a and b be real numbers with a ≤ b. We define

[a, b] = {x ∈ R : a ≤ x ≤ b}, (a, b) = {x ∈ R : a < x < b},

[a, b) = {x ∈ R : a ≤ x < b}, (a, b] = {x ∈ R : a < x ≤ b}.

Thus [a, b] denotes the set consisting of all real numbers x that satisfy a ≤
x ≤ b, and the other sets are defined similarly. (Note that if a = b then (a, b),
[a, b) and (a, b] are all the empty set, and [a, b] is the set {a} consisting of
the single element a.)

2.5 Binary Relations

A binary relation on a set specifies relations between pairs of elements from
the set.

Example The relations = (‘equals’), 6= (‘not equal to’), < (‘less than’), >
(‘greater than’), ≤ (‘less than or equal to’) and ≥ (‘greater than or equal to’)
are all binary relations on the set R of real numbers.
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Example Let A be a set, and let PA be the power set of A (i.e., the set
whose elements are the subsets of A). Then ⊂ is a binary relation on PA,
where two subsets B and C of A satisfy B ⊂ C if and only if B is a subset
of C.

If one has a relation R on a set A, then, given two elements x and y of A,
either x is related to y, in which case we may write xRy, or else the element
is not related to y.

Definition Let R be a relation on a set A.
The relation R is said to be reflexive when it has the following property:

xRx for all elements x of the set A.
The relation R is said to be symmetric when it has the following property:

if x and y are elements of the set A, and if xRy, then yRx.
The relation R is said to be transitive when it has the following property:

if x, y and z are elements of the set A, and if xRy and yRz, then xRz.
An equivalence relation is a relation that is reflexive, symmetric and tran-

sitive.

Example The relation < (‘less than’) on the set R of real numbers is neither
reflexive nor symmetric, but it is transitive. Indeed there is no real number x
satisfying x < x. Moreover there are no pairs of real numbers x and y
satisfying both x < y and y < x. However, if x, y and z are real numbers,
and if x < y and y < z, then x < z, and therefore the relation < on R is
transitive.

Example Let A be a non-empty set, and let PA be the power set of A. The
relation ⊂ on PA is reflexive and transitive, but is not symmetric. Indeed
every subset of A is a subset of itself and therefore B ⊂ B for all B ∈ PA,
showing that the relation ⊂ on PA is reflexive. If B, C and D are subsets
of A, and if B ⊂ C and C ⊂ D, then B ⊂ D (for if every element of B is
an element of C and if every element of C is an element of D then clearly
every element of B is an element of D), and therefore the relation ⊂ on PA
is transitive. It is not the case however that B ⊂ C always implies that
C ⊂ B. Indeed subsets B and C of A satisfy both B ⊂ C and C ⊂ B if and
only if B = C. Thus the relation ⊂ on PA is not symmetric.

Example The relation = (‘equals’) on the set R of real numbers is an equiv-
alence relation. However none of the relations 6= (‘not equal to’), < (‘less
than’), > (‘greater than’), ≤ (‘less than or equal to’) or ≥ (‘greater than or
equal to’) are equivalence relations on R.
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2.6 Congruences

Let m be a positive integer. We say that two integers x and y are congruent
modulo m if x − y is divisible by m. If x and y are congruent modulo m,
then we denote this fact by writing

x ≡ y (mod m).

Lemma 2.2 Let m be a positive integer, and let x, y and z be integers. Then
the following results hold:

(i) x ≡ x (mod m);

(ii) if x ≡ y (mod m) then y ≡ x (mod m);

(iii) if x ≡ y (mod m) and y ≡ z (mod m) then x ≡ z (mod m).

The relation of congruence modulo m is thus reflexive, symmetric and tran-
sitive, and is therefore an equivalence relation on the set Z of integers.

Proof Clearly x ≡ x (mod m) for any integer x, since x − x = 0, and 0 is
divisible by any non-zero integer.

If x ≡ y (mod m) then x − y is divisible by m. But then y − x is also
divisible by m, and hence y ≡ x (mod m).

