
Course 2BA1: First Semester 2007–08

David R. Wilkins

Copyright c© David R. Wilkins 2000–2007

Contents

1 The Principle of Mathematical Induction 1
1.1 Integers and Natural Numbers 1
1.2 Introduction to the Principle of Mathematical Induction . . . 1
1.3 Some examples of proofs using the Principle of Mathematical

Induction . 3

2 Sets and Functions 10
2.1 Sets . 10
2.2 Unions, Intersections and Complements of Sets 10
2.3 Subsets and Power Sets . 12
2.4 The Specification of Sets . 14
2.5 Binary Relations . 15
2.6 Congruences . 17
2.7 Partitions and Equivalence Relations 18
2.8 Partial Orders and Lattices 19
2.9 Cartesian Products of Sets . 22
2.10 Functions between Sets . 23
2.11 Compositions of Functions . 24
2.12 The Graph of a Function . 24
2.13 The Inverse of a Function . 25
2.14 Injective, Surjective and Bijective Functions 26
2.15 Partial Mappings . 29

3 Graph Theory 31
3.1 Undirected Graphs . 31
3.2 Incidence and Adjacency . 32
3.3 Incidence and Adjacency Tables and Matrices 33
3.4 Complete Graphs . 35

i

3.5 Bipartite Graphs . 35
3.6 Isomorphism of Graphs . 36
3.7 Subgraphs . 36
3.8 Vertex Degrees . 37
3.9 Walks, Trails and Paths . 38
3.10 Connected Graphs . 39
3.11 The Components of a Graph 39
3.12 Circuits . 42
3.13 Eulerian Trails and Circuits 43
3.14 Hamiltonian Paths and Circuits 49
3.15 Forests and Trees . 49
3.16 Spanning Trees . 52
3.17 Directed Graphs . 53
3.18 Adjacency Matrices of Directed Graphs 53
3.19 Directed Graphs and Binary Relations 54

4 Abstract Algebra 55
4.1 Binary Operations on Sets . 55
4.2 Commutative Binary Operations 55
4.3 Associative Binary Operations 55
4.4 Semigroups . 56
4.5 The General Associative Law 57
4.6 Identity elements . 58
4.7 Monoids . 58
4.8 Inverses . 59
4.9 Groups . 62
4.10 Homomorphisms and Isomorphisms 64

5 Formal Languages 66
5.1 Alphabets and Words . 66
5.2 Simple Grammars to Generate English Sentences 68
5.3 Well-Formed Formulae in Logic 73
5.4 Context-Free Grammars . 86
5.5 Phrase Structure Grammars 87
5.6 Regular Languages . 88
5.7 Regular Grammars . 90
5.8 Finite State Acceptors . 91

ii

1 The Principle of Mathematical Induction

1.1 Integers and Natural Numbers

An integer is a whole number. Such numbers are of three types, positive,
negative and zero. The positive integers (or positive whole numbers) are
1, 2, 3, 4, Similarly the negative integers or negative whole numbers)
are −1,−2,−3,−4, There is of course exactly one integer that is zero,
namely 0 itself.

The non-negative integers are therefore 0, 1, 2, 3, Similarly the non-
positive integers are 0,−1,−2,−3,

It is customary in mathematics to denote the set (or collection) of integers
by Z. (The word for ‘number’ in German is ‘Zahl’.)

The natural numbers are the positive integers 1, 2, 3, 4, It is custom-
ary to denote the set of natural numbers by N.

(Note therefore that terms ‘natural number’ and ‘positive integer’ are
synonyms, i.e., they refer to the same objects.)

1.2 Introduction to the Principle of Mathematical In-
duction

For each natural number n, let Sn denote the sum of the first n (positive)
odd numbers. Calculating S1, S2, S3, S4, S5, we find

S1 = 1 = 1,
S2 = 1 + 3 = 4,
S3 = 1 + 3 + 5 = 9,
S4 = 1 + 3 + 5 + 7 = 16,
S5 = 1 + 3 + 5 + 7 + 9 = 25.

You may notice a pattern beginning to emerge. Does this pattern continue?
Suppose that we see whether or not the pattern continues to S6. Adding up,
we find

S6 = 1 + 3 + 5 + 7 + 9 + 11 = 36.

We are thus led to conjecture that

Sn = n2

for all natural numbers n?
Can we prove it? If so, how?
Merely testing the proposition for a few values of n, no matter how many,

cannot in itself suffice to prove that the proposition holds for all natural

1

numbers n. Moreover propositions may turn out to be true in a very large
number of cases, and yet fail for others. Such a proposition is the following:

“n < 1, 000, 000, 000”.

This proposition holds for a large number of natural numbers n (indeed for
999, 999, 999 of them, to be precise), yet it obviously fails to hold for all
natural numbers n.

One might ask what strategies are available for proving that some con-
jectured result does indeed hold for all natural numbers n. One such is the
Principle of Mathematical Induction.

Suppose that, for each natural number n, P (n) denotes some proposition,
such as “Sn = n2”. For each value of n, the proposition P (n) would be either
true or false. Our task is to prove that it is true for all values of n. The
Principle of Mathematical Induction states that this is true provided that (i)
P (1) is true, and (ii) if P (m) is true for any natural number m then P (m+1)
is also true.

We can express this more informally as follows. Suppose that we are
required to prove that some statement is true for all values of a natural
number n. To do this, it suffices to prove (i) that the statement is true when
n = 1, and (ii) that if the statement is true when n = m for some natural
number m, then it is also true when n = m + 1 (no matter what the value of
m).

To understand the justification for the Principle of Mathematical Induc-
tion, consider the following. For each natural number n, let P (n) denote (as
above) a proposition (that is either true or false). We suppose that we have
proved that P (1) is true, and that if P (m) is true then P (m + 1) is true.
Now

P (1) is true.

