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10 Introduction to Fourier Methods

10.1 Representation of Doubly-Periodic Sequences

Definition A doubly-infinite sequence (z, : n € Z) of complex numbers
associates to every integer n a corresponding complex number z,.

Definition We say that doubly-infinite sequence (z, : n € Z) of complex
numbers is m-periodic if z,.,, = z, for all integers n.

Lemma 10.1 Let m be a positive integer, and let w,, = €>™/™. Then the

m—1
value of > wk™ is determined, for any integer n, as follows:
k=0

mzlwkn _ {m if n1s divisible by m;

— 0 if n is not divisible by m.

Proof The complex number w,, has the property that w’ = 1. Also

(I—2)1+z+2"+ - +2")=1-2"



for any complex number z. It follows that

for all integers n, and therefore
m—1

wk =0 provided that w? # 1.

m
k=0

Now w)’ = 1 if and only if the integer n is divisible by m. We can therefore

conclude that

’”le,m ~ [m ifnis divisible by m,
il ~ |0 if nis not divisible by m,

as required. Jj

Theorem 10.2 Let (2, : n € Z) be a doubly-infinite sequence of complex
numbers which is m-periodic . Then

m—1

E kn
ZTL - ckwm bl

k=0

2mi/m

for all integers n, where w,, = € and

m—1
Cr — E E 2,
7=0

Proof It follows from the definition of the numbers ¢, that

m—1 1 m—1m—1 1 m—1 m—1
E kn _ & § E o —kj, kn _ - E ) § (n—j)k
CrW,, = m 2, Wy, = m - Zj Wy, ,
]:

k=0 k=0 j=0 k=0

for all integers n. Now it follows from Lemma 10.1 that

—_

3

W=k —

m =

B
Il

0

unless n — j is divisible by m, in which case

3

(n—=5)k _
Wy =m.

e
Il

0



Moreover, given any integer n, there is a unique integer r between 0 and
m — 1 for which n — r is divisible by m. It follows that

m—1
chwfn” =z, where 0 <r <m and r =n (mod m).
k=0

for all integers n, as required. |

Example Let (z, : n € Z) be an 3-periodic sequence with zg = 2, 2; = 4,
29 = 5. Let w = wy = *™/3. It follows from Theorem 10.2 that

20 = Co + W™ + cow"

for all integers n, where w,, = €>™/™ and

Cr = (Zo + leik + Zzw72k) .

L
3

for k=0,1,2. Now w™! = w? and w2 = w, because w?® = 1. Therefore

1
Ck:§<20+21w2k+22wk>,
and thus
o = 3(24+4+45) =4,
a = 3244w+ bw),
Cy = %(2+4w+5w2.
Now
w = cosZ 4isinZ = 1(-1++/34),
w? = cosT +isind =1(—1-/30).

It follows that

¢ = (=5 +V31i), c=i(=5—V3i).



Example Let (z, : n € Z) be an 4-periodic sequence with zg = 2, 2 = 4,
zo = b, z3 = 1. Now if wy is defined as in the statement of Theorem 10.2
then wy = e2™/* = . Tt follows from Theorem 10.2 that

Zn = Co + Clin + Cz(—l)n + 03(—i)n
for all integers n, where w,, = e™/™ and
1
L = 1 (zo 42 R 4 2T 4 232'_3]“)
1
= (244 x (=i)* +5x (=1)F+i*).

Thus

+ Ji.

>
=W

) C3 = —

N[

3; —
— 3L C2=

— _ _3
00—3, L= —3

10.2 Periodic Sequences of Real Numbers

Theorem 10.3 Let (x, : n € Z) be a doubly-infinite sequence of real num-
bers which is m-periodic . Then

= < 2mkn , 27Tk:n)
Ty = ay, cos + by, sin ,
m m

(]

k=0
for all integers n, where w,, = e™/™ and
m—1 . m—1 ;
1 27k 1 2mky
(053 mzijOS m s k le’]Sln m
j=0 7=0
Proof It follows from Theorem 10.2 that
m—1
Tp = Z Ckwﬁqna
k=0

for all integers n, where w,, = e™/™ and

m—1
Cp = E E TiW,, .
J=0

Now
n nmw .. 2nw
w,, = C€0s—— +18In——
m m
n 2nmw .. 2nm
w," = cos— —isin —
m m



for all integers n. Now ¢ = ap — bt for k =0,1,...,m — 1, where

m—1 . m—1 .

1 2rky 1 . 27ky

= — cos ——, by =— S .
@ m jZO Y m ' " m jz% LS m

(Note that aj and by are real numbers for all k. It follows that

o s 2rkn 2rkn
n=R = by si )
T e (kzzo CrW,, ) Z (ak coSs - + O SIn - >

k=0

m—1 m—1
where Re (Z ckwfn”> denotes the real part of Z aw™. I}
k=0 k=0

10.3 Fourier Series of Periodic Function

Proposition 10.4 Let f:R — R be a continuous function of a real variable
with the property that f(t+1) = f(t) for all real numberst, let m be a positive
integer, and let t, = n/m for all integers n. Then

m—1
f(tn) = (ag m cos 2mkt,, + by m sin 27kt,,)
k=0
for all integers n, where w,, = e2™/™ and
1 m—1
a — N . .
kym 2 f(t;) cos 2mkt;,
7=0
1 m—1
b = — ) si 178
kom — f(t;)sin 2mit,;
7=0
Moreover
Um—km COS 2w (M — k)t,, = aym cos 27kt
b—km sin 2w(m — k)t, = by sin27kt,

for all integers k and n with 0 < k < m. Thus if m is odd then

f(tn) = apm + Z (2a, 1, cos 27kt + 2by, ,, sin 27kt,,) |
k=1



where r = 5(m — 1), and if m is even then

1
2

ftn) = aom+ Z (2ag, 1, cos 27kt,, + 2by 1, sin 27kt,,)
k=1
+ Qg1 cOS 27 (1 + 1)ty + byyy  sin 27 (r + 1),

where 1 = 1(m — 2).

