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1 The Principle of Mathematical Induction

1.1 Integers and Natural Numbers

An integer is a whole number. Such numbers are of three types, positive,
negative and zero. The positive integers (or positive whole numbers) are
1, 2, 3, 4, . . . . Similarly the negative integers or negative whole numbers)
are −1,−2,−3,−4, . . . . There is of course exactly one integer that is zero,
namely 0 itself.

The non-negative integers are therefore 0, 1, 2, 3, . . . . Similarly the non-
positive integers are 0,−1,−2,−3, . . . .

It is customary in mathematics to denote the set (or collection) of integers
by Z. (The word for ‘number’ in German is ‘Zahl’.)

The natural numbers are the positive integers 1, 2, 3, 4, . . . . It is custom-
ary to denote the set of natural numbers by N.

(Note therefore that terms ‘natural number’ and ‘positive integer’ are
synonyms, i.e., they refer to the same objects.)
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1.2 Introduction to the Principle of Mathematical In-
duction

For each natural number n, let Sn denote the sum of the first n (positive)
odd numbers. Calculating S1, S2, S3, S4, S5, we find

S1 = 1 = 1,
S2 = 1 + 3 = 4,
S3 = 1 + 3 + 5 = 9,
S4 = 1 + 3 + 5 + 7 = 16,
S5 = 1 + 3 + 5 + 7 + 9 = 25.

You may notice a pattern beginning to emerge. Does this pattern continue?
Suppose that we see whether or not the pattern continues to S6. Adding up,
we find

S6 = 1 + 3 + 5 + 7 + 9 + 11 = 36.

We are thus led to conjecture that

Sn = n2

for all natural numbers n?
Can we prove it? If so, how?
Merely testing the proposition for a few values of n, no matter how many,

cannot in itself suffice to prove that the proposition holds for all natural
numbers n. Moreover propositions may turn out to be true in a very large
number of cases, and yet fail for others. Such a proposition is the following:

“n < 1, 000, 000, 000”.

This proposition holds for a large number of natural numbers n (indeed for
999, 999, 999 of them, to be precise), yet it obviously fails to hold for all
natural numbers n.

One might ask what strategies are available for proving that some con-
jectured result does indeed hold for all natural numbers n. One such is the
Principle of Mathematical Induction.

Suppose that, for each natural number n, P (n) denotes some proposition,
such as “Sn = n2”. For each value of n, the proposition P (n) would be either
true or false. Our task is to prove that it is true for all values of n. The
Principle of Mathematical Induction states that this is true provided that (i)
P (1) is true, and (ii) if P (m) is true for any natural number m then P (m+1)
is also true.

We can express this more informally as follows. Suppose that we are
required to prove that some statement is true for all values of a natural

2



number n. To do this, it suffices to prove (i) that the statement is true when
n = 1, and (ii) that if the statement is true when n = m for some natural
number m, then it is also true when n = m+ 1 (no matter what the value of
m).

To understand the justification for the Principle of Mathematical Induc-
tion, consider the following. For each natural number n, let P (n) denote (as
above) a proposition (that is either true or false). We suppose that we have
proved that P (1) is true, and that if P (m) is true then P (m + 1) is true.
Now

P (1) is true.

If P (1) is true then P (2) is true. Moreover P (1) is true.
Therefore P (2) is true.

If P (2) is true then P (3) is true. Moreover P (2) is true.
Therefore P (3) is true.

If P (3) is true then P (4) is true. Moreover P (3) is true.
Therefore P (4) is true.

...

If P (n− 2) is true then P (n− 1) is true. Moreover P (n− 2) is
true. Therefore P (n− 1) is true.

If P (n− 1) is true then P (n) is true. Moreover P (n− 1) is true.
Therefore P (n) is true.

The pattern exhibited in these statements should convince you that P (n) is
true for any natural number n, no matter how large.

