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10 Introduction to Fourier Methods

10.1 Representation of Doubly-Periodic Sequences

Definition A doubly-infinite sequence (zn : n ∈ Z) of complex numbers
associates to every integer n a corresponding complex number zn.

Definition We say that doubly-infinite sequence (zn : n ∈ Z) of complex
numbers is m-periodic if zn+m = zn for all integers n.

Lemma 10.1 Let m be a positive integer, and let ωm = e2πi/m. Then the

value of
m−1∑
k=0

ωknm is determined, for any integer n, as follows:

m−1∑
k=0

ωknm =

{
m if n is divisible by m;
0 if n is not divisible by m.

Proof The complex number ωm has the property that ωmm = 1. Also

(1− z)(1 + z + z2 + · · ·+ zm−1) = 1− zm
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for any complex number z. It follows that

(1− ωnm)
m−1∑
k=0

ωknm = 1− ωmnm = 0

for all integers n, and therefore

m−1∑
k=0

ωknm = 0 provided that ωnm 6= 1.

Now ωnm = 1 if and only if the integer n is divisible by m. We can therefore
conclude that

m−1∑
k=0

ωknm =

{
m if n is divisible by m,
0 if n is not divisible by m,

as required.

Theorem 10.2 Let (zn : n ∈ Z) be a doubly-infinite sequence of complex
numbers which is m-periodic . Then

zn =
m−1∑
k=0

ckω
kn
m ,

for all integers n, where ωm = e2πi/m and

ck =
1

m

m−1∑
j=0

zjω
−kj
m .

Proof It follows from the definition of the numbers ck that

m−1∑
k=0

ckω
kn
m =

1

m

m−1∑
k=0

m−1∑
j=0

zjω
−kj
m ωknm =

1

m

m−1∑
j=0

(
zj

m−1∑
k=0

ω(n−j)k
m

)
,

for all integers n. Now it follows from Lemma 10.1 that

m−1∑
k=0

ω(n−j)k
m = 0

unless n− j is divisible by m, in which case

m−1∑
k=0

ω(n−j)k
m = m.
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Moreover, given any integer n, there is a unique integer r between 0 and
m− 1 for which n− r is divisible by m. It follows that

m−1∑
k=0

ckω
kn
m = zr where 0 ≤ r < m and r ≡ n (mod m).

Moreover zr = zn, because the sequence (zn : n ∈ Z) is m-periodic. Thus

m−1∑
k=0

ckω
kn
m = zn

for all integers n, as required.

Example Let (zn : n ∈ Z) be an 3-periodic sequence with z0 = 2, z1 = 4,
z2 = 5. Let ω = ω3 = e2πi/3. It follows from Theorem 10.2 that

zn = c0 + c1ω
n + c2ω

2n

for all integers n, where ωm = e2πi/m and

ck =
1

3

(
z0 + z1ω

−k + z2ω
−2k
)
.

for k = 0, 1, 2. Now ω−1 = ω2 and ω−2 = ω, because ω3 = 1. Therefore

ck =
1

3

(
z0 + z1ω

2k + z2ω
k
)
,

and thus

c0 = 1
3
(2 + 4 + 5) = 11

3
,

c1 = 1
3
(2 + 4ω2 + 5ω),

c2 = 1
3
(2 + 4ω + 5ω2).

Now

ω = cos 2π
3

+ i sin 2π
3

= 1
2
(−1 +

√
3 i),

ω2 = cos 4π
3

+ i sin 4π
3

= 1
2
(−1−

√
3 i).

It follows that

c1 = 1
6
(−5 +

√
3 i), c2 = 1

6
(−5−

√
3 i).
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Example Let (zn : n ∈ Z) be an 4-periodic sequence with z0 = 2, z1 = 4,
z2 = 5, z3 = 1. Now if ω4 is defined as in the statement of Theorem 10.2
then ω4 = e2πi/4 = i. It follows from Theorem 10.2 that

zn = c0 + c1i
n + c2(−1)n + c3(−i)n

for all integers n, where ωm = e2πi/m and

ck =
1

4

(
z0 + z1i

−k + z2i
−2k + z3i

−3k
)

=
1

4

(
2 + 4× (−i)k + 5× (−1)k + ik

)
.

