Course 2BA1: Michaelmas Term 2008. Assignment I.

To be handed in by Wednesday 12th November, 2008. Please include both name and student number on any work handed in.

- 1. Let x_1, x_2, x_3, \ldots be an infinite sequence with $x_1 = 1, x_2 = 3$ and $x_{n+2} = 4x_{n+1} 3x_n$ for all positive integers n. Use the Method of Mathematical Induction to prove that $x_n = 3^{n-1}$ for all positive integers n.
- 2. Let A, B and C be sets. Prove that

 $A \cup (B \setminus C) = (A \cup B) \setminus (C \setminus A).$

(Here $B \setminus C$ denotes the set consisting of all elements of the set B that do not belong to the set C.)

- 3. Let R denote the relation on the set \mathbb{Z} of integers, where integers x and y satisfy xRy if and only if $x^2 y^2$ is divisible by 7. Determine whether or not the relation R on \mathbb{Z} is (i) reflexive, (ii) symmetric, (iii) antisymmetric, (iv) transitive (v), an equivalence relation, (vi) a partial order. [Briefly justify your answers.]
- 4. Let Q denote the relation on the set \mathbb{R} of real numbers, where real numbers x and y satisfy xQy if and only if $(x y)^2 < 1$. Determine whether or not the relation R on \mathbb{Z} is (i) reflexive, (ii) symmetric, (iii) anti-symmetric, (iv) transitive (v), an equivalence relation, (vi) a partial order. [Briefly justify your answers.]