We now consider how to apply the Principle of Mathematical Induction
to prove that Sn = n2 for all natural numbers n, where Sn denotes the sum
of the first n odd numbers. Obviously S1 = 1, so that the conjectured result
holds when n = 1. Suppose that Sm = m2 for some natural number m. Then

Sm+1 = Sm + (2m+ 1) = m2 + 2m+ 1 = (m+ 1)2

Thus if the identity Sn = n2 holds when n = m then it also holds when
n = m+ 1. We conclude from the Principle of Mathematical Induction that
Sn = n2 for all natural numbers n.

We can write out the argument rather more formally as follows. For each
natural number n, let P (n) denote the proposition “Sn = n2”. Clearly, for
any given natural number n, such a proposition P (n) is either true or false.
We want to show that P (n) is true for all natural numbers n. This however
follows on applying the Principle of Mathematical Induction, given that we
have noted that P (1) is true, and have demonstrated that if P (m) is true for
any natural number m then P (m+ 1) is also true.
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1.3 Some examples of proofs using the Principle of
Mathematical Induction

Example We claim that

n∑
i=1

i = 1
2
n(n+ 1)

for all natural numbers n, where

n∑
i=1

i = 1 + 2 + · · ·+ n.

We prove this result using the Principle of Mathematical Induction.
For any natural number n let P (n) denote the proposition

“
n∑
i=1

i = 1
2
n(n+ 1)”.

One can easily see that the proposition P (1) is true, since both sides of the
above identity reduce to the value 1 in this case.

Suppose that P (m) is true for some natural number m. Then

m∑
i=1

i = 1
2
m(m+ 1).

But then

m+1∑
i=1

i =
m∑
i=1

i+ (m+ 1) = 1
2
m(m+ 1) + (m+ 1) = 1

2
(m+ 1)(m+ 2),

and therefore the proposition P (m+1) is also true. We can therefore conclude
from the Principle of Mathematical Induction that P (n) is true for all natural
numbers, which is the result we set out to prove.

Example We prove by induction on n that

n∑
i=1

i2 = 1
6
n(n+ 1)(2n+ 1)

for all natural numbers n, where

n∑
i=1

i2 = 12 + 22 + · · ·+ n2.
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To achieve this, we have to verify that the formula holds when n = 1, and
that if the formula holds when n = m for some natural number m, then the
formula holds when n = m+ 1.

The formula does indeed hold when n = 1, since 1 = 1
6
× 1× 2× 3.

Suppose that the formula holds when n = m. Then

m∑
i=1

i2 = 1
6
m(m+ 1)(2m+ 1).

But then

m+1∑
i=1

i2 =
m∑
i=1

i2 + (m+ 1)2

= 1
6
m(m+ 1)(2m+ 1) + (m+ 1)2

= 1
6
(m+ 1) (m(2m+ 1) + 6(m+ 1)) = 1

6
(m+ 1)

(
2m2 + 7m+ 6

)
= 1

6
(m+ 1)(m+ 2)(2m+ 3),

and therefore the formula holds when n = m+1. The required result therefore
follows using the Principle of Mathematical Induction.

Example We prove by induction on n that

1 · 4 + 2 · 5 + 3 · 6 + · · ·+ n(n+ 3) = 1
3
n(n+ 1)(n+ 5).

for all natural numbers n. The left hand side of the above identity may be

written as
n∑
i=1

i(i+ 3).

The required identity

n∑
i=1

i(i+ 3) = 1
3
n(n+ 1)(n+ 5)

holds when n = 1, since both sides are then equal to 4. Suppose that this
identity holds when n is equal to some natural number m, so that

m∑
i=1

i(i+ 3) = 1
3
m(m+ 1)(m+ 5).

Then

m+1∑
i=1

i(i+ 3) =
m∑
i=1

i(i+ 3) + (m+ 1)(m+ 4)
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= 1
3
m(m+ 1)(m+ 5) + (m+ 1)(m+ 4)

= 1
3
(m+ 1)

(
m(m+ 5) + 3(m+ 4)

)
= 1

3
(m+ 1)(m2 + 8m+ 12)

= 1
3
(m+ 1)(m+ 2)(m+ 6),

and therefore the required identity
n∑
i=1

i(i+3) = 1
3
n(n+1)(n+5) holds when

n = m+1. It now follows from the Principle of Mathematical Induction that
this identity holds for all natural numbers m.