If x ≡ y (mod m) and y ≡ z (mod m) then both x − y and y − z are
divisible by m. But x − z = (x − y) + (y − z) and the sum of two integers
divisible by m is itself an integer divisible by m. Therefore x− z is divisible
by m, and hence x ≡ z (mod m).

Congruences play an important role in the study of the theory of numbers,
and in applications of that theory to practical problems in areas such as
cryptography.

One well known theorem, due to Pierre de Fermat, states that if p is
any prime number then xp ≡ x (mod p) for all integers x. This result is
sometimes referred to as Fermat’s Little Theorem. This property of prime
numbers is not shared by all natural numbers. For example 26 = 64 and
64 ≡ 4 (mod 6). But the numbers 2 and 4 are not congruent modulo 6
(since 4− 2 is not divisible by 6). Therefore the congruence x6 ≡ x (mod 6)
does not hold when x = 2.
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2.7 Partitions and Equivalence Relations

Let A be a set. A partition of A is collection of subsets of A with the property
that every element of A belongs to exactly one of the subsets in the collection.

Example Let Z be the set of integers, let O be the set of odd integers, and
let E be the set of even integers. Every integer is either even or odd, and no
integer is both even and odd. Therefore any integer belongs to exactly one
of the sets O and E. Thus the collection consisting of the sets O and E is a
partition of the set Z of integers.

There is a close connection between partitions and equivalence relations.
We recall that an equivalence relation ∼ on a set A is a binary relation on
A with the following properties:

(i) x ∼ x for all elements x of A (i.e., ∼ is reflexive);

(ii) if x and y are elements of A and if x ∼ y then y ∼ x (i.e., ∼ is
symmetric);

(iii) if x, y and z are elements of A, and if x ∼ y and y ∼ z then x ∼ z (i.e.,
∼ is transitive).

Definition Let ∼ be an equivalence relation on a set A, and let x be an
element of A. The equivalence class [x] of the element x is the subset of A
defined as follows:

[x] = {a ∈ A : a ∼ x}.

Example Let m be a positive integer. There is then an equivalence relation
on the set Z, where two elements x and y are related if and only if x − y is
divisible by m. (In other words, integers x and y are related if and only if
x ≡ y (mod m).) The equivalence class [n]m of an integer n thus consists of
all integers x that are congruent to n modulo m. This equivalence class is
referred to as the congruence class of n modulo m. An integer x belongs to
the congruence class [n]m of n modulo m if and only if x− n is divisible by
m.

Now, given any integer x, exactly one of the integers

x, x− 1, x− 2, . . . , x−m+ 1

between x − m + 1 and x is divisible by m. It follows that the integer x
belongs to exactly one of the congruence classes [0]m, [1]m, [2]m, . . . , [m−1]m.
These congruence classes modulo m therefore constitute a partition of the
set Z of integers.
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Theorem 2.3 Let ∼ be an equivalence relation on a set A. Then every
element of A belongs to exactly one equivalence class. Thus the collection of
equivalence classes is a partition of the set A.

Proof Let x be an element of A. Then x ∼ x (since the relation ∼ is
reflexive), and therefore x ∈ [x]. Thus every element x of A belongs to its
own equivalence class [x]. We see from this that each element of A belongs
to at least one equivalence class.

To complete the proof we must show that each element of A belongs to
at most one equivalence class. Let x and y be elements of A. We shall show
that if the equivalence classes [x] and [y] have at least one element in common
then [x] = [y].

Suppose then that there exists an element z of A that belongs to both
[x] and [y]. Then z ∼ x and z ∼ y. But then x ∼ z (since the relation ∼
is symmetric), and hence x ∼ y (since x ∼ z, z ∼ y, and the relation ∼ is
transitive). Moreover y ∼ x, since the relation ∼ is symmetric. If a is an
element of A and if a ∈ [x] then a ∼ x and x ∼ y, and therefore a ∈ [y].
Similarly if a ∈ [y] then a ∼ y and y ∼ x, and therefore a ∈ [x]. Thus every
element of [x] is an element of [y], and every element of [y] is an element of
[x]. It follows that [x] = [y].

We have proved that if equivalence classes [x] and [y] have at least one
element in common then they coincide (i.e., they are in fact the same equiv-
alence class). It follows that an element of A cannot belong to more than
one equivalence class.