Proof The sequence (f(t,) : n € Z) is an m-periodic sequence of real num-
bers. The identity

Fltn) =Y (agm cos 2mkty, + by sin 27kt,,) |

therefore follows directly on applying Theorem 10.3 to this sequence.
Also mt,, is an integer for all integers n, and therefore

cos2m(m — k)t, = cos(—2wkt,) = cos2wkt,,
sin 27w (m — k)t, = sin(—27kt,) = —sin27kt,.

The expressions for f(t,) in the cases when m is odd and when m is even
therefore following on grouping the terms involving ay,, and b ,, with those
involving @,—km and by,_j ., for values of k satisfying 0 < k < m/2. |}

Now it can be shown that, if the function f is sufficiently well-behaved,
if £ < m/2, and if k and m are both sufficiently large, then the values of
the coefficients ay,, and by ,,, approximate to zero, and can be made as close
to zero as desired on taking both k and m sufficiently large. It follows from
Proposition 10.4 that if we choose a large value of IV, and then choose m very
much larger than N, we can obtain an approximation for f(¢), for values of
t that are integer multiples of 1/m, that takes the form

N
f(t) =~ aom+ Z (2a 1, cOs 2kt + 2by, 1, sin 27kt)
k=1

But it follows from the expressions for ay, and by, given in Proposition 10.4
that

m—00

1 1
lim ay., = / f(t)cos2mktdt, lm by,, = / f(t)sin 2wkt dt,
0 m=eo 0



for any continuous function f. (This follows from the fact that

1 1m—1 ]
tydt = lim — S
/Og() mlg;ong(m>

J=0

for any continuous function g.) It follows that if the function f is well-
behaved, and if we choose a sufficiently large value of the positive integer N,
then the periodic function f may be approximated as closely as desired by a
sum of the form

=z

f(t) =~ ap+ Z (2ay cos 2kt + 2by, sin 27kt) ,
k=1

where . .
ar = / f(t)cos2mktdt, by = / f(t)sin 27kt dt.
0 0

Thus any well-behaved function f that satisfies the identity f(t + 1) = f(t)
for all real numbers ¢t may be represented in the form

ft) =ao+ Z (2ay, cos 2kt + 2by, sin 2mkt) .
k=1

For this identity to be valid, it suffices if the function f is continuous and has
at most finitely many local maxima and minima in the interval [0,1]. The
result also applies to periodic functions with at most finitely many points of
discontinuity, and finitely many local maxima and minima, in this interval,
provided that the value of the function is appropriately defined at those
points of discontinuity.

This expression on the right-hand side of the above identity is referred to
as the Fourier series for the function f.

We can easily extend this result other periodic functions f. Let p be a
positive real number, and let f:R — R be a well-behaved periodic function
with the property that f(t+p) = f(¢) for all real numbers z. If g(t) = f(pt)
for all real numbers ¢ then g: R — R is a periodic function with the property
that g(t + 1) = g(t) for all real numbers ¢. It follows that the function f has
a Fourier series of the form

t G 2mkt 27kt
f(t):g<_) :aoJrZ(Qakcos z + 2by, sin T ) :
p k=1 p p




where

! I 2kt
ar = /f(pt)cos27rktdt:—/ f(t) cos T dt,
0 PJo p
: I 2
b = / F(pt) sin 27kt dt = - / F(8)sin 2R gy
0 P Jo p

Moreover the periodicity of the function f ensures that the integrals may
be taken over any interval of length p, and the value of the integral will be
independent of the interval chosen. Thus we may write

1 [et? 2kt 1 [efp 2kt
akzz_o/ f(t) cos 7; dt, bk:]—J/ f(t)sin T g,

p
where the value of ¢ may be chosen at will. In particular, we may choose
c= —%p, obtaining the expressions

1 [r? omkt 1 [P omkt
ap = — f(t) cos T dt, by =- f(t)sin T
p —p/2 p p —p/2 p

dt.

for a;, and by,.

A function f is said to be even if f(—t) = f(t) for all real numbers ¢. Let
f:R — IR be a well-behaved even function with period p. On examination
of the expressions for a; and b, above, we see that

2 [P? 2mkt
ar = —/ f(t) cos " @t and by =0 if fis even.
D Jo p

A function f is said to be odd if f(—t) = —f(t) for all real numbers t. Let
f:R — IR be a well-behaved odd function with period p. On examination
of the expressions for a; and b, above, we see that

2 [P/ 2
by, = —/ F@)sin 2 g and ax =0 if f s odd.
P Jo p