If P (1) is true then P (2) is true. Moreover P (1) is true.
Therefore P (2) is true.

If P (2) is true then P (3) is true. Moreover P (2) is true.
Therefore P (3) is true.

If P (3) is true then P (4) is true. Moreover P (3) is true.
Therefore P (4) is true.

...

If P (n− 2) is true then P (n− 1) is true. Moreover P (n− 2) is
true. Therefore P (n− 1) is true.

If P (n− 1) is true then P (n) is true. Moreover P (n− 1) is true.
Therefore P (n) is true.

2

The pattern exhibited in these statements should convince you that P (n) is
true for any natural number n, no matter how large.

We now consider how to apply the Principle of Mathematical Induction
to prove that Sn = n2 for all natural numbers n, where Sn denotes the sum
of the first n odd numbers. Obviously S1 = 1, so that the conjectured result
holds when n = 1. Suppose that Sm = m2 for some natural number m. Then

Sm+1 = Sm + (2m + 1) = m2 + 2m + 1 = (m + 1)2

Thus if the identity Sn = n2 holds when n = m then it also holds when
n = m + 1. We conclude from the Principle of Mathematical Induction that
Sn = n2 for all natural numbers n.

We can write out the argument rather more formally as follows. For each
natural number n, let P (n) denote the proposition “Sn = n2”. Clearly, for
any given natural number n, such a proposition P (n) is either true or false.
We want to show that P (n) is true for all natural numbers n. This however
follows on applying the Principle of Mathematical Induction, given that we
have noted that P (1) is true, and have demonstrated that if P (m) is true for
any natural number m then P (m + 1) is also true.

1.3 Some examples of proofs using the Principle of
Mathematical Induction

Example We claim that

n∑
i=1

i = 1
2
n(n + 1)

for all natural numbers n, where

n∑
i=1

i = 1 + 2 + · · ·+ n.

We prove this result using the Principle of Mathematical Induction.
For any natural number n let P (n) denote the proposition

“
n∑

i=1

i = 1
2
n(n + 1)”.

One can easily see that the proposition P (1) is true, since both sides of the
above identity reduce to the value 1 in this case.

3

Suppose that P (m) is true for some natural number m. Then

m∑
i=1

i = 1
2
m(m + 1).

But then

m+1∑
i=1

i =
m∑

i=1

i + (m + 1) = 1
2
m(m + 1) + (m + 1) = 1

2
(m + 1)(m + 2),

and therefore the proposition P (m+1) is also true. We can therefore conclude
from the Principle of Mathematical Induction that P (n) is true for all natural
numbers, which is the result we set out to prove.

Example We prove by induction on n that

n∑
i=1

i2 = 1
6
n(n + 1)(2n + 1)

for all natural numbers n, where

n∑
i=1

i2 = 12 + 22 + · · ·+ n2.

To achieve this, we have to verify that the formula holds when n = 1, and
that if the formula holds when n = m for some natural number m, then the
formula holds when n = m + 1.

The formula does indeed hold when n = 1, since 1 = 1
6
× 1× 2× 3.

Suppose that the formula holds when n = m. Then

m∑
i=1

i2 = 1
6
m(m + 1)(2m + 1).

But then

m+1∑
i=1

i2 =
m∑

i=1

i2 + (m + 1)2

= 1
6
m(m + 1)(2m + 1) + (m + 1)2

= 1
6
(m + 1) (m(2m + 1) + 6(m + 1)) = 1

6
(m + 1)

(
2m2 + 7m + 6

)
= 1

6
(m + 1)(m + 2)(2m + 3),

and therefore the formula holds when n = m+1. The required result therefore
follows using the Principle of Mathematical Induction.

4

Example We prove by induction on n that

1 · 4 + 2 · 5 + 3 · 6 + · · ·+ n(n + 3) = 1
3
n(n + 1)(n + 5).

for all natural numbers n. The left hand side of the above identity may be

written as
n∑

i=1

i(i + 3).

The required identity

n∑
i=1

i(i + 3) = 1
3
n(n + 1)(n + 5)

holds when n = 1, since both sides are then equal to 4. Suppose that this
identity holds when n is equal to some natural number m, so that

m∑
i=1

i(i + 3) = 1
3
m(m + 1)(m + 5).

Then

m+1∑
i=1

i(i + 3) =
m∑

i=1

i(i + 3) + (m + 1)(m + 4)

= 1
3
m(m + 1)(m + 5) + (m + 1)(m + 4)

= 1
3
(m + 1)

(
m(m + 5) + 3(m + 4)

)
= 1

3
(m + 1)(m2 + 8m + 12)

= 1
3
(m + 1)(m + 2)(m + 6),

and therefore the required identity
n∑

i=1

i(i+3) = 1
3
n(n+1)(n+5) holds when

n = m+1. It now follows from the Principle of Mathematical Induction that
this identity holds for all natural numbers m.

Example We can use the Principle of Mathematical Induction to prove that

n∑
k=1

5kk =
5

16

(
(4n− 1)5n + 1

)
.

for all natural numbers n. This equality holds when n = 1, since both sides
are then equal to 5. Suppose that the equality holds when n = m for some
natural number m, so that

m∑
k=1

5kk =
5

16

(
(4m− 1)5m + 1

)
.

5

Then

m+1∑
k=1

5kk =
m∑

k=1

5kk + 5m+1(m + 1)

=
5

16

(
(4m− 1)5m + 1

)
+ 5m+1(m + 1)

=
5

16

(
(4m− 1)5m + 1 + 16(m + 1)5m

)
=

5

16

(
(20m + 15)5m + 1

)
=

5

16

(
(4m + 3)5m+1 + 1

)
=

5

16

(
(4(m + 1)− 1)5m+1 + 1

)
.

and thus the equality holds when n = m+1. It follows from the Principle of
Mathematical Induction that the equality holds for all natural numbers n.