We have proved that every element of A belongs to exactly one equiva-
lence class, since an element of A belongs to at least one equivalence class
but cannot belong to more than one equivalence class. Thus the collection
of equivalence classes is a partition of the set.

Remark We have seen how every equivalence relation on a set gives rise to
a partition of that set. On the other hand, any partition of the set gives rise
to an equivalence relation on that set: two elements of the set are related
if and only if they belong to the same subset in the partition. It follows
that equivalence relations and partitions correspond to one another: to each
equivalence relation on a set there is a corresponding partition of the set,
and vice versa.

2.8 Partial Orders and Lattices

Definition Let A be a set. A binary relation R on A is said to be anti-
symmetric if it has the following property:
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if x and y are elements of A, and if xRy and yRx, then x = y.

Definition A partial order on a set is a relation on that set which is reflexive,
transitive and anti-symmetric.

Let � denote a relation on a set A. We see that this relation is a partial
order on the set A if and only if it has the following three properties:

(i) x � x for all elements x of A;

(ii) if x, y, and z are elements of A, and if x � y and y � z, then x � z;

(iii) if x and y are elements of A, and if x � y and y � x, then x = y.

Example The relation ≤ (‘less than or equal to’) is a partial order on the
set R of real numbers. (It clearly possesses all three properties listed above.)
It is also a partial order when considered as a relation on the set Z of integers,
or on the set N of natural numbers.

Example Let A be a set. The relation ⊂ is a partial order on the power
set PA of A, where subsets B and C satisfy B ⊂ C if and only if B is a
subset of C (i.e., if and only if every element of B belongs also to C).

2.9 Cartesian Products of Sets

Let A and B be sets. The Cartesian product A × B of the sets A and B is
defined to be the set of all ordered pairs (a, b) with a ∈ A and b ∈ B.

Such an ordered pair (a, b) is comprised of two elements a and b, where
the first element a is taken from the set A, and the second element b is taken
from the set B. If (a1, b1) and (a2, b2) are ordered pairs of this type then
(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

Example Points of the plane are specified in Cartesian coordinates by means
of ordered pairs (x, y), where x and y are real numbers. The set of such
ordered pairs is the set R × R (the Cartesian product of two copies of the
set R of real numbers).

Example Let A = {1, 2, 3} and B = {1, 2}. Then

A×B = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)}.

Note that, in this example, the number of elements of the set A×B (i.e., 6)
is the product of the number of elements of A (i.e., 3) and the number of
elements of B (i.e., 2).
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Suppose that A and B are finite sets. Let m and n be the number
of elements in A and B respectively. Then the number of elements of the
Cartesian product A × B is mn. Indeed an element of A × B is an ordered
pair (a, b) with a ∈ A and b ∈ B. There are m ways to choose the element a
from A, and, for each such choice, there are n ways to choose the element b
from B.

One may form the Cartesian product of any number of sets. Suppose
that A1, A2, . . . An are sets. The Cartesian product of these sets is the set
A1 × A2 × · · · × An consisting of all ordered n-tuples (a1, a2, . . . , an) with
ai ∈ Ai for i = 1, 2, . . . , n.

Example Points of three dimensional space are specified in Cartesian co-
ordinates by means of ordered triples (x, y, z), where x, y and z are real
numbers. The set of such ordered triples is the set R× R× R.

Let A1, A2, . . . , An be sets, and let (c1, c2, . . . , cn) and (d1, d2, . . . , dn) be
elements of the Cartesian product A1 × A2 × · · · × An of these sets. Then
(c1, c2, . . . , cn) = (d1, d2, . . . , dn) if and only if ci = di for i = 1, 2, . . . , n (i.e.,
if and only if c1 = d1, c2 = d2, etc.).

A Cartesian product A1 × A2 × · · · × An of finite sets A1, A2, . . . , An is
itself a finite set: the number of elements of the Cartesian product is equal
the product of the number of elements of the individual sets A1, A2, . . . , An.

Example If the sets A, B and C have 3, 5 and 7 elements respectively then
their Cartesian product has 105 elements, since 105 = 3× 5× 7.