Example We can use the Principle of Mathematical Induction to prove that

n∑
k=1

5kk =
5

16

(
(4n− 1)5n + 1

)
.

for all natural numbers n. This equality holds when n = 1, since both sides
are then equal to 5. Suppose that the equality holds when n = m for some
natural number m, so that

m∑
k=1

5kk =
5

16

(
(4m− 1)5m + 1

)
.

Then

m+1∑
k=1

5kk =
m∑
k=1

5kk + 5m+1(m+ 1)

=
5

16

(
(4m− 1)5m + 1

)
+ 5m+1(m+ 1)

=
5

16

(
(4m− 1)5m + 1 + 16(m+ 1)5m

)
=

5

16

(
(20m+ 15)5m + 1

)
=

5

16

(
(4m+ 3)5m+1 + 1

)
=

5

16

(
(4(m+ 1)− 1)5m+1 + 1

)
.

and thus the equality holds when n = m+ 1. It follows from the Principle of
Mathematical Induction that the equality holds for all natural numbers n.

Example We now use Principle of Mathematical Induction to prove that
6n − 1 is divisible by 5 for all natural numbers n. The result is clearly true
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when n = 1. Suppose that the result is true when n = m for some natural
number m. Then 6m − 1 is divisible by 5. But then

6m+1 − 1 = 6m+1 − 6m + (6m − 1) = 5× 6m + (6m − 1),

and therefore 6m+1 − 1 is also divisible by 5. It therefore follows that 6n − 1
is divisible by 5 for all natural numbers n.

Example Given any two positive integers n and k we define the binomial

coefficient

(
n

k

)
to be the number of ways of choosing k distinct objects from

a collection consisting of n objects. We also define

(
n

0

)
= 1 for all natural

numbers n, and we define(
n

k

)
= 0 whenever k < 0.

Note that

(
n

n

)
= 1 (since the entire collection can be selected in exactly one

way), and that

(
n

k

)
= 0 when k > n (since it is clearly impossible to select

more than n distinct objects from a collection consisting of n objects).
We wish to prove that(

n

k

)
=

n!

k!(n− k)!
whenever 0 ≤ k ≤ n

(where 0! = 1 and where, for each natural number n, n! (n factorial) denotes
the product 1× 2× 3× · · · × n of all the natural numbers between 1 and n).
We shall prove this result using the Principle of Mathematical Induction.

First, though, we derive a recursion formula for the binomial coefficients.

We are interested in the number

(
n

k

)
of ways of choosing k objects from

a collection consisting of n objects, in the case where n > 1. Let us suppose
for the sake of argument that those n objects are coloured balls. Moreover
let us suppose that exactly one of those balls is coloured black, and that the
remaining balls are coloured red. There are then two distinct types of choices
that we can make. We can make a choice consisting entirely of red balls: let
us refer to such a choice as a type I choice. Alternatively we can make a
choice consisting of the black ball together with k − 1 red balls: let us refer
to such a choice as a type II choice. A type I choice requires us to choose
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k red balls from a collection of n− 1 red balls, and there are

(
n− 1

k

)
such

choices. A type II choice requires us to choose k−1 red balls from a collection

of n− 1 red balls, and there are

(
n− 1

k − 1

)
such choices. The total number of

choices is obtained by adding together the number of type I choices and the
number of type II choices. It follows that(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

(Note that the definitions we have made ensure that this formula also holds
when k = 0, and indeed when k < 0.)

We now proceed to prove the required formula for the binomial coeffi-
cients, using the Principle of Mathematical Induction. Let P (n) denote the
proposition

“

(
n

k

)
=

n!

k!(n− k)!
whenever 0 ≤ k ≤ n”

The proposition P (1) asserts that

(
1

0

)
=

(
1

1

)
= 1, which is certainly true.

