
Course 2BA1: Hilary Term 2007
Section 10: Graph Theory

David R. Wilkins

Copyright c© David R. Wilkins 2000-2007

Contents

10 Graph Theory 2
10.1 Undirected Graphs . . . . . . . . . . . . . . . . . . . . . . . . 2
10.2 Incidence and Adjacency . . . . . . . . . . . . . . . . . . . . . 3
10.3 Incidence and Adjacency Tables and Matrices . . . . . . . . . 4
10.4 Complete Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 6
10.5 Bipartite Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 6
10.6 Isomorphism of Graphs . . . . . . . . . . . . . . . . . . . . . . 7
10.7 Subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
10.8 Vertex Degrees . . . . . . . . . . . . . . . . . . . . . . . . . . 8
10.9 Walks, Trails and Paths . . . . . . . . . . . . . . . . . . . . . 9
10.10Connected Graphs . . . . . . . . . . . . . . . . . . . . . . . . 10
10.11The Components of a Graph . . . . . . . . . . . . . . . . . . . 10
10.12Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.13Eulerian Trails and Circuits . . . . . . . . . . . . . . . . . . . 14
10.14Hamiltonian Paths and Circuits . . . . . . . . . . . . . . . . . 20
10.15Forests and Trees . . . . . . . . . . . . . . . . . . . . . . . . . 20
10.16Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . 23
10.17Directed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 24
10.18Adjacency Matrices of Directed Graphs . . . . . . . . . . . . . 24
10.19Directed Graphs and Binary Relations . . . . . . . . . . . . . 25

1



10 Graph Theory

10.1 Undirected Graphs

An undirected graph can be thought of as consisting of a finite set V of points,
referred to as the vertices of the graph, together with a finite set E of edges,
where each edge joins two distinct vertices of the graph.

We now proceed to formulate the definition of an undirected graph in
somewhat more formal language.

Let V be a set. We denote by V2 the set consisting of all subsets of V
with exactly two elements. Thus, for any set V ,

V2 = {A ∈ PV : |A| = 2},

where PV denotes the power set of V (i.e., the set consisting of all subsets
of V ), and |A| denotes the number of elements in a subset A of V .

Definition An undirected graph (V, E) consists of a finite set V together
with a subset E of V2 (where V2 is the set consisting of all subsets of V with
exactly two elements). The elements of V are the vertices of the graph; the
elements of E are the edges of the graph.

Example Let a, b and c label the three vertices of a triangle in the plane.
Then there is an undirected graph (V, E) which consists of the vertices and
edges of this triangle.

a b

c

Here

V = {a, b, c};
E = {{a, b}, {b, c}, {c, a}}.

Example Let a, b, c and d label the four vertices of a square in the plane
(labelled in cyclic order around the square). Then there is an undirected
graph (V, E) which consists of the vertices and edges of this square.
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a b

cd

Here

V = {a, b, c, d};
E = {{a, b}, {b, c}, {c, d}, {d, a}}.

Note that, in this example, not every subset of V2 with exactly two elements
is an edge of the graph. (Indeed the diagonals {a, c} and {b, d} are not edges
of this graph.)

Let (V, E) be an undirected graph. In order to simplify notation, we
shall often denote by a b an edge {a, b} of the graph whose endpoints are the
vertices a and b.

Definition A graph is said to be trivial if it consists of a single vertex.

We may denote a graph by a single letter such as G. Writing G = (V, E)
indicates that V is the set of vertices and E is the set of edges of some
graph G.

10.2 Incidence and Adjacency

Definition If v is a vertex of some graph, if e is an edge of the graph, and
if e = v v′ for some vertex v′ of the graph, then the vertex v is said to be
incident to the edge e, and the edge e is said to be incident to the vertex v.

(We see therefore that an edge of a graph is incident to a vertex of the
graph, and the vertex is incident to the edge, if and only if the vertex is one
of the endpoints of the edge.)

Definition Two distinct vertices v and v′ of a graph (V, E) are said to be
adjacent if and only if v v′ ∈ E.

(We see therefore that two distinct vertices of a graph are adjacent if and
only if they are the endpoints of an edge of the graph.)
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10.3 Incidence and Adjacency Tables and Matrices

The following example illustrates how we may associate incidence and adja-
cency tables or matrices with graphs.

Example Let a, b, c and d represent the four vertices of a square in the
plane, and consider the graph consisting of the vertices and edges of this
square. Let s, t, u and v denote the four edges of the square, where s = a b,
t = b c, u = c d and v = d a.

a b

cd

s

t

u

v

The incidence relations between the vertices a, b, c and d and the edges
s, t, u and v can be expressed by the following table:

s t u v

a 1 0 0 1
b 1 1 0 0
c 0 1 1 0
d 0 0 1 1

Such a table is known as the incidence table for the graph.
If a vertex is incident to an edge then the corresponding entry in the table

has the value 1; otherwise that entry has the value 0.
If the vertices are ordered (as first vertex, second vertex, etc.) and if the

edges are also ordered, then this information may be encoded in a matrix,
known as an incidence matrix. In this example, if the vertices are ordered
as a, b, c, d (so that a is the first vertex, b is the second vertex, c is the third
vertex, and d is the fourth vertex), and if the edges are ordered as s, t, u, v,
then the corresponding incidence matrix is

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .
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Definition Let (V, E) be a graph with m vertices and n edges. Let the ver-
tices be ordered as v1, v2, . . . , vm, and let the edges be ordered as e1, e2, . . . , en.
The incidence matrix for such a graph then takes the form

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ,

where the entry aij in the ith row and jth column has the value 1 if the ith
vertex is incident to the jth edge, but has the value 0 otherwise.