Example We now use Principle of Mathematical Induction to prove that
6n − 1 is divisible by 5 for all natural numbers n. The result is clearly true
when n = 1. Suppose that the result is true when n = m for some natural
number m. Then 6m − 1 is divisible by 5. But then

6m+1 − 1 = 6m+1 − 6m + (6m − 1) = 5× 6m + (6m − 1),

and therefore 6m+1 − 1 is also divisible by 5. It therefore follows that 6n − 1
is divisible by 5 for all natural numbers n.

Example Given any two positive integers n and k we define the binomial

coefficient

(
n

k

)
to be the number of ways of choosing k distinct objects from

a collection consisting of n objects. We also define

(
n

0

)
= 1 for all natural

numbers n, and we define(
n

k

)
= 0 whenever k < 0.

Note that

(
n

n

)
= 1 (since the entire collection can be selected in exactly one

way), and that

(
n

k

)
= 0 when k > n (since it is clearly impossible to select

more than n distinct objects from a collection consisting of n objects).
We wish to prove that(

n

k

)
=

n!

k!(n− k)!
whenever 0 ≤ k ≤ n

6

(where 0! = 1 and where, for each natural number n, n! (n factorial) denotes
the product 1× 2× 3× · · · × n of all the natural numbers between 1 and n).
We shall prove this result using the Principle of Mathematical Induction.

First, though, we derive a recursion formula for the binomial coefficients.

We are interested in the number

(
n

k

)
of ways of choosing k objects from

a collection consisting of n objects, in the case where n > 1. Let us suppose
for the sake of argument that those n objects are coloured balls. Moreover
let us suppose that exactly one of those balls is coloured black, and that the
remaining balls are coloured red. There are then two distinct types of choices
that we can make. We can make a choice consisting entirely of red balls: let
us refer to such a choice as a type I choice. Alternatively we can make a
choice consisting of the black ball together with k − 1 red balls: let us refer
to such a choice as a type II choice. A type I choice requires us to choose

k red balls from a collection of n− 1 red balls, and there are

(
n− 1

k

)
such

choices. A type II choice requires us to choose k−1 red balls from a collection

of n− 1 red balls, and there are

(
n− 1

k − 1

)
such choices. The total number of

choices is obtained by adding together the number of type I choices and the
number of type II choices. It follows that(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

(Note that the definitions we have made ensure that this formula also holds
when k = 0, and indeed when k < 0.)

We now proceed to prove the required formula for the binomial coeffi-
cients, using the Principle of Mathematical Induction. Let P (n) denote the
proposition

“

(
n

k

)
=

n!

k!(n− k)!
whenever 0 ≤ k ≤ n”

The proposition P (1) asserts that

(
1

0

)
=

(
1

1

)
= 1, which is certainly true.

Now suppose that P (n) is true for some natural number n. We show that
P (n + 1) is true. If P (n) is true and if the integer k satisfies 1 ≤ k ≤ n then(

n

k

)
=

n!

k!(n− k)!
and

(
n

k − 1

)
=

n!

(k − 1)!(n + 1− k)!
.

It then follows from the recursion formula derived above that(
n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n + 1− k)!
.

7

But
1

(n− k)!
=

n + 1− k

(n + 1− k)!
and

1

(k − 1)!
=

k

k!
.

It follows that (
n + 1

k

)
=

n!

k!(n + 1− k)!
((n + 1− k) + k)

=
(n + 1)!

k!(n + 1− k)!

The required identity

(
n + 1

k

)
=

(n + 1)!

k!(n + 1− k)!
holds also when k = 0 and

k = n + 1, since it is easily seen that both sides of the identity are equal to
1 in these cases. We conclude that if the proposition P (n) is true for any
natural number n then the proposition P (n+1) is also true. We can therefore
conclude from the Principle of Mathematical Induction that the proposition
P (n) is true for all natural numbers n, which is what we are required to
prove.

Example We can use the Principle of Mathematical Induction to prove that
(2n)! < 4n(n!)2 for all natural numbers n. This inequality holds when n = 1,
since in that case (2n)! = 2! = 2 and 4n(n!)2 = 4. Suppose that the inequality
holds when n = m for some natural number m. Then (2m)! < 4m(m!)2. Now

(2(m + 1))! = (2m + 2)! = (2m)!(2m + 1)(2m + 2).

Also
4m+1((m + 1)!)2 = 4(4m(m!)2)(m + 1)2.

Moreover
(2m + 1)(2m + 2) < (2m + 2)2 = 4(m + 1)2.

On multiplying together the two inequalities

(2m)! < 4m(m!)2 and (2m + 1)(2m + 2) < 4(m + 1)2

(which we are allowed to do since the quantities on both sides of these in-
equalities are strictly positive), we find that

(2m)!(2m + 1)(2m + 2) < 4(4m(m!)2)(m + 1)2.

Thus if the inequality (2n)! < 4n(n!)2 holds when n = m then it also holds
when n = m+1. We conclude from the Principle of Mathematical Induction
that it must hold for all natural numbers n.

8

Example We can use the Principle of Mathematical Induction to prove that

13 + 23 + 33 + · · ·+ n3 > 1
4
(n4 + 2n3)

for all natural numbers n. This inequality holds when n = 1, since the left
hand side is then equal to 1, and the right hand side is equal to 3

4
. Suppose

that the inequality holds when n = m for some natural number m, so that

m∑
i=1

i3 > 1
4
(m4 + 2m3).