Thus
c0 = 3, c1 = −3

4
− 3

4
i, c2 = 1

2
, c3 = −3

4
+ 3

4
i.

10.2 Periodic Sequences of Real Numbers

Theorem 10.3 Let (xn : n ∈ Z) be a doubly-infinite sequence of real num-
bers which is m-periodic . Then

xn =
m−1∑
k=0

(
ak cos

2πkn

m
+ bk sin

2πkn

m

)
,

for all integers n, where ωm = e2πi/m and

ak =
1

m

m−1∑
j=0

xj cos
2πkj

m
, bk =

1

m

m−1∑
j=0

xj sin
2πkj

m
.

Proof It follows from Theorem 10.2 that

xn =
m−1∑
k=0

ckω
kn
m ,

for all integers n, where ωm = e2πi/m and

ck =
1

m

m−1∑
j=0

xjω
−kj
m .

Now

ωnm = cos
2nπ

m
+ i sin

2nπ

m

ω−nm = cos
2nπ

m
− i sin

2nπ

m
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for all integers n. Now ck = ak − bki for k = 0, 1, . . . ,m− 1, where

ak =
1

m

m−1∑
j=0

xj cos
2πkj

m
, bk =

1

m

m−1∑
j=0

xj sin
2πkj

m
.

(Note that ak and bk are real numbers for all k. It follows that

xn = Re

(
m−1∑
k=0

ckω
kn
m

)
=

m−1∑
k=0

(
ak cos

2πkn

m
+ bk sin

2πkn

m

)
,

where Re

(
m−1∑
k=0

ckω
kn
m

)
denotes the real part of

m−1∑
k=0

ckω
kn
m .

10.3 Fourier Series of Periodic Function

Proposition 10.4 Let f :R→ R be a continuous function of a real variable
with the property that f(t+1) = f(t) for all real numbers t, let m be a positive
integer, and let tn = n/m for all integers n. Then

f(tn) =
m−1∑
k=0

(ak,m cos 2πktn + bk,m sin 2πktn) ,

for all integers n, where ωm = e2πi/m and

ak,m =
1

m

m−1∑
j=0

f(tj) cos 2πktj,

bk,m =
1

m

m−1∑
j=0

f(tj) sin 2πitj.

Moreover

am−k,m cos 2π(m− k)tn = ak,m cos 2πktn,

bm−k,m sin 2π(m− k)tn = bk,m sin 2πktn

for all integers k and n with 0 < k < m. Thus if m is odd then

f(tn) = a0,m +
r∑

k=1

(2ak,m cos 2πktn + 2bk,m sin 2πktn) ,
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where r = 1
2
(m− 1), and if m is even then

f(tn) = a0,m +
r∑

k=1

(2ak,m cos 2πktn + 2bk,m sin 2πktn)

+ ar+1,m cos 2π(r + 1)tn + br+1,m sin 2π(r + 1)tn,

where r = 1
2
(m− 2).

Proof The sequence (f(tn) : n ∈ Z) is an m-periodic sequence of real num-
bers. The identity

f(tn) =
m−1∑
k=1

(ak,m cos 2πktn + bk,m sin 2πktn) ,

therefore follows directly on applying Theorem 10.3 to this sequence.
Also mtn is an integer for all integers n, and therefore

cos 2π(m− k)tn = cos(−2πktn) = cos 2πktn,

sin 2π(m− k)tn = sin(−2πktn) = − sin 2πktn.

The expressions for f(tn) in the cases when m is odd and when m is even
therefore following on grouping the terms involving ak,m and bk,m with those
involving am−k,m and bm−k,m for values of k satisfying 0 < k < m/2.