One may introduce in a similar fashion the adjacency table and the adja-
cency matrix of a graph.

Definition Let (V, E) be a graph with m vertices, and let the vertices be
ordered as v1, v2, . . . , vm. The adjacency matrix for such a graph then takes
the form 

b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...
bm1 am2 . . . bmm

 ,

where the entry bij in the ith row and jth column has the value 1 if the ith
vertex is adjacent to the jth vertex but has the value 0 otherwise.

Note that the adjacency matrix of any (undirected) graph is symmetric:
bij = bji for all indices i and j, where bij denotes the entry in the ith row
and jth column of the adjacency matrix.

Example Consider the graph consisting of the vertices and edges of a square
in the plane. Suppose that the vertices are ordered in anticlockwise order
around the square, starting from some chosen vertex of the square.

1 2

34
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Then the adjacency matrix for this graph is the matrix
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

10.4 Complete Graphs

Definition A graph (V, E) is said to be complete if and only if, {v, v′} ∈ E
for all v ∈ V and v′ ∈ V satisfying v 6= v′.

(Thus a graph is complete if and only if any two distinct vertices of the
graph are the endpoints of an edge of the graph.)

A complete graph with n vertices is denoted by Kn.

10.5 Bipartite Graphs

Definition A graph (V, E) is said to be bipartite if there exist subsets V1

and V2, such that

(i) V1 ∪ V2 = V ;

(ii) V1 ∩ V2 = ∅;

(iii) each edge in E is of the form {v, w} with v ∈ V1 and w ∈ V2.

If in addition {v, w} is an edge of the graph for every v ∈ V1 and w ∈ V2 then
the graph (V, E) is said to be a complete bipartite graph. In the case when
V1 has p elements and V2 has q elements, such a complete bipartite graph is
denoted by Kp,q.

Example Let (V, E) be a graph with

V = {a, b, c, d, e},
E = {a c, a d, a e, b c, b d, b e}.

Let V1 = {a, b} and V2 = {c, d, e}. Then the conditions in the above
definition are satisfied by the graph (V, E) and the subsets V1 and V2, and
therefore the graph is bipartite. Moreover it is a complete bipartite graph.
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a

b

c

d

e

V1

V2

10.6 Isomorphism of Graphs

Definition An isomorphism between two graphs (V, E) and (V ′, E ′) is a
bijective function ϕ: V → V ′ with the following property: for any two distinct
vertices a and b belonging to V , {a, b} ∈ E if and only if {ϕ(a), ϕ(b)} ∈ E ′.
If there exists such an isomorphism ϕ: V → V ′ between two graphs (V, E)
and (V ′, E ′) then these graphs are said to be isomorphic.

We recall that a function ϕ: V → V ′ is bijective if and only if it has a well-
defined inverse ϕ−1: V ′ → V . Thus a bijection ϕ: V → V ′ sets up a one-to-one
correspondence between the vertices of V and V ′: to every vertex of V there
corresponds a vertex of V ′, and vice versa. Such a one-to-one correspondence
between the vertices belonging to V and V ′ is an isomorphism between the
graphs (V, E) and (V ′, E ′) when it has the following additional property: a
pair of distinct vertices belonging to V are the endpoints of an edge of (V, E)
if and only if the corresponding vertices belonging to V ′ are the endpoints of
an edge of (V ′, E ′). There is then a one-to-one correspondence between the
edges of the two graphs, induced by the one-to-one correspondence between
their vertices.

10.7 Subgraphs

Definition Let (V, E) and (V ′, E ′) be graphs. The graph (V ′, E ′) is said to
be a subgraph of (V, E) if and only if V ′ ⊂ V and E ′ ⊂ E (i.e., if and only if
the vertices and edges of (V ′, E ′) are all vertices and edges of (V, E)).
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Let (V, E) be a graph, and let V ′ be a subset of V . Let

E ′ = {{a, b} ∈ E : a ∈ V ′ and b ∈ V ′},

(so that E ′ be the set of all edges {a, b} belonging to E whose endpoints a
and b belong to V ′). Then (V ′, E ′) is a subgraph of (V, E). It is referred to
as the restriction of the graph (V, E) to V ′, or as the graph induced on V ′

by the graph (V, E). If the graph (V, E) is denoted by G, then its restriction
(V ′, E ′) to V ′ may be denoted by G|V ′ .

10.8 Vertex Degrees

Definition Let (V, E) be a graph. The degree deg v of a vertex v of this
graph is defined to be the number of edges of the graph that are incident
to v (i.e., the number of edges of the graph which have v as one of their
endpoints).

Definition A vertex of a graph of degree 0 is said to be an isolated vertex.

Definition A vertex of a graph of degree 1 is said to be an pendant vertex.

Theorem 10.1 Let (V, E) be a graph. Then∑
v∈V

deg v = 2|E|,

where
∑
v∈V

deg v denotes the sum of the degrees of all the vertices of the graph,

and |E| denotes the number of edges of the graph.