Now suppose that P (n) is true for some natural number n. We show that
P (n+ 1) is true. If P (n) is true and if the integer k satisfies 1 ≤ k ≤ n then(

n

k

)
=

n!

k!(n− k)!
and

(
n

k − 1

)
=

n!

(k − 1)!(n+ 1− k)!
.

It then follows from the recursion formula derived above that(
n+ 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n+ 1− k)!
.

But
1

(n− k)!
=

n+ 1− k
(n+ 1− k)!

and
1

(k − 1)!
=

k

k!
.

It follows that(
n+ 1

k

)
=

n!

k!(n+ 1− k)!
((n+ 1− k) + k)

=
(n+ 1)!

k!(n+ 1− k)!

The required identity

(
n+ 1

k

)
=

(n+ 1)!

k!(n+ 1− k)!
holds also when k = 0 and

k = n + 1, since it is easily seen that both sides of the identity are equal to
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1 in these cases. We conclude that if the proposition P (n) is true for any
natural number n then the proposition P (n+1) is also true. We can therefore
conclude from the Principle of Mathematical Induction that the proposition
P (n) is true for all natural numbers n, which is what we are required to
prove.

Example We can use the Principle of Mathematical Induction to prove that
(2n)! < 4n(n!)2 for all natural numbers n. This inequality holds when n = 1,
since in that case (2n)! = 2! = 2 and 4n(n!)2 = 4. Suppose that the inequality
holds when n = m for some natural number m. Then (2m)! < 4m(m!)2. Now

(2(m+ 1))! = (2m+ 2)! = (2m)!(2m+ 1)(2m+ 2).

Also
4m+1((m+ 1)!)2 = 4(4m(m!)2)(m+ 1)2.

Moreover
(2m+ 1)(2m+ 2) < (2m+ 2)2 = 4(m+ 1)2.

On multiplying together the two inequalities

(2m)! < 4m(m!)2 and (2m+ 1)(2m+ 2) < 4(m+ 1)2

(which we are allowed to do since the quantities on both sides of these in-
equalities are strictly positive), we find that

(2m)!(2m+ 1)(2m+ 2) < 4(4m(m!)2)(m+ 1)2.

Thus if the inequality (2n)! < 4n(n!)2 holds when n = m then it also holds
when n = m+1. We conclude from the Principle of Mathematical Induction
that it must hold for all natural numbers n.

Example We can use the Principle of Mathematical Induction to prove that

13 + 23 + 33 + · · ·+ n3 > 1
4
(n4 + 2n3)

for all natural numbers n. This inequality holds when n = 1, since the left
hand side is then equal to 1, and the right hand side is equal to 3

4
. Suppose

that the inequality holds when n = m for some natural number m, so that

m∑
i=1

i3 > 1
4
(m4 + 2m3).
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Then

m+1∑
i=1

i3 =
m∑
i=1

i3 + (m+ 1)3

> 1
4
(m4 + 2m3) + (m+ 1)3

= 1
4

(
m4 + 2m3 + 4(m+ 1)3

)
= 1

4

(
m4 + 6m3 + 12m2 + 12m+ 4

)
Now

(m+ 1)4 + 2(m+ 1)3 = (m4 + 4m3 + 6m2 + 4m+ 1)

+ (2m3 + 6m2 + 6m+ 2)

= m4 + 6m3 + 12m2 + 10m+ 3

But 12m+ 4 > 10m+ 3 (since m > 0), and therefore

m4 + 6m3 + 12m2 + 12m+ 4 > (m+ 1)4 + 2(m+ 1)3.

It follows that

m+1∑
i=1

i3 > 1
4

(
m4 + 6m3 + 12m2 + 12m+ 4

)
> 1

4
((m+ 1)4 + 2(m+ 1)3).

Thus if the inequality
n∑
i=1

i3 > 1
4
(n4 + 2n3)

holds when n = m for some natural number m, then it also holds when
n = m+1. It follows from the Principle of Mathematical Induction that this
identity holds for all natural numbers n.

10