Now it can be shown that, if the function f is sufficiently well-behaved,
if k < m/2, and if k and m are both sufficiently large, then the values of
the coefficients ak,m and bk,m approximate to zero, and can be made as close
to zero as desired on taking both k and m sufficiently large. It follows from
Proposition 10.4 that if we choose a large value of N , and then choose m very
much larger than N , we can obtain an approximation for f(t), for values of
t that are integer multiples of 1/m, that takes the form

f(t) ≈ a0,m +
N∑
k=1

(2ak,m cos 2πkt+ 2bk,m sin 2πkt) .

But it follows from the expressions for ak,n and bk,n given in Proposition 10.4
that

lim
m→∞

ak,m =

∫ 1

0

f(t) cos 2πkt dt, lim
m→∞

bk,m =

∫ 1

0

f(t) sin 2πkt dt,
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for any continuous function f . (This follows from the fact that∫ 1

0

g(t) dt = lim
m→∞

1

m

m−1∑
j=0

g

(
j

m

)
for any continuous function g.) It follows that if the function f is well-
behaved, and if we choose a sufficiently large value of the positive integer N ,
then the periodic function f may be approximated as closely as desired by a
sum of the form

f(t) ≈ a0 +
N∑
k=1

(2ak cos 2πkt+ 2bk sin 2πkt) ,

where

ak =

∫ 1

0

f(t) cos 2πkt dt, bk =

∫ 1

0

f(t) sin 2πkt dt.

Thus any well-behaved function f that satisfies the identity f(t + 1) = f(t)
for all real numbers t may be represented in the form

f(t) = a0 +
∞∑
k=1

(2ak cos 2πkt+ 2bk sin 2πkt) .

For this identity to be valid, it suffices if the function f is continuous and has
at most finitely many local maxima and minima in the interval [0, 1]. The
result also applies to periodic functions with at most finitely many points of
discontinuity, and finitely many local maxima and minima, in this interval,
provided that the value of the function is appropriately defined at those
points of discontinuity.

This expression on the right-hand side of the above identity is referred to
as the Fourier series for the function f .

We can easily extend this result other periodic functions f . Let p be a
positive real number, and let f :R → R be a well-behaved periodic function
with the property that f(t+ p) = f(t) for all real numbers x. If g(t) = f(pt)
for all real numbers t then g:R→ R is a periodic function with the property
that g(t+ 1) = g(t) for all real numbers t. It follows that the function f has
a Fourier series of the form

f(t) = g

(
t

p

)
= a0 +

∞∑
k=1

(
2ak cos

2πkt

p
+ 2bk sin

2πkt

p

)
,
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where

ak =

∫ 1

0

f(pt) cos 2πkt dt =
1

p

∫ p

0

f(t) cos
2πkt

p
dt,

bk =

∫ l

0

f(pt) sin 2πkt dt =
1

p

∫ p

0

f(t) sin
2πkt

p
dt.

Moreover the periodicity of the function f ensures that the integrals may
be taken over any interval of length p, and the value of the integral will be
independent of the interval chosen. Thus we may write

ak =
1

p

∫ c+p

c

f(t) cos
2πkt

p
dt, bk =

1

p

∫ c+p

c

f(t) sin
2πkt

p
dt.

where the value of c may be chosen at will. In particular, we may choose
c = −1

2
p, obtaining the expressions

ak =
1

p

∫ p/2

−p/2
f(t) cos

2πkt

p
dt, bk =

1

p

∫ p/2

−p/2
f(t) sin

2πkt

p
dt.

for ak and bk.

A function f is said to be even if f(−t) = f(t) for all real numbers t. Let
f :R → IR be a well-behaved even function with period p. On examination
of the expressions for ak and bk above, we see that

ak =
2

p

∫ p/2

0

f(t) cos
2πkt

p
dt and bk = 0 if f is even.

A function f is said to be odd if f(−t) = −f(t) for all real numbers t. Let
f :R → IR be a well-behaved odd function with period p. On examination
of the expressions for ak and bk above, we see that

bk =
2

p

∫ p/2

0

f(t) sin
2πkt

p
dt and ak = 0 if f is odd.
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