Proof Clearly
∑
v∈V

deg v counts the number of times an edge of a graph is

incident on a vertex of the graph. But this quantity must be twice the number
of edges of the graph, since each edge is incident on exactly two vertices.

Corollary 10.2
∑
v∈V

deg v is an even integer.

Corollary 10.3 In any graph, the number of vertices of odd degree must be
even.

Definition A graph is said to be k-regular, for some non-negative integer k,
if every vertex of the graph has degree equal to k. A regular graph is a graph
that is k-regular for some non-negative integer k.
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Corollary 10.4 Let (V, E) be a k-regular graph. Then k|V | = 2|E|, where
|V | denotes the number of vertices and |E| denotes the number of edges of
the graph.

Proof If the graph is k-regular then the sum of the degrees of the vertices
of the graph is equal to k|V |. The result then follows immediately from
Theorem 10.1.

Example The graph consisting of the vertices and edges of a square is 2-
regular, since every vertex (i.e., every corner of the square) is incident to
exactly two edges.

Example A complete graph with n vertices is (n − 1)-regular, since each
vertex is adjacent to all the remaining n− 1 vertices.

Example A complete bipartite graph Kp,q is regular if and only if p = q.

10.9 Walks, Trails and Paths

Definition Let (V, E) be a graph. A walk v0 v1 v2 . . . vn of length n in
the graph from a vertex a to a vertex b is determined by a finite sequence
v0, v1, v2, . . . , vn of vertices of the graph such that v0 = a, vn = b and vi−1 vi

is an edge of the graph for i = 1, 2, . . . , n.

A walk v0 v1 v2 . . . vn in a graph is said to traverse the edges vi−1vi for
i = 1, 2, . . . , n and to pass through the vertices v0, v1, . . . , vn.

Each vertex v in a graph determines a walk of length of length zero in
the graph, consisting of the single vertex v; such a walk is said to be trivial.

Definition Let (V, E) be a graph. A trail v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the edges vi−1vi are distinct for i = 1, 2, . . . , n.

A trail in a graph is thus a walk in the graph which traverses edges of the
graph at most once.

Definition Let (V, E) be a graph. A path v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the vertices v0, v1, . . . , vn are distinct.

A path in a graph is thus a walk in the graph which passes through
vertices of the graph at most once.

Definition A walk, trail or path in a graph is said to be trivial if it is a
walk v of length zero determined by a single vertex v of v; otherwise it is
said to be non-trivial.
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v5 v6

v7

v8 v9

A trail v0 v1 . . . v9 in a graph

10.10 Connected Graphs

Definition An undirected graph is said to be connected if, given any two
vertices u and v of the graph, there exists a path in the graph from u to v.

Theorem 10.5 Let u and v be vertices of a graph. Then there exists a path
in the graph from u to v if and only if there exists a walk in the graph from
u to v.

Proof Any path in a graph from one vertex to another is a walk. It therefore
only remains to show that if there exists a walk in the graph from a vertex u
to a vertex v, then there must also exist a path in the graph from u to v.

Now if there exists at least one walk from u to v, then there must exist
a walk from u to v whose length is less than or equal to that of every other
walk from u to v. Let this walk be a0 a1 . . . an, where a0 = u and an = v.
We claim that this walk is in fact a path from u to v. Indeed were it the
case that aj = ak for some integers j and k satisfying 0 ≤ j < k ≤ n then
the walk a0 . . . aj ak+1 . . . an from u to v obtained on omitting the edges
aj aj+1, . . . , ak−1 ak would be a walk from u to v whose length was strictly
less than that of the given walk (which is the shortest walk from u to v). But
this is clearly impossible. Hence a0, a1, . . . , an must be distinct, and thus the
the walk a0 a1 . . . an is a path from u to v.

Corollary 10.6 An undirected graph is connected if and only if, given any
two vertices u and v of the graph, there exists a walk in the graph from u to
v.

10.11 The Components of a Graph

Let (V, E) be an undirected graph. We can define a relation ∼ on the set V
of vertices of the graph, where two vertices a and b of the graph satisfy a ∼ b

10



if and only if there exists a walk in the graph from a to b.

Lemma 10.7 Let (V, E) be an undirected graph. Then the relation ∼ on the
set V of vertices of the graph is an equivalence relation, where two vertices
u and v of the graph satisfy u ∼ v if and only if there exists a walk in the
graph from u to v.

Proof We must prove that the relation ∼ on V is reflexive, symmetric and
transitive.

Clearly v ∼ v for any vertex v of the graph, since the trivial walk v is
walk from v to itself. Thus the relation ∼ is reflexive.

Let u and v be vertices of the graph satisfying u ∼ v. Then there exists
a walk u a1 a2 . . . an−1 v from u to v. This walk may be reversed to obtain a
walk v an−1 an−2 . . . a1 u from v to u. We conclude that if u ∼ v then v ∼ u.
Thus the relation ∼ is symmetric.

Finally let u, v and w be vertices of the graph for which u ∼ v and
v ∼ w. Then there exists a walk u a1 a2 . . . an−1 v from u to v, and a walk
v b1 b2 . . . br−1 w from v to b. These two walks may be concatenated to yield
a walk

u a1 a2 . . . an−1 v b1 b2 . . . br−1 w

from u to w, showing that u ∼ w. Thus the relation ∼ is transitive. We have
shown that this relation is reflexive, symmetric and transitive. It is therefore
an equivalence relation.