Example Suppose that one to construct a database containing information
on students taking a course such as 2BA1. Each record in the database is
to specify the student number, the name, and the degree programme being
followed by the student. Let I be the set consisting of all strings of eight
decimal digits, let N be a set containing all the student names, and let D be
the set of all degree programmes taught at Trinity College Dublin. Then a
record in the database determines an element of the set I ×N ×D, such as

(63009987, Śıle Nı́ Shé,CSLL German).

The collection of all such records contained in the database can be viewed
as a subset of the Cartesian product I ×N ×D of the set I, N and D. The
language of sets and Cartesian products is used in discussions of relational
databases.

A subset of the Cartesian product A1×A2×· · ·×An of sets A1, A2, . . . , An

is sometimes referred to as an n-ary relation on the sets A1, A2, . . . , An.
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2.10 Functions between Sets

Definition Let A and B be sets. A function f :A→ B from A to B assigns
to each element a of A an element f(a) of B. The set A on which the function
is defined is referred to as the domain of the function f :A→ B. The set B
into which the domain is mapped by f is referred to as the codomain of the
function f .

Example Let R be the set of real numbers. The function q: R→ R defined
by q(x) = x2 for all real numbers x is a function from the set R of real
numbers to itself.

Example There is a function r: R \ {0} → R, where r(x) = 1/x for all
non-zero real numbers x. The domain of this function is the set R \ {0} of
all non-zero real numbers (i.e., the set {x ∈ R : x 6= 0}). The domain of this
function cannot be extended to the entire set R of real numbers since the
reciprocal of zero is not defined. According the above definition the value of
a function must be defined at all elements of its domain.

Example Let A be the set of letters in the English alphabet (including
both upper-case and lower-case letters). Then there is a function f :A → N
which sends each letter to its ASCII code. Then, for example, f(A) = 65,
f(B) = 66, f(a) = 97 and f(b) = 98.

Given any set A, there is a function 1A:A → A from the set A to itself
which sends each element a of A to itself. This function is referred to as the
identity function on A.

Definition Let A and B be sets, and let f :A→ B be a function from A to
B. The range of the function f is the subset f(A) of B defined by

f(A) = {b ∈ B : b = f(a) for some a ∈ A}.

In other words, the range of a function is the set consisting of all elements of
the codomain of the function that are images under the function of elements
of its domain.

Definition Let A be a set. A Boolean function on A is a function f :A →
{T, F} whose domain is A and whose codomain is the set {T, F} whose
elements are the truth values T = true and F = false.
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2.11 Compositions of Functions

Let A, B and C be sets, let f :A→ B be a function A to B, let g:B → C be
a function from B to C. Then there is a function g ◦ f :A→ C obtained by
composing the functions f and g. This function is defined at each element a
of A by the formula (g ◦ f)(a) = g(f(a)). (In other words, in order to
apply the composition function g ◦ f to an element a of A, we first apply
the function f to the element a, and then we apply the function g to the
resulting element f(a) of B to obtain an element g(f(a)) of C.

Example Let R denote the set of real numbers, and let f : R → R and
g: R → R be the functions defined by f(x) = (x + 1)2 and g(x) = sinx for
all real numbers x. Then g ◦ f = h where h: R → R is the function defined
by h(x) = sin(x+ 1)2 for all real numbers x. Also f ◦ g = k, where k: R→ R
is the function defined by k(x) = (sin x+ 1)2 for all real numbers x.

Remark Note that ‘g ◦ f ’ denotes the composition function ‘f followed by
g’. The functions are specified in this order (which may at first seem odd)
in order that (g ◦ f)(a) = g(f(a)) for all elements a of the domain A of the
function f .

2.12 The Graph of a Function

Let A and B be sets. To every function f :A → B from A to B there
corresponds a subset Γ(f) of the Cartesian product A×B, where

Γ(f) = {(a, b) ∈ A×B : b = f(a)}.

Mathematicians often refer to the subset of A×B corresponding to a function
f :A → B as the graph of the function. The following example suggests the
reason for this terminology.