Then

m+1∑
i=1

i3 =
m∑

i=1

i3 + (m + 1)3

> 1
4
(m4 + 2m3) + (m + 1)3

= 1
4

(
m4 + 2m3 + 4(m + 1)3

)
= 1

4

(
m4 + 6m3 + 12m2 + 12m + 4

)
Now

(m + 1)4 + 2(m + 1)3 = (m4 + 4m3 + 6m2 + 4m + 1)

+ (2m3 + 6m2 + 6m + 2)

= m4 + 6m3 + 12m2 + 10m + 3

But 12m + 4 > 10m + 3 (since m > 0), and therefore

m4 + 6m3 + 12m2 + 12m + 4 > (m + 1)4 + 2(m + 1)3.

It follows that

m+1∑
i=1

i3 > 1
4

(
m4 + 6m3 + 12m2 + 12m + 4

)
> 1

4
((m + 1)4 + 2(m + 1)3).

Thus if the inequality
n∑

i=1

i3 > 1
4
(n4 + 2n3)

holds when n = m for some natural number m, then it also holds when
n = m+1. It follows from the Principle of Mathematical Induction that this
identity holds for all natural numbers n.

9

2 Sets and Functions

2.1 Sets

A set is a collection of entities. (This collection may be empty.) The entities
belonging to a set are referred to as elements of the set. If a is an element
of a set A then we denote this fact by writing a ∈ A.

Two sets are said to be identical, or to be equal to one another, if and
only if they have the same elements. Thus if A and B denote sets, then
A = B if and only if every element of A is an element of B and every element
of B is an element of A.

If we have a list of entities, we denote the set consisting of these entities
by enclosing the list within braces {. . .}. For example the set consisting of
the colours red, green and blue can be denoted by {red, green, blue}.

Note that the order in which elements are specified in such a list is irrel-
evant. For example, the set consisting of the two people Alice and Bob may
be written either as {Alice, Bob} or as {Bob, Alice}. In other words,

{Alice, Bob} = {Bob, Alice}.

A set is said to be finite if it contains a finite number of elements. Oth-
erwise the set is said to be infinite.

Example The set N consisting of all natural numbers is an infinite set, as
is the set Z consisting of all integers.

One set, the empty set, deserves special mention. This set is denoted
by ∅. It has no elements.

The elements of a given set may themselves be sets (and thus have ele-
ments of their own).

2.2 Unions, Intersections and Complements of Sets

Let A and B be sets. We define the union A ∪ B of A and B to be the set
consisting of all elements that belong to A or to B (or to both). We define
the intersection A ∩ B of A and B to be the set consisting of all elements
that belong to both A and B. We also define A \ B to be the set consisting
of elements of A that do not belong to B. If every element of B belongs to
A (so that B is a subset of A), then A \ B is customarily referred to as the
complement of B in A.

10

Example Let A = {1, 2, 3, 4, 5} and B = {4, 5, 6, 7, 8}. Then

A ∪B = {1, 2, 3, 4, 5, 6, 7, 8},
A ∩B = {4, 5},
A \B = {1, 2, 3},
B \ A = {6, 7, 8}.

Example Let Z be the set of all integers, and let 2Z denote the set of all
even integers (i.e., all integers that are divisible by two). Then Z \ 2Z is the
set of all odd integers (i.e., all integers that are not divisible by two). We
see that 2Z ∪ (Z \ 2Z) = Z (i.e., the set of integers is the union of the set of
even integers and the set of even integers, or in other words, every integer is
even or odd). Also 2Z∩ (Z \ 2Z) = ∅ (i.e., the intersection of the set of even
integers and the set of odd integers is empty, or in other words, no integer is
both even and odd).

One may also form unions and intersections of three or more sets. If A,
B and C are sets, then A ∪ B ∪ C denotes the union of the three sets A,
B and C, and consists of all elements that belong either to A or to B or to
C. Similarly A ∩ B ∩ C denotes the intersection of the three sets A, B, C.
An entity x is an element of the intersection A ∩ B ∩ C if and only if it is
an element of A and also of B and of C. Analogous notations are used for
unions and intersections of four or more sets.

Let A, B and C be sets. One can readily verify the following identities:

A ∪ A = A,

A ∩ A = A,

A ∪B = B ∪ A,

A ∩B = B ∩ A,

(A ∪B) ∪ C = A ∪ (B ∪ C) = A ∪B ∪ C,

(A ∩B) ∩ C = A ∩ (B ∩ C) = A ∩B ∩ C,

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

(A ∩B) ∪ (A \B) = A,

(A ∩B) ∩ (A \B) = ∅,
A ∪B = (A ∩B) ∪ (A \B) ∪ (B \ A),

A \ (B ∪ C) = (A \B) ∩ (A \ C),

A \ (B ∩ C) = (A \B) ∪ (A \ C).

11

Example Let us verify that A∩ (B ∪C) = (A∩B)∪ (A∩C) for all sets A,
B and C. Now, given any sets D and E a standard and useful method for
proving that they are in fact the same set is to show that every element of D
belongs to E and that every element of E belongs to D. For then it follows
that the sets D and E have the same elements, and therefore D = E.

So let A, B and C be sets, let D = A∩(B∪C) and let E = (A∩B)∪(A∩C).
Let x be an element of D. Then x ∈ A. Also either x ∈ B or x ∈ C (or
both). If x ∈ B then x ∈ A∩B, (since we also know that x ∈ A). But every
element of A ∩B is an element of the union (A ∩B) ∪ (A ∩ C), which is E.
Therefore x ∈ E. Similarly if x ∈ C, then x ∈ A ∩ C, and hence x ∈ E.
Thus we have seen that an element of D belongs to E in each of the two
cases when x ∈ B and when x ∈ C. We conclude that every element of D
belongs to E.