The equivalence relation ∼ on the set V of vertices of the graph (V, E)
gives rise to a partition of V as the disjoint union of subsets V1, V2, . . . , Vm,
where

(i) V1 ∪ V2 ∪ · · · ∪ Vk = V ;

(ii) Vi ∩ Vj = ∅ if i 6= j;

(iii) two vertices u and v belong to a single subset Vi if and only if there
exists a walk in (V, E) from u to v (i.e., if and only if u ∼ v).

If u and v are the endpoints of some edge u v of the graph (V, E), then u ∼ v
(since an edge can be considered as a walk of length one), and thus u and v
belong to the same set Vi. Thus, if we define

Ei = {u v ∈ E : u ∈ Vi and v ∈ Vi},

then (V1, E1), (V2, E2), . . . , (Vk, Ek) are subgraphs of (V, E), and

V = V1 ∪ V2 ∪ · · · ∪ Vk, E = E1 ∪ E2 ∪ · · · ∪ Ek.
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These subgraphs are disjoint since Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅ if i 6= j.
Moreover the graph (Vi, Ei) is the restriction of the graph (V, E) to Vi (also
describable as the graph induced on Vi by (V, E)) for i = 1, 2, . . . , k.

The subgraphs (Vi, Ei) of (V, E) are referred to as the components (or
connected components) of the graph (V, E).

(V1, E1) (V2, E2) (V3, E3)

A graph with three components

Lemma 10.8 The vertices and edges of any walk in an undirected graph are
all contained in a single component of that graph.

Proof Let v0 v1 . . . vn be a walk in a graph (V, E). Then v0 v1 . . . vr is a
walk in (V, E) from v0 to vr for each integer r between 1 and m. It follows
that each vertex vr through which the walk passes must belong to the same
component of the graph as v0. Therefore all the vertices and edges of this
walk belong to a single component of the graph, namely that component
which contains the vertex v0.

Lemma 10.9 Each component of an undirected graph is connected.

Proof Let (V, E) be a graph, and let u and v be vertices belonging to Vi,
where (Vi, Ei) is one of the components of this graph. Then there exists
a walk in (V, E) from u to v. But the vertices and edges of this walk are
contained in a single component of the graph (V, E), by Lemma 10.8, and
that component must obviously be the component (Vi, Ei) that contains the
vertices u and v. Thus there exists a walk in (Vi, Ei) from u to v. We conclude
that the graph (Vi, Ei) is connected.

Remark The importance of the concept of the components of a graph is
that it enables us to reduce the study of undirected graphs in general to the
study of connected graphs. Indeed any undirected graph can be represented
as a disjoint union of connected subgraphs: these subgraphs are the compo-
nents of the given graph. These connected components may then be studied
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individually. Moreover properties of any one component do not affect those
of any other, since no edge of the graph passes from any one component of
the graph to any other.

10.12 Circuits

Definition Let (V, E) be a graph. A walk v0 v1 v2 . . . vn in the graph is said
to be closed if v0 = vn.

Thus a walk in a graph is closed if and only if it starts and ends at the
same vertex.

Definition Let (V, E) be a graph. A circuit in the graph is a non-trivial
closed trail in the graph.

We see therefore that a circuit in a graph is a closed walk with no repeated
edges, and passing though at least two vertices.

Definition A circuit v0 v1 v2 . . . vn−1 v0 in a graph is said to be simple if the
vertices v0, v1, v2, . . . vn−1 are distinct.

Remark Some authors use the term cycle to denote a simple circuit in a
graph. Others use the term cycle to refer to a circuit in the graph, irrespective
of whether or not it is simple.

We now prove two theorems that provide sufficient conditions for a graph
to contain simple circuits.

Theorem 10.10 If a graph has no isolated or pendant vertices then it con-
tains at least one simple circuit.

Proof Let (V, E) be a graph with no isolated or pendant vertices. The
length of any path in this graph cannot exceed |V | − 1, where |V | denotes
the number of vertices of the graph, since a path of length m passes through
m + 1 distinct vertices. Therefore there exists a path v0 v1 v2 . . . vm in the
graph whose length m is greater than or equal to the length of every other
path in the graph. Now the final vertex vm of the graph is adjacent to at least
two vertices of the graph, since the graph contains no isolated or pendant
vertices. One of these vertices is vm−1. If none of the vertices v0, v1, . . . , vm−2

were incident to vm then there would exist a vertex w adjacent to vm that
was distinct from v0, v1, . . . , vm, and then v0, v1, . . . , vm w would be a path in
the graph with length exceeding m, which is impossible. It follows that at
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least one of the vertices v0, v1, . . . , vm−2 is incident to vm; let that vertex be
vk, where 0 ≤ k ≤ m − 2. Then vk vk+1 . . . vm vk is a simple circuit in the
graph. Thus a graph with no isolated or pendant vertices always contains a
simple circuit.

Theorem 10.11 Let u and v be vertices of a graph, where u 6= v. Suppose
that there exist at least two distinct paths in the graph from u to v. Then the
graph contains at least one simple circuit.