Example Let q: R → R be the function from the set R of real numbers to
itself defined such that q(x) = x2 for all real numbers x. The graph of this
function is the subset of R× R given by

{(x, y) ∈ R× R : y = x2}.

Note that this subset consists of the Cartesian coordinates of the points of
the plane that lie on the curve that represents the graph of the given function.

Whilst every function from A to B determines a corresponding sub-
set Γ(f) of A × B, it is not possible to obtain every subset of A × B in
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this fashion. Indeed it is easy to see that a subset R of A×B is the graph of
some function f :A→ B if and only if, for every element a of A, there exists
exactly one element b of B for which (a, b) ∈ R. If the subset R of A×B has
this property, then the corresponding function f :A→ B is characterized by
the property that, for each element a of A, f(a) is the unique element of B
for which (a, f(a)) ∈ R.

Remark In some books, including many textbooks on discrete mathematics
written for students of computer science, a function from a set A to a set B
is formally defined as a subset of the Cartesian product A × B with the
property that for each element a of A there exists exactly one element b of
B for which the ordered pair (a, b) belongs to the given subset. In essence,
in this approach, functions are being identified with their graphs.

2.13 The Inverse of a Function

Definition Let A and B be sets, and let f :A → B be a function from A
to B. A function g:B → A from B to A is said to be the inverse of the
function f if g(f(a)) = a for all elements a of A and f(g(b)) = b for all
elements b of B. If there exists a function g:B → A that is the inverse of
f :A → B, then the function f is said to be invertible and the inverse of a
function f :A→ B is denoted by f−1:B → A.

Example Let R+ denote the set of all non-negative real numbers, and let
q: R+ → R+ denote the function defined by q(x) = x2 for each non-negative
real number x. This function is invertible, and its inverse q−1: R+ → R+

is given by q−1(x) =
√
x, where, for each non-negative real number x,

√
x

denotes the unique non-negative real number that is a square root of x.

Example Let A be the set of letters in the English alphabet (including both
upper-case and lower-case letters), and let

I = {n ∈ N : 65 ≤ n ≤ 90 or 97 ≤ n ≤ 122}.

There is then a function f :A → I that sends each letter of the alphabet to
its ASCII code. The inverse function f−1: I → A sends each natural number
within the specified ranges to the letter of the English alphabet which it
represents. Thus, for example, f−1(65) = A, f−1(66) = B, f−1(90) = Z,
f−1(97) = a, f−1(98) = b and f−1(122) = z.
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2.14 Injective, Surjective and Bijective Functions

Many functions are not invertible. The following example illustrates some of
the reasons why certain functions may not be invertible.

Example Let W be the set of all English words occurring as headwords in
some specified dictionary, let N denote the set of natural numbers and let
λ:W → N denote the function that sends each word to its length. (Thus, for
example, λ(to) = 2 and λ(indecipherable) = 14.) This function λ:W → N
is not invertible.

One feature of this function which results in its not being invertible is
the fact that there are natural numbers that are the image of more than one
word. For example

λ(to) = λ(by) = λ(at) = 2.

λ(physical) = λ(computer) = 8.

If one were to seek to define function µ: N → W that was the inverse of
λ:W → N then one would run into problems in seeking to define val-
ues such as µ(2) and µ(8). Indeed if such an inverse function µ: N → W
were to exist, then it would have to satisfy µ(λ(α)) = α for all words α in
the dictionary. In particular we would have µ(λ(physical)) = physical
and µ(λ(computer)) = computer. But µ(λ(physical)) = µ(8), and
µ(λ(computer)) = µ(8), and therefore the inverse function µ: N → W
would also have to satisfy µ(λ(physical)) = µ(λ(computer)), and there-
fore the words ‘physical’ and ‘computer’ would have to be identical, which
is clearly not the case. This demonstrates the impossibility of finding an
inverse function to λ.

Another type of problem can also arise in seeking to define an inverse
µ: N → W to the function λ:W → N. How do we define µ(1000)? Now the
inverse function µ would have to satisfy λ(µ(n)) = n for all natural numbers,
and in particular would have to satisfy λ(µ(1000)) = 1000. Therefore µ(1000)
would have to be a headword in the specified dictionary with 1000 letters!
We take it for granted that no such headword exists.