Now let x be an element of E. Then either x ∈ A ∩ B or x ∈ A ∩ C. In
the first case x ∈ B, and in the second case x ∈ C, so that in either case
x ∈ B ∪ C. Moreover x ∈ A in both cases. It follows that every element of
E belongs to the intersection of A and B ∪C. This intersection is the set D.
Thus every element of E belongs to D.

We have shown that the sets D and E have the same elements. Therefore
D and E are in fact the same set, and so A ∩ (B ∪C) = (A ∩B) ∪ (A ∩C).

Example Let us verify that A \ (B ∪C) = (A \B) ∩ (A \C) for all sets A,
B and C. Let x be an element of A \ (B ∪C). We must show that x belongs
to the set of the right hand side of the above equality. Now x ∈ A \ (B ∪C),
and therefore x belongs to A but does not belong to B ∪C. In particular, x
does not belong to B, nor to C. It follows that x ∈ A\B, and also x ∈ A\C.
But then x ∈ (A \ B) ∩ (A \ C). We have thus shown that every element of
A \ (B ∪ C) is an element of (A \B) ∩ (A \ C).

Now let x be any element of (A \ B) ∩ (A \ C). Then x ∈ (A \ B) and
x ∈ (A \ C). The element therefore cannot belong to B. Nor can it belong
to C. But x ∈ A. We conclude therefore that x is an element of A that does
not belong to B ∪ C. (Every element of B ∪ C must belong either to B or
to C.) Thus any element x of (A \B) ∩ (A \C) belongs to A \ (B ∪C). We
conclude that the sets A \ (B ∪C) and (A \B)∩ (A \C) are in fact the same
set, since we have shown that an element of either is an element of the other.
Thus A \ (B ∪ C) = (A \B) ∩ (A \ C).

2.3 Subsets and Power Sets

Definition Let A and B be sets. We say that the set B is a subset of A if
every element of B is an element of A. If B is a subset of A then we denote

12

this fact by writing either B ⊂ A or A ⊃ B.

The empty set ∅ is a subset of every set. Morover any set is a subset of
itself (i.e., A ⊂ A for any set A). Thus a non-empty set A always has at least
two subsets, namely ∅ and A itself.

Let A and B be sets. If A ⊂ B and B ⊂ A then A = B. For if A ⊂ B and
B ⊂ A then every element of A is an element of B, and also every element
of B is an element of A. But then the sets A and B have the same elements,
and therefore these sets are in fact the same set.

Definition Let A be a set. The power set PA is the set whose elements are
the subsets of A.

Example Let A be a set consisting of exactly one element a, so that A =
{a}. Then the subsets of A are the empty set ∅ and A itself. It follows that
the power set PA of A is given by PA = {∅, A} in this case. Note that the
set A has 1 element and that its power set PA has 2 elements.

Example Let A = {1, 2}. Then PA = {∅, {1}, {2}, {1, 2}}. Note that the
set A has 2 elements and that its power set PA has 4 elements.

Example Let A be the set consisting of the three colours red, green and
blue. Let us for convenience denote these colours by R, G and B. Thus
A = {R, G, B}. Going systematically through the subsets of A with 0, 1, 2,
and 3 elements, we see that the power set of A is given by the following:

PA = {∅, {R}, {G}, {B}, {G, B}, {B, R}, {R, G}, {R, G, B}} .

Note that the set A has 3 elements and its power set PA has 8 elements.

Example Let A be a set consisting of the four elements a, b, c and d. Then
the power set PA of A consists of the following subsets of A: the empty
set ∅, {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}, {b, c, d},
{a, c, d}, {a, b, d}, {a, b, c} and {a, b, c, d}. Thus the set A has one subset with
no elements, four subsets with exactly one element, six subsets with exactly
two elements, four subsets with exactly three elements, and one subset with
exactly four elements. Note that the set A has 4 elements and its power set
PA has 16 elements.

The pattern emerging from the above examples would lead one to con-
jecture the following theorem on the number of elements in the power set of
a finite set, which we now proceed to state and prove.

13

Theorem 2.1 If a finite set A has exactly n elements, then its power set
PA has exactly 2n elements.

Proof Let A be a set with n elements, where n > 0. Choose an element a
of A, and let B be the subset of A consisting of all elements of A apart from
a (i.e., B is the complement A \ {a} of {a} in A). The set B has n − 1
elements. Now for each subset C of B there exist exactly two subsets of A
whose intersection with B is the set C; these subsets are C itself and C∪{a}
(i.e., the subset of A obtained by adjoining the element a to C). It follows
that the set A has twice as many subsets as the set B.

If A has just one element then its power set PA has two elements. Indeed
if A = {a} then PA = {∅, A}.

An easy application of the Principle of Mathematical Induction proves
that a if finite set has n elements then its power set has 2n elements. Indeed
this result holds for all sets with just one element, and if, for any natural
number m, the result holds for all sets with m elements, then it also holds
for all sets with m+1 elements, since we have already seen that the addition
of an element to a set doubles the number of subsets which it contains.

2.4 The Specification of Sets

We come now to consider a standard method for specifying sets in terms of
the properties satisfied by their elements.

Suppose we wish to specify the subset of a given set A consisting of all
elements of A that satisfy a given condition. Such a set is specified by the
following:

{a ∈ A : condition}
where ‘condition’ is to be replaced in the above by the specific condition that
an element a of the set A has to satisfy in order to belong to the subset being
specified, as in the following examples.

Example Suppose we wish to specify the set consisting of all natural num-
bers greater than 7. This set can be specified as

{n ∈ N : n > 7}.

