Course 2BA1: Hilary Term 2003. Assignment IV.

To be handed in by Wednesday 5th March, 2003. Please include both name and student number on any work handed in.

1. Let c be a fixed positive integer, and let \otimes denote the binary operation on the set \mathbb{Z} of integers defined by the formula

$$x \otimes y = xy + c(x+y) + c^2 - c$$

for all integers x, y and z.

- (a) Is (\mathbb{Z}, \otimes) a semigroup? [Justify your answer.]
- (b) Is (\mathbb{Z}, \otimes) a monoid? If so, what is its identity element?
- (c) Which of the elements of \mathbb{Z} are invertible? Is (\mathbb{Z}, \otimes) a group?
- 2. Let q and r be the quaternions defined by $q = \frac{1}{2} + \frac{1}{2}i + \frac{1}{2}j + \frac{1}{2}k$ and r = i-j. Calculate $qr\bar{q}$ (where \bar{q} denotes the conjugate of the quaternion q).
- 3. Construct a regular grammar that generates the language L over the alphabet $\{0, 1\}$, where

 $L = \{1, 1000, 1000000, 1000000000, \ldots\},\$

so that a string of binary digits belongs to L if and only if it consists of the digit 1 followed by a string of 3n zeroes, for some non-negative integer n. You should specify your formal grammar in Backus-Naur form.