Definition Let A and B be sets, and let f :A→ B be a function from A to
B. We say that the function f is injective if f(x) 6= f(y) for all elements x
and y of A with x 6= y. We say that the function f is surjective if, given any
element b of B, there exists some element a of A such that f(a) = b. We say
that the function f is bijective if it both injective and surjective.

Thus a function is injective if and only if distinct elements of its domain
get mapped to distinct elements of its codomain. A function is surjective if
every element of the codomain is the image of some element of the domain.
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Example Let R+ denote the set of non-negative real numbers, and let
q: R+ → R+ be the function given by q(x) = x2 for all non-negative real
numbers x. Let x and y be non-negative real numbers. If x < y then
x2 < y2. If x > y then x2 > y2. But if x 6= y then either x < y or x > y.
It follows that if x 6= y then x2 6= y2. The function q: R+ → R+ is there-
fore injective. Also, given any non-negative real number x, there exists a
non-negative real number

√
x whose square is equal to x. It follows that the

function q: R+ → R+ is both injective and surjective. It is therefore bijective.
This function also has an inverse q−1: R+ → R+, where q−1(x) =

√
x for all

non-negative real numbers x.

Example Let s: R → R by the function given by s(x) = x2 for all real
numbers x. This function is not injective. For example, −2 and 2 are distinct
elements of R, but s(−2) = 4 = s(2). Moreover the function is not surjective,
since any negative real number such as −4 is not in the range of the function.
This function s: R→ R is neither injective nor surjective. Moreover one can
easily satisfy oneself that it does not have an inverse. (Such an inverse, were
it to exist, would have to be defined for all real numbers, not merely the
non-negative ones.)

Remark Note that the expressions defining the values q(x) and s(x) of the
functions of the previous two examples are the same, but these two functions
have different domains and different codomains, and are therefore regarded
as being different functions. In determining whether or not functions are
injective or surjective, it is crucial to take into account the domain and
codomain given in the specification of the function.

One can readily verify that the composition of two injections is itself an
injection, and that the composition of two surjections is itself a surjection.
It follows directly that the composition of two bijections is a bijection.

Theorem 2.4 A function f :A → B is invertible if and only if it is both
injective and surjective.

Proof First we show that an invertible function must be both injective and
surjective. Suppose that the function f :A → B has an inverse g:B → A.
Then g(f(a)) = a for all elements a of the domain A, and f(g(b)) = b for all
elements b of the codomain B. Let x and y be elements of A. If f(x) = f(y)
then x = g(f(x)) = g(f(y)) = y. Thus f(x) and f(y) cannot be equal unless
x = y. It follows that if x 6= y then f(x) 6= f(y). We see therefore that an
invertible function must be injective.
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An invertible function must also be surjective. For if g:B → A is an
inverse of f :A → B then f(g(b)) = b for all elements b of the codomain B,
and thus there exists at least one element of the domain, namely g(b), which
is mapped by f to the element b.

We have now shown that an invertible function must be both injective
and surjective. It remains to show that a function that is both injective and
surjective is invertible.

Let f :A→ B be a function that is both injective and surjective. Let b be
an element of the set B. There exists at least one element x of A satisfying
f(x) = b, since the function f is surjective. If y is an element of A and if
y 6= x, then f(y) 6= f(x), because the function f is injective, and therefore
f(y) 6= b. We conclude that, for each element b of B, there exists exactly one
element x of the set A satisfying f(x) = b; let us denote this element by g(b).
We obtain in this way a function g:B → A such that, for each element b of
B, g(b) is the unique element x of A satisfying f(x) = b.

Clearly f(g(b)) = b for all elements b of B. In order to prove that the
function g:B → A is the inverse of f :A → B, we must also prove that
g(f(a)) = a for all elements a of A. Let a be an element of the set A.
Now f(g(b)) = b for all elements b of B; letting b = f(a), we see that
f(g(f(a))) = f(a). But then g(f(a)) and a are both elements of A that are
mapped by f to the element f(a) of B. It follows that g(f(a)) = a, since
the function f is injective. We have thus shown that g(f(a)) = a for any
element a of the domain A of the function f . We conclude that the function
g:B → A is indeed the inverse of f :A → B, and thus the function f is
invertible, as required.