Here N denotes the set of natural numbers. Note that this set can also be
specified as

{n ∈ Z : n > 7},
where Z denotes the set of integers (i.e., whole numbers). (Integers may be
positive, negative or zero, but those integers n which also satisfy the condition
n > 7 are positive, and are therefore natural numbers.)

14

Example The set of real numbers is denoted by R. Therefore the set of real
numbers whose squares are greater than 7 may be denoted by

{x ∈ R : x2 > 7}.

Example What is {x ∈ R : x2 < −7}?
Now the square of a real number x is always non-negative, whether x be

positive, negative or zero. Therefore there are no real numbers x satisfying
x2 < −7. We conclude that {x ∈ R : x2 < −7} is simply a somewhat
complicated way of specifying the empty set ∅.

Example How many elements are there in the set {x ∈ R : x2 = 1}?
In other words, how many real numbers are there whose squares are equal

to 1. There are exactly two, namely +1 and −1. Thus {x ∈ R : x2 = 1} =
{−1, 1}. This set has two elements.

Example The set of real numbers that are less than −7 or greater than 4
may be denoted by

{x ∈ R : x < −7 or x > 4}

Example Note that {x ∈ R : x < −7 and x > 4} is simply another some-
what complicated way of specifying the empty set.

Definition Let a and b be real numbers with a ≤ b. We define

[a, b] = {x ∈ R : a ≤ x ≤ b}, (a, b) = {x ∈ R : a < x < b},

[a, b) = {x ∈ R : a ≤ x < b}, (a, b] = {x ∈ R : a < x ≤ b}.

Thus [a, b] denotes the set consisting of all real numbers x that satisfy a ≤
x ≤ b, and the other sets are defined similarly. (Note that if a = b then (a, b),
[a, b) and (a, b] are all the empty set, and [a, b] is the set {a} consisting of
the single element a.)

2.5 Binary Relations

A binary relation on a set specifies relations between pairs of elements from
the set.

Example The relations = (‘equals’), 6= (‘not equal to’), < (‘less than’), >
(‘greater than’), ≤ (‘less than or equal to’) and ≥ (‘greater than or equal to’)
are all binary relations on the set R of real numbers.

15

Example Let A be a set, and let PA be the power set of A (i.e., the set
whose elements are the subsets of A). Then ⊂ is a binary relation on PA,
where two subsets B and C of A satisfy B ⊂ C if and only if B is a subset
of C.

If one has a relation R on a set A, then, given two elements x and y of A,
either x is related to y, in which case we may write xRy, or else the element
is not related to y.

Definition Let R be a relation on a set A.
The relation R is said to be reflexive when it has the following property:

xRx for all elements x of the set A.
The relation R is said to be symmetric when it has the following property:

if x and y are elements of the set A, and if xRy, then yRx.
The relation R is said to be transitive when it has the following property:

if x, y and z are elements of the set A, and if xRy and yRz, then xRz.
An equivalence relation is a relation that is reflexive, symmetric and tran-

sitive.

Example The relation < (‘less than’) on the set R of real numbers is neither
reflexive nor symmetric, but it is transitive. Indeed there is no real number x
satisfying x < x. Moreover there are no pairs of real numbers x and y
satisfying both x < y and y < x. However, if x, y and z are real numbers,
and if x < y and y < z, then x < z, and therefore the relation < on R is
transitive.

Example Let A be a non-empty set, and let PA be the power set of A. The
relation ⊂ on PA is reflexive and transitive, but is not symmetric. Indeed
every subset of A is a subset of itself and therefore B ⊂ B for all B ∈ PA,
showing that the relation ⊂ on PA is reflexive. If B, C and D are subsets
of A, and if B ⊂ C and C ⊂ D, then B ⊂ D (for if every element of B is
an element of C and if every element of C is an element of D then clearly
every element of B is an element of D), and therefore the relation ⊂ on PA
is transitive. It is not the case however that B ⊂ C always implies that
C ⊂ B. Indeed subsets B and C of A satisfy both B ⊂ C and C ⊂ B if and
only if B = C. Thus the relation ⊂ on PA is not symmetric.

Example The relation = (‘equals’) on the set R of real numbers is an equiv-
alence relation. However none of the relations 6= (‘not equal to’), < (‘less
than’), > (‘greater than’), ≤ (‘less than or equal to’) or ≥ (‘greater than or
equal to’) are equivalence relations on R.

16

2.6 Congruences

Let m be a positive integer. We say that two integers x and y are congruent
modulo m if x − y is divisible by m. If x and y are congruent modulo m,
then we denote this fact by writing

x ≡ y (mod m).

Lemma 2.2 Let m be a positive integer, and let x, y and z be integers. Then
the following results hold:

(i) x ≡ x (mod m);

(ii) if x ≡ y (mod m) then y ≡ x (mod m);

(iii) if x ≡ y (mod m) and y ≡ z (mod m) then x ≡ z (mod m).

The relation of congruence modulo m is thus reflexive, symmetric and tran-
sitive, and is therefore an equivalence relation on the set Z of integers.

Proof Clearly x ≡ x (mod m) for any integer x, since x − x = 0, and 0 is
divisible by any non-zero integer.

If x ≡ y (mod m) then x − y is divisible by m. But then y − x is also
divisible by m, and hence y ≡ x (mod m).

If x ≡ y (mod m) and y ≡ z (mod m) then both x − y and y − z are
divisible by m. But x − z = (x − y) + (y − z) and the sum of two integers
divisible by m is itself an integer divisible by m. Therefore x− z is divisible
by m, and hence x ≡ z (mod m).

Congruences play an important role in the study of the theory of numbers,
and in applications of that theory to practical problems in areas such as
cryptography.