Proof Let a0 a1 a2 . . . am and b0 b1 b2 . . . bn be two distinct paths in the
graph with a0 = b0 = u and am = bn = v. We may suppose that m ≤ n.
Now the fact that paths are distinct ensures that there exists at least inte-
ger i satisfying 0 < i ≤ m for which ai 6= bi. Let the smallest such integer i
be r + 1, where r is an integer in the range 0 ≤ r < m. Then ar = br and
ar+1 6= br+1. Now the condition ai ∈ {bj : r < j ≤ n} is satisfied when
i = m, since am = bn. Let s be the smallest integer satisfying r < s ≤ m
for which as ∈ {bj : r < j ≤ n}. Then as = bt for some integer t satisfying
r < t ≤ n. Moreover none of the vertices ai with r < i < s belong to the set
{bj : r < j < t}. It follows that

ar ar+1 . . . as bt−1 . . . br+1ar

is a simple circuit in the graph. Thus the graph has at least one simple
circuit, as required.

10.13 Eulerian Trails and Circuits

Definition An Eulerian trail in a graph is a trail that traverses every edge
of the graph.

Note that an Eulerian trail in a graph must traverse every edge of the
graph exactly once, since a trail traverses an edge of the graph at most once.

Definition An Eulerian circuit in a graph is a circuit that traverses every
edge of the graph.

It follows from these definitions that any closed Eulerian trail is an Eule-
rian circuit.

Example Let (V, E) be the complete graph K5 on five vertices a, b, c, d and
e, where

V = {a, b, c, d, e},
E = {a b, a c, a d, a e, b c, b d, b e, c d, c e, d e}.
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a

b c

de

This graph has Eulerian circuits. One of them is the following:

a b c a d e c d b e a.

Remark Eulerian trails and circuits are named after the Swiss mathemati-
cian Leonhard Euler (1707–1783), who first studied the problem of the exis-
tence of such circuits in connection with the problem of the Seven Bridges of
Königsberg. The citizens of this city used to amuse themselves by attempting
to devise a walk around the city that would cross each of the seven bridges
exactly once. They always failed in this attempt, for reasons explained by
Euler.

We shall derive necessary and sufficient conditions for the existence of
Eulerian trails and circuits in a connected graph. The following theorem will
give rise to a necessary condition for the existence of an Eulerian trail or
circuit.

Theorem 10.12 Let v0 v1 . . . vm be a trail in a graph, and let v be a vertex
of that graph. Then the number of edges of the trail incident to the vertex v
is even, except in the case when the trail is not closed and the trail starts or
finishes at v, in which case the number of edges of the trail incident to the
vertex v is odd.

Proof First suppose that v 6= v0 and v 6= vm. The edges of the trail that are
incident to v are then those of the form vi−1 vi and vi vi+1 with 0 < i < m
and vi = v. It follows that the number of edges of the trail incident to v is
then equal to twice the number of integers i satisfying 0 < i < m for which
v = vi, and is thus even.
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If v = v0, and if the trail is not closed (i.e., if vm 6= v0), then the edges of
the trail incident to v are the edge v0 v1 together with the edges vi−1 vi and
vi vi+1 for those integers i satisfying 1 < i < m for which v = vi. Therefore
the number of edges of the trail incident to v is then equal to one plus twice
the number of integers i satisfying 1 < i < m for which v = vi, and is
thus odd. Similarly the number of edges of the trail incident to v is odd
in the case when v = vm and the trail is not closed. Finally, in the case
when the trail is closed and v = v0 = vm, the edges incident to v are v0 v1

and vm−1 vm, together with the edges vi−1 vi and vi vi+1 for those integers i
satisfying 1 < i < m for which v = vi. The total number of edges of the trail
incident to v is therefore even.

Corollary 10.13 Let v be a vertex of a graph. Then, given any circuit in
the graph, the number of edges incident to v that are traversed by that circuit
is even.

Corollary 10.14 If a graph admits an Eulerian circuit then the degree of
every vertex of the graph must be even.

Proof Let v be a vertex of the graph. It follows from Corollary 10.13 that
the number of edges of any Eulerian circuit incident to v is even. But every
edge incident to v is an edge of an Eulerian circuit, since an Eulerian circuit
by definition traverses every edge of the graph. It follows that the degree of
the vertex v is even, as required.

Example Any attempt to find an Eulerian circuit in the complete graph K4

on four vertices is guaranteed to fail, since such a graph is 3-regular (i.e., the
degree of each of the four vertices of the graph is equal to 3).

Corollary 10.15 If a graph admits an Eulerian trail that is not a circuit
then the degrees of exactly two vertices of the graph must be odd, and the
degrees of the remaining vertices must be even. The two vertices with odd
degrees will then be the initial and final vertices of the Eulerian trail.

Proof As in the proof of Corollary 10.15 we see from Theorem 10.12 that
the degree of a vertex of the graph must be even unless that vertex is one of
the two endpoints of the trail, in which case the degree must be odd.

We shall now work towards a proof of the fact that a non-trivial connected
graph has an Eulerian circuit if the degree of each of its vertices is even. For
this we use the results of the following lemmas.
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Lemma 10.16 Let v w be an edge of a graph in which the degree of every
vertex is even. Then there exists a circuit of the graph which traverses the
edge v w.