The above theorem shows that a function between sets is invertible if and
only if it is a bijection.

Example Let q: [−3, 1]→ [0, 9] be the function defined by q(x) = x2 for all
x ∈ [−3, 1], where

[−3, 1] = {x ∈ R : −3 ≤ x ≤ 1} and [0, 9] = {x ∈ R : 0 ≤ x ≤ 9}.

(We recall that, given any real numbers a and b satisfying a ≤ b, the set
of real numbers x satisfying a ≤ x ≤ b is denoted by [a, b].) The function
q: [−3, 1]→ [0, 9] is surjective, since for each real number y satisfying 0 ≤ y ≤
9, there exists at least one real number x satisfying −3 ≤ x ≤ 1 such that
q(x) = y; one such real number x is given by x = −√y, where

√
y denotes

the positive square root of y. However the function q is not injective. Indeed
q(1) = q(−1) = 1. The function q: [−3, 1] → [0, 9] is therefore not bijective,
and hence is not invertible.
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Example Let f : [0, 2] → [0, 2] and g: [0, 2] → [0, 2] be the functions defined
by

f(x) =

{
x2 if 0 ≤ x ≤ 1;
3− x if 1 < x ≤ 2;

g(x) =

{
x2 if 0 ≤ x < 1;
3− x if 1 ≤ x ≤ 2.

The function f : [0, 2] → [0, 2] is not injective since f(1) = f(2) = 1. This
function is not surjective, since there is no element x of the domain [0, 2]
for which f(x) = 2. The function f is thus not bijective, and hence is not
invertible. The function g: [0, 2] → [0, 2], on the other hand, is invertible,
with inverse given by

g−1(x) =

{√
x if 0 ≤ x < 1;

3− x if 1 ≤ x ≤ 2.

It follows from this that the function g: [0, 2]→ [0, 2] must be both injective
and surjective.

2.15 Functions defined on Finite Sets

Proposition 2.5 Let f :X → Y be a function between sets X and Y , where
the set X is finite. Then the function f is injective if and only if the range
f(X) has the same number of elements as the domain X.

Proof Suppose that the domain X of the function has m elements. Let
x1, x2, x3, . . . , xm be a list of the elements of X, where every element occurs
exactly once in the list. Now every element of the range f(X) occurs in the
list f(x1), f(x2), . . . , f(xm). It follows that f(X) has the same number of
elements as X if and only if every element of f(X) occurs exactly once in
the list f(x1), f(x2), . . . , f(xm). Moreover this is the case if and only if the
function f :X → Y is injective. The result follows.

Corollary 2.6 Let X and Y be finite sets with the same number of elements.
Then every injective function f :X → Y from X to Y is bijective.

Proof Suppose that the function f :X → Y is injective. It then follows from
Proposition 2.5 that the range f(X) of the function has the same number of
elements as X, and thus has the same number of elements as the codomain Y .
It follows that f(X) = Y . The function f is thus surjective, and is therefore
bijective.
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Corollary 2.7 (Pigeonhole Principle) Let X and Y be finite sets, and let
f :X → Y be a function from X to Y . Suppose that Y has fewer elements
than X. Then there exist distinct elements u and v of X satisfying f(u) =
f(v).

Proof The range f(X) of the function cannot have the same number of
elements as the domain X, as f(X) ⊂ Y , and Y has fewer elements than X.
It follows from Proposition 2.5 that the function f cannot be injective. The
result follows.

Example Suppose that there are 18 lecturers in a university department,
and that each lecturer has a pigeonhole for correspondence in the departmen-
tal office. If an executive officer distributes 20 letters amongst the pigeonholes
of the lecturers, then at least one pigeonhole will receive more than one of
these letters.

Example If a person has at least 367 friends on a social networking site,
then at least two of those friends share the same birthday.

Example In any list of positive integers with 14 or more members, at least
two of those integers will yield the same remainder when divided by 13.