One well known theorem, due to Pierre de Fermat, states that if p is
any prime number then xp ≡ x (mod p) for all integers x. This result is
sometimes referred to as Fermat’s Little Theorem. This property of prime
numbers is not shared by all natural numbers. For example 26 = 64 and
64 ≡ 4 (mod 6). But the numbers 2 and 4 are not congruent modulo 6
(since 4− 2 is not divisible by 6). Therefore the congruence x6 ≡ x (mod 6)
does not hold when x = 2.

17

2.7 Partitions and Equivalence Relations

Let A be a set. A partition of A is collection of subsets of A with the property
that every element of A belongs to exactly one of the subsets in the collection.

Example Let Z be the set of integers, let O be the set of odd integers, and
let E be the set of even integers. Every integer is either even or odd, and no
integer is both even and odd. Therefore any integer belongs to exactly one
of the sets O and E. Thus the collection consisting of the sets O and E is a
partition of the set Z of integers.

There is a close connection between partitions and equivalence relations.
We recall that an equivalence relation ∼ on a set A is a binary relation on
A with the following properties:

(i) x ∼ x for all elements x of A (i.e., ∼ is reflexive);

(ii) if x and y are elements of A and if x ∼ y then y ∼ x (i.e., ∼ is
symmetric);

(iii) if x, y and z are elements of A, and if x ∼ y and y ∼ z then x ∼ z (i.e.,
∼ is transitive).

Definition Let ∼ be an equivalence relation on a set A, and let x be an
element of A. The equivalence class [x] of the element x is the subset of A
defined as follows:

[x] = {a ∈ A : a ∼ x}.

Example Let m be a positive integer. There is then an equivalence relation
on the set Z, where two elements x and y are related if and only if x − y is
divisible by m. (In other words, integers x and y are related if and only if
x ≡ y (mod m).) The equivalence class [n]m of an integer n thus consists of
all integers x that are congruent to n modulo m. This equivalence class is
referred to as the congruence class of n modulo m. An integer x belongs to
the congruence class [n]m of n modulo m if and only if x− n is divisible by
m.

Now, given any integer x, exactly one of the integers

x, x− 1, x− 2, . . . , x−m + 1

between x − m + 1 and x is divisible by m. It follows that the integer x
belongs to exactly one of the congruence classes [0]m, [1]m, [2]m, . . . , [m−1]m.
These congruence classes modulo m therefore constitute a partition of the
set Z of integers.

18

Theorem 2.3 Let ∼ be an equivalence relation on a set A. Then every
element of A belongs to exactly one equivalence class. Thus the collection of
equivalence classes is a partition of the set A.

Proof Let x be an element of A. Then x ∼ x (since the relation ∼ is
reflexive), and therefore x ∈ [x]. Thus every element x of A belongs to its
own equivalence class [x]. We see from this that each element of A belongs
to at least one equivalence class.

To complete the proof we must show that each element of A belongs to
at most one equivalence class. Let x and y be elements of A. We shall show
that if the equivalence classes [x] and [y] have at least one element in common
then [x] = [y].

Suppose then that there exists an element z of A that belongs to both
[x] and [y]. Then z ∼ x and z ∼ y. But then x ∼ z (since the relation ∼
is symmetric), and hence x ∼ y (since x ∼ z, z ∼ y, and the relation ∼ is
transitive). Moreover y ∼ x, since the relation ∼ is symmetric. If a is an
element of A and if a ∈ [x] then a ∼ x and x ∼ y, and therefore a ∈ [y].
Similarly if a ∈ [y] then a ∼ y and y ∼ x, and therefore a ∈ [x]. Thus every
element of [x] is an element of [y], and every element of [y] is an element of
[x]. It follows that [x] = [y].

We have proved that if equivalence classes [x] and [y] have at least one
element in common then they coincide (i.e., they are in fact the same equiv-
alence class). It follows that an element of A cannot belong to more than
one equivalence class.

We have proved that every element of A belongs to exactly one equiva-
lence class, since an element of A belongs to at least one equivalence class
but cannot belong to more than one equivalence class. Thus the collection
of equivalence classes is a partition of the set.

Remark We have seen how every equivalence relation on a set gives rise to
a partition of that set. On the other hand, any partition of the set gives rise
to an equivalence relation on that set: two elements of the set are related
if and only if they belong to the same subset in the partition. It follows
that equivalence relations and partitions correspond to one another: to each
equivalence relation on a set there is a corresponding partition of the set,
and vice versa.

2.8 Partial Orders and Lattices

Definition Let A be a set. A binary relation R on A is said to be anti-
symmetric if it has the following property:

19

if x and y are elements of A, and if xRy and yRx, then x = y.

Definition A partial order on a set is a relation on that set which is reflexive,
transitive and anti-symmetric.

Let � denote a relation on a set A. We see that this relation is a partial
order on the set A if and only if it has the following three properties:

(i) x � x for all elements x of A;

(ii) if x, y, and z are elements of A, and if x � y and y � z, then x � z;

(iii) if x and y are elements of A, and if x � y and y � x, then x = y.

Example The relation ≤ (‘less than or equal to’) is a partial order on the
set R of real numbers. (It clearly possesses all three properties listed above.)
It is also a partial order when considered as a relation on the set Z of integers,
or on the set N of natural numbers.

Example Let A be a set. The relation ⊂ is a partial order on the power
set PA of A, where subsets B and C satisfy B ⊂ C if and only if B is a
subset of C (i.e., if and only if every element of B belongs also to C).

Definition A partially ordered set (or poset) (A,�) consists of a set A,
which is provided with a partial order � defined on the set.