Proof Let v0 = v and v1 = w. Suppose that, for some positive integer k a
trail v0 v1 . . . vk has been constructed in the graph starting at the vertex v
and traversing the edge v w. Suppose also that vk 6= v. It follows from
Theorem 10.12 that the number of edges of the trail incident to vk must be
odd. But the degree of vk is even. It follows that the number of edges of the
trail incident to vk must be strictly less than the degree of vk, and therefore
there must exist at least one edge of the graph incident to vk which is not
traversed by the trail v0 v1 . . . vk. Let that edge be vk vk+1, where vk+1 is a
vertex adjacent to vk. Then v0 v1 . . . vk vk+1 is a trail of length k + 1 in the
graph which starts at v and traverses the edge v w.

Now the length of any trail in a graph cannot exceed the number of edges
of the graph, since each edge of the graph is traversed at most once by any
trail. It follows that successive extensions of the trail v w will ultimately
result in a trail that cannot be extended to a longer trail. This must then
be closed (since we have just shown that if the trail is not closed then it can
always be extended). This closed trail is then the required circuit.

Lemma 10.17 Suppose that a graph contains a circuit of length m and a
circuit of length n. Suppose also that no edge of the graph is traversed by both
circuits, and that at least one vertex of the graph is common to both circuits.
Then the graph contains a circuit of length m + n.

Proof Let u be a vertex of the graph which is common to both circuits.
We may clearly suppose that both circuits start from and finish at this ver-
tex u. Let the first circuit be u v1 . . . vm−1 u and let the second circuit be
u w1 . . . wn−1 u. We can then concatenate these two circuits together to ob-
tain a third circuit

u v1 . . . vm−1 u w1 . . . wn−1u

of length m + n.

Lemma 10.18 Let (V, E) be a connected graph, and let some trail in this
graph be given. Suppose that no vertex of the graph has the property that some
but not all of the edges of the graph incident to that vertex are traversed by
the trail. Then the given trail is an Eulerian trail.

Proof Let V1 be the set of vertices through which the trail passes, and let
V2 denote the set consisting of any remaining vertices of the graph. Then
V1 ∪ V2 = V and V1 ∩ V2 = ∅. We will prove that V2 = ∅.
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Now any vertex belonging to V1 is incident to at least one edge traversed
by the trail. But then all edges incident to a vertex belonging to V1 must
be traversed by the trail. But then any vertex of V adjacent to a vertex in
V1 must itself belong to V1, and thus no edge can join a vertex in V1 to a
vertex in V2. If the set V2 were non-empty then there could not exist any
path joining a vertex in V2 to a vertex in V1, and thus the graph would not be
connected. Therefore V2 must be empty, and V1 = V . But then every edge
of (V, E) must be traversed by the trail, and thus the trail is an Eulerian
trail.

Lemma 10.19 Let (V, E) be a connected graph with the property that the
degree of every vertex of the graph is even, and let some circuit in this graph
be given. Suppose that there is some vertex v of the graph with the property
that some but not all of the edges of the graph incident to that vertex are
traversed by the given circuit. Then there exists a second circuit in the graph
(V, E) which passes through the vertex v and which does not traverse any
edge which is traversed by the given circuit.

Proof let E ′ denote the subset of E consisting of those edges of the graph
that are not traversed by the given circuit. Then (V, E ′) is a subgraph of the
given graph (V, E). Given any vertex w, the number of edges of the given
circuit that are incident to w is equal to d(w) − d′(w), where d(w) is the
number of edges in E incident to w, and d′(w) is the number of edges in E ′

incident to w. It follows from Lemma 10.13 that d(w) − d′(w) is an even
integer. But the degree d(w) of each vertex w of the graph (V, E) is even, by
assumption, and therefore d′(v) is also even. Thus the degree of every vertex
in the subgraph (V, E ′) is even.

Now the vertex v of the graph has the property that some but not all
of edges incident to this vertex are traversed by the given trail. Therefore
some at least of the edges of the graph (V, E) incident to v are edges also of
the subgraph (V, E ′). It then follows from Lemma 10.16 that the subgraph
(V, E ′) contains a circuit which passes through the vertex v. This circuit is
of course a circuit in the graph (V, E), it passes through the vertex v, and it
does not traverse any edge of the graph (V, E) that is traversed by the given
circuit.

Theorem 10.20 A non-trivial connected graph contains an Eulerian circuit
if the degree of every vertex of the graph is even.

Proof Let (V, E) be a non-trivial connected graph with the property that
the degree of every vertex is even. An easy application of Lemma 10.16 shows
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that such a graph contains at least one circuit. It therefore contains a circuit
which is at least as long as every other circuit in the graph. We shall show
that this circuit of maximal length is an Eulerian circuit.

Now if the graph were to contain some vertex v with the property that
some but not all of the edges of the graph incident to that vertex are traversed
by this circuit of maximal length, then it would follow from Lemma 10.19
that there would exist a second circuit in the graph (V, E) which would also
pass through the vertex v, and which would not traverse any trail traversed
by the circuit of maximal length. But it would then follow immediately from
Lemma 10.17 that the graph would contain a circuit which was longer than
the circuit of maximal length, which is clearly impossible.

We conclude therefore that the graph cannot contain any vertex v with
the property that some but not all of the edges of the graph incident to that
vertex are traversed by the circuit of maximal length. It now follows from
Lemma 10.18 that such a circuit of maximal length must be an Eulerian
circuit.