Proposition 2.8 A set X is finite if and only if every injective function
f :X → X from the set X to itself is bijective.

Proof If the set X is finite then it follows immediately from Corollary 2.6
that every injective function f :X → X is bijective.

Suppose that the set X is infinite. Then there exists some infinite se-
quence x1, x2, x3, . . . of distinct elements of X (where an element of X occurs
at most once in this list). Then there exists a function f :X → X defined
such that f(xn) = xn+1 for all positive integers n, and f(x) = x for all el-
ements x of X that are not members of this infinite sequence. Let x be an
element of X. If x is not a member of the infinite sequence x1, x2, x3, . . .
then the only element of X that gets mapped to x is the element x itself; if
x = xn, where n > 1, then the only element of X that gets mapped to x is
xn−1; and if x = x1 then no element of the set X gets mapped to x. It follows
that the function f is injective. However it is not surjective, since x1 does
not belong to the range of the function. This function f is thus an example
of a function from the set X to itself which is injective but not bijective.
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Problems

1. (a) Prove that A\ (B∩C) = (A\B)∪ (A\C) for all sets A, B and C.

(b) Prove that (A ∪ B) \ C = (A \ C) ∪ (B \ C) for all sets A, B and
C.

(c) Prove that A \ (B \C) = (A \B)∪ (A∩C) for all sets A, B and C.

(d) Prove that A ∪ (B ∩C) = (A ∪B) ∩ (A ∪C) for all sets A, B and
C.

2. For each of the following relations, determine whether or not that rela-
tion is reflexive, symmetric, transitive, anti-symmetric, an equivalence
relation, and/or a partial order, giving appropriate reasons for your
answers:—

(a) the relation P on the set N of natural numbers, where natural
numbers m and n satisfy mPn if and only if m+ n is divisible by 2;

(b) the relation Q on the set N of natural numbers, where natural
numbers m and n satisfy mQn if and only if m+ n is divisible by 3.

(c) the relation R on the set N of natural numbers, where natural
numbers m and n satisfy mRn if and only if n = 2km for some integer k
(which may be positive, zero or negative);

(d) the relation S on the set Z of integers, where integers x and y
satisfy xSy if and only if x2 ≤ y2;

(e) the relation Q on the set Z of integers, where integers x and y
satisfy xQy if and only if x− y = k3 for some integer k;

(f) the relation S on the set Z of integers, where integers x and y satisfy
xSy if and only if xy is even.

(g) the relation P on the set Z of integers, where integers x and y
satisfy xPy if and only if xy is odd.

(h) the relation Q on the set R of real numbers, where real numbers x
and y satisfy xQy if and only if y3 = x3 − x+ y.
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(i) the relation P on the set R of real numbers, where real numbers x
and y satisfy xPy if and only if x3 − y3 + x− y ≥ 0.

3. For each of the following functions, determine whether or not that
function is injective and/or surjective, and whether or not it has a
well-defined inverse, giving appropriate reasons for your answers:—

(a) the function f : {1, 2, 3, 4} → {1, 2, 3, 4} with f(1) = 2, f(2) = 3,
f(3) = 2 and f(4) = 4;

(b) the function g: {1, 2, 3, 4} → {1, 2, 3, 4} with f(1) = 2, f(2) = 3,
f(3) = 1 and f(4) = 4;

(c) the function h: [1, 2]→ [0, 1
2
] with

h(x) =
x− 1

x
,

where [1, 2] = {x ∈ R : 1 ≤ x ≤ 2} and [0, 1
2
] = {x ∈ R : 0 ≤ x ≤ 1

2
}.

(d) the function f : [−1, 1] → [−2, 2] with f(x) = x3 − x for all x ∈
[−1, 1].

(e) the function g: [1, 2]→ [0, 6] with g(x) = x3 − x for all x ∈ [1, 3].

(f) the function h: [0, 1]→ [−2, 2] with h(x) = x3 − x for all x ∈ [0, 1].

(g) the function f : [−1, 1] → [−2, 2] with f(x) = x3 + x for all x ∈
[−1, 1].

(h) the function g: (−1, 1)→ R with g(x) =
1

1− x2
for all x ∈ (−1, 1).
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