Course 2BA1: Academic Year 2000–1. Assignment II.

To be handed in by Friday 1st December, 2000. Please include both name and student number on any work handed in.

 For each of the following relations on the set N of natural numbers, determine whether or not that relation is reflexive, symmetric, transitive, anti-symmetric, an equivalence relation, and/or a partial order, giving appropriate reasons for your answers:—

(i) the relation | on the set \mathbb{N} of natural numbers, where natural numbers m and n satisfy m|n if and only if m divides n;

(ii) the relation P on the set \mathbb{N} of natural numbers, where natural numbers m and n satisfy mPn if and only if $n = 2^k m$ for some integer k (which may be positive, zero or negative);

(iii) the relation Q on the set \mathbb{N} of natural numbers, where natural numbers m and n satisfy mQn if and only if m + n is divisible by 2;

(iv) the relation R on the set \mathbb{N} of natural numbers, where natural numbers m and n satisfy mRn if and only if m + n is divisible by 3.

- 2. For each of the following functions, determine whether or not that function is injective and/or surjective, and whether or not it has a well-defined inverse, giving appropriate reasons for your answers:—
 - (i) the function $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\}$ with f(1) = 2, f(2) = 3, f(3) = 2 and f(4) = 4;

(ii) the function $g: \{1, 2, 3, 4\} \to \{1, 2, 3, 4\}$ with f(1) = 2, f(2) = 3, f(3) = 1 and f(4) = 4;

(iii) the function $h: [1,2] \to [0,\frac{1}{2}]$ with $h(x) = \frac{x-1}{x}$, where $[1,2] = \{x \in \mathbb{R} : 1 \le x \le 2\}$ and $[0,\frac{1}{2}] = \{x \in \mathbb{R} : 0 \le x \le \frac{1}{2}\}.$

3. If a complete graph has n vertices, how many edges does it have? (Justify your answer.)