Remark A careful examination of the proofs of Lemma 10.16, Corollary 10.17
and Lemma 10.19 shows that they provide an algorithm for constructing an
Eulerian circuit in a non-trivial connected graph whose vertices all have even
degree. Indeed the proof of Lemma 10.16 shows how circuits can be con-
structed in such a graph, and the proofs of Corollary 10.17 and Lemma 10.19
show how to replace a circuit that is not an Eulerian circuit by a strictly
longer circuit. A finite number of such replacements must ultimately result
in an Eulerian circuit.

On combining the results of Corollary 10.14 and Theorem 10.20 we con-
clude that a non-trivial connected graph has an Eulerian circuit if and only
if the degree of each of its vertices is even.

We now prove the result corresponding to Theorem 10.20 for non-trivial
connected graphs with exactly two vertices whose degree is odd.

Corollary 10.21 Suppose that a connected graph has exactly two vertices
whose degrees are odd. Then there exists an Euler trail in the graph joining
the two vertices with odd degrees.

Proof Let (V, E) be the graph, and let v and w be the two vertices of this
graph whose degree is odd. We may embed the graph (V, E) as a subgraph
of a larger graph (V ′, E ′) whose vertices all have even degree. We choose the
graph (V ′, E ′) such that V ′ = V ∪ {u} and E ′ = E ∪ {v u, uw}, where u
is a vertex of V ′ that does not belong to V , and is the only such vertex of
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V ′. The graph (V ′, E ′) is then non-trivial and connected, and every vertex
of (V ′, E ′) has even degree. (Indeed the degree of the vertex u in the graph
(V ′, E ′) is equal to 2, and the degrees of the vertices v and w in the graph
(V ′, E ′) exceed by one their degrees in the graph (V, E).) It follows from
Theorem 10.20 that the graph (V ′, E ′) has an Eulerian circuit. We may
order the vertices of this circuit so that the final two edges of the circuit are
w u and u v. Deletion of these two edges from the circuit yields the required
Eulerian trail in the graph (V, W ) from v to w.

10.14 Hamiltonian Paths and Circuits

Definition A Hamiltonian path in a graph is a path that passes (exactly
once) through every vertex of the graph.

Thus a path v0 v1 v2 . . . vn in a graph (V, E) is a Hamiltonian path if and
only if V = {v0, v1, . . . , vn}. A Hamiltonian path passes can have no repeated
vertices (since it is a path) and therefore passes through each vertex of the
graph exactly once.

Definition A Hamiltonian circuit in a graph is a simple circuit that passes
through every vertex of the graph.

Thus a circuit v0 v1 v2 . . . vn−1 v0 in a graph (V, E) is a Hamiltonian cir-
cuit if and only if every vertex of the graph occurs exactly once in the list
v0, v1, . . . , vn−1.

Remark Hamiltonian circuits are are named after William Rowan Hamilton
(1805–1865), who showed in 1856 that such circuits could be found in the
graph consisting of the vertices and edges of a dodecahedron. Hamilton de-
veloped an ‘icosian calculus’ for the study such circuits in the dodecahedron,
and formulated a game, the icosian game, in which people were challenged
to complete any path of length two in this graph to a Hamilton circuit in the
graph.

10.15 Forests and Trees

Definition A graph is said to be acyclic if it contains no circuits.

Definition A forest is an acyclic graph.

Definition A tree is a connected forest.
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Hamilton’s circuit round the edges of a dodecahedron

Note that the components of any forest are trees.

Example The graph (V, E), where

V = {a, b, c, d, e, f, g},
E = {a b, b c, b d, c e, b f, c g},

is a tree.

a

b

cd

e

f

g

The vertices a, d, e, f and g are pendant vertices (i.e., each of these
vertices is incident to exactly one edge of the graph, and is therefore of
degree one.) The tree has 7 vertices and 6 edges.
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Theorem 10.22 Every forest contains at least one isolated or pendant ver-
tex.

Proof If a graph has no isolated or pendant vertices, then it contains a
circuit (Theorem 10.10). But a forest contains no circuits. Therefore must
have at least one isolated or pendant vertex.

Theorem 10.23 A non-trivial tree contains at least one pendant vertex.

Proof A non-trivial graph has more than one vertex. If a non-trivial graph
has an isolated vertex then there does not exist any path or walk from that
vertex to any other vertex of the graph, and therefore the graph is not con-
nected. But a tree is by definition connected. Therefore a non-trivial tree
cannot have any isolated vertex. However a tree is a forest, and therefore
contains at least one vertex that is either an isolated vertex or a pendant
vertex (Theorem 10.22). Such a vertex must then be a pendant vertex.

Theorem 10.24 Let (V, E) be a tree. Then |E| = |V | − 1, where |V | and
|E| denote respectively the number of vertices and the number of edges of the
tree.

Proof We can prove the result by induction on the number |V | of vertices
of the tree. The result is clearly true when the tree is trivial, since it then
consists of one vertex and no edges.

Suppose that every tree with m vertices has m− 1 edges. Let (V, E) be
a tree with m + 1 vertices. At least of these vertices is a pendant vertex
(Theorem 10.23). Let v be a pendent vertex, let w be the vertex that is
adjacent to v, let V ′ = V \ {v}, and let E ′ = E \ {v w}. Then (V ′, E ′) is
a subgraph of (V, E), and this subgraph has m vertices. (This subgraph is
obtained from the original graph by deleting the vertex v and the edge v w
from that graph.) We claim that this subgraph (V ′, E ′) is in fact a tree.

First we show that (V ′, E ′) is connected. Now, given any two vertices in
V ′, there exists a path in (V, E) from one vertex to the other. This path
could not pass through the vertex v, since otherwise the path would have to
pass through w twice (going out to v and then returning from v), which is
impossible since a path by definition has no repeated vertices. Therefore this
path is in fact a path in (V ′, E ′). We conclude that (V ′, E ′) is connected.

Now the tree (V, E) does not contain any circuits. It follows immediately
that the connected subgraph (V ′, E ′) does not contain any circuits, and is
thus a tree. It has m vertices.

The induction hypothesis now ensures that the tree (V ′, E ′) has m −
1 edges, and therefore the tree (V, E) has m edges. The required result
therefore follows by the Principle of Mathematical Induction.
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Theorem 10.25 Given two distinct vertices of a tree, there exists a unique
path in the tree from the first vertex to the the second.

Proof Let u and v be distinct vertices of the tree. There must exist at least
one path in the tree from u to v, since any tree is connected. Were there
to exist more than one, then it would follow from Theorem 10.11 that there
would exist at least one circuit in the tree, which is impossible, since that
a tree cannot contain any circuits. Therefore there must exist exactly one
path in the tree from u to v.

10.16 Spanning Trees

Definition A spanning tree in a graph (V, E) is a subgraph of the graph
(V, E) that is a tree which includes every vertex of the graph (V, E).

A spanning tree in a graph

Theorem 10.26 Every connected graph contains a spanning tree

Proof Let (V, E) be a connected graph. The collection consisting of all the
connected subgraphs of (V, E) with the same vertices as (V, E) is non-empty,
since it includes the graph (V, E) itself. Choose a subgraph (V, E ′) in this
collection such that the number |E ′| of edges in this subgraph is less than
or equal to the number of edges of any other subgraph in the collection. We
claim that (V, E ′) is the required spanning tree. Clearly (V, E ′) is connected
and has the same vertices as V . It only remains to show that (V, E ′) does
not contain any circuits.

Suppose that (V, E ′) were to contain a circuit. Let v w be an edge tra-
versed by some circuit in (V, E ′), and let E ′′ = E \ {v w}. There would then
exist a walk from v to w whose edges belong to E ′′. (Such a walk could
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consist of the remaining edges of the circuit traversing the edge v w.) More-
over every vertex in V could be joined to v by a walk whose edges belong to
E ′, and could therefore be joined either to v or to w by a walk whose edges
belong to E ′′. It would then follow that every vertex of V could be joined to
v by a walk whose edges belong to E ′′, and therefore the graph (V, E ′′) would
be a connected subgraph of (V, E) with the same vertices as (V, E) and with
fewer edges than (V, E ′), which is impossible. We conclude therefore that
the subgraph (V, E ′) of (V, E) cannot contain any circuits and is therefore
the required spanning tree.

Corollary 10.27 Let (V, E) be a connected graph with |V | vertices and |E|
edges. Suppose that |E| = |V | − 1. Then the graph (V, E) is a tree.

Proof A connected graph (V, E) contains a spanning tree, by Theorem 10.26.
This spanning tree must have |V |−1 edges, by Theorem 10.24. But the span-
ning tree then has the same number of edges as the original graph (V, E), and
must therefore be the same as this graph. It follows that the graph (V, E)
must be a tree, since it is a spanning tree of itself.

10.17 Directed Graphs

Definition An directed graph or digraph (V, E) consists of a finite set V
together with a subset E of V × V . The elements of V are the vertices of
the digraph; the elements of E are the edges of the digraph.

An edge of a digraph (V, E) is an ordered pair (a, b) where a and b are
vertices of the graph. These vertices need not be distinct: a digraph may
contain loops of the form (a, a), where a is some vertex of the digraph. Also
the vertices of an edge of a digraph are ordered: if a and b are distinct vertices
of the graph then (a, b) 6= (b, a), and moreover neither, one only, or both of
(a, b) and (b, a) may be edges of the digraph.

Let (a, b) be an edge of a directed graph (V, E). We say that a is the
initial vertex and b is the terminal vertex of the edge. Moreover we say that
the vertex b is adjacent from the vertex a, and the vertex a is adjacent to
the vertex b, and the edge (a, b) is incident from the vertex a and incident
to the vertex b.

10.18 Adjacency Matrices of Directed Graphs

Definition Let (V, E) be a directed graph, and let the vertices of the graph
be ordered as v1, v2, . . . , vm. The adjacency matrix of the directed graph is
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the m×m matrix (bij), or
b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...
bm1 am2 . . . bmm

 ,

where

bij =
{

1 if (vi, vj) ∈ E;
0 otherwise.

Example Let (V, E) be the directed graph whose vertices are ordered as v1,
v2, v3 and v4, and whose edges are ordered as e1, e2, e3 and e4, where

e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v1).

v1 v2

v3v4

e1

e2

e3

e4

The adjacency matrix of this digraph is
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

10.19 Directed Graphs and Binary Relations

There is a correspondence between directed graphs and binary relations on
finite sets.

Let V be a finite set. Corresponding to any relation R on V there is a
directed graph (V, E), where

E = {(a, b) ∈ V × V : aRb}.

Conversely any directed graph (V, E) gives rise to a relation R on the set V
of vertices of the digraph, where vertices a and b of the graph satisfy aRy if
and only if (a, b) ∈ R.
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