Let (A,�) be a partially ordered set, and let B be a subset of A. An
element l of A is said to be a lower bound of B if l � b for all elements b
of B. An element l of A is said to be the greatest lower bound of B if l is a
lower bound of B and if l′ � l for all lower bounds l′ of B. If such a greatest
lower bound exists, we shall denote it by glb B.

It is worth noting that a subset B of A can have at most one greatest
lower bound. For if l and l′ denote elements of A (not necessarily distinct),
and if l and l′ are greatest lower bounds of B then l′ � l and l � l′ and
therefore l = l′ (since the relation � on A is anti-symmetric).

We can define in a similar fashion the notion of a least upper bound of a
subset of A. An element u of A is said to be an upper bound of a subset B of
A if b � u for all elements b of B. An element u of A is said to be the least
upper bound of B if u is an upper bound of B and if u � u′ for all upper
bounds u′ of B. A subset B of A can have at most one least upper bound.
If such a least upper bound exists, we shall denote it by lub B.

20

Example Consider the partially ordered set (R,≤). Any finite subset B of
R has both a greatest lower bound and a least upper bound. The greatest
lower bound of B in this case is the smallest real number belonging to B,
and the least upper bound is the largest real number belonging to B.

Example Let A be a set, and let PA be the power set of A (i.e., the set
whose elements are the subsets of A). Then (PA,⊂) is a partially ordered
set (i.e., the relation ⊂ is a partial order on the power set PA of A). Given
subsets B and C of A one can readily verify that

glb{B, C} = B ∩ C, lub{B, C} = B ∪ C.

Indeed B ∩ C ⊂ B and B ∩ C ⊂ C, and therefore B ∩ C is a lower bound
of {B, C}. Moreover if D is any subset of A that is a lower bound of {B, C}
then D ⊂ B and D ⊂ C, hence the elements of D must belong to both B
and C, hence D ⊂ B ∩ C. This shows that glb{B, C} = B ∩ C. A similar
argument shows that lub{B, C} = B ∪ C.

Example Let (N,≤) be the partially ordered set (poset) consisting of the
set N of natural numbers, together with the usual partial order ≤. Let B
be the subset of N consisting of all the even natural numbers (i.e., B =
{2, 4, 6, 8, . . .}). The set B has a greatest lower bound. Indeed glb B = 2.
But the set B has no least upper bound. Indeed the set has no upper bound:
no natural number has the property that it is greater than or equal to all
even natural numbers.

Definition A partially ordered set (A,�) is said to be a lattice if, given any
two elements x and y of the set A, there exists an element glb{x, y} of A
that is the greatest lower bound of the set {x, y} and an element lub{x, y}
that is the least upper bound of the set {x, y}.

Example (R,≤), (Z,≤), (N,≤) are lattices (where two numbers x and y
satisfy x ≤ y if and only if x is less than or equal to y).

Example Let A be a set, and let PA denote the power set of A. Then
(PA,⊂) is a lattice. Indeed, if B and C are elements of PA then they are
subsets of A. Moreover we have already seen that

glb{B, C} = B ∩ C, lub{B, C} = B ∪ C,

and B ∩C and B ∪C are elements of P (since they are obviously subsets of
A). It follows that contains the greatest lower bound and least upper bound
of the set {B, C} for all elements B and C of PA (i.e., for all subsets B and
C of A).

21

2.9 Cartesian Products of Sets

Let A and B be sets. The Cartesian product A × B of the sets A and B is
defined to be the set of all ordered pairs (a, b) with a ∈ A and b ∈ B.

Such an ordered pair (a, b) is comprised of two elements a and b, where
the first element a is taken from the set A, and the second element b is taken
from the set B. If (a1, b1) and (a2, b2) are ordered pairs of this type then
(a1, b1) = (a2, b2) if and only if a1 = a2 and b1 = b2.

Example Points of the plane are specified in Cartesian coordinates by means
of ordered pairs (x, y), where x and y are real numbers. The set of such
ordered pairs is the set R × R (the Cartesian product of two copies of the
set R of real numbers).

Example Let A = {1, 2, 3} and B = {1, 2}. Then

A×B = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2)}.

Note that, in this example, the number of elements of the set A×B (i.e., 6)
is the product of the number of elements of A (i.e., 3) and the number of
elements of B (i.e., 2).

Suppose that A and B are finite sets. Let m and n be the number
of elements in A and B respectively. Then the number of elements of the
Cartesian product A × B is mn. Indeed an element of A × B is an ordered
pair (a, b) with a ∈ A and b ∈ B. There are m ways to choose the element a
from A, and, for each such choice, there are n ways to choose the element b
from B.

One may form the Cartesian product of any number of sets. Suppose
that A1, A2, . . . An are sets. The Cartesian product of these sets is the set
A1 × A2 × · · · × An consisting of all ordered n-tuples (a1, a2, . . . , an) with
ai ∈ Ai for i = 1, 2, . . . , n.

Example Points of three dimensional space are specified in Cartesian co-
ordinates by means of ordered triples (x, y, z), where x, y and z are real
numbers. The set of such ordered triples is the set R× R× R.

Let A1, A2, . . . , An be sets, and let (c1, c2, . . . , cn) and (d1, d2, . . . , dn) be
elements of the Cartesian product A1 × A2 × · · · × An of these sets. Then
(c1, c2, . . . , cn) = (d1, d2, . . . , dn) if and only if ci = di for i = 1, 2, . . . , n (i.e.,
if and only if c1 = d1, c2 = d2, etc.).

A Cartesian product A1 × A2 × · · · × An of finite sets A1, A2, . . . , An is
itself a finite set: the number of elements of the Cartesian product is equal
the product of the number of elements of the individual sets A1, A2, . . . , An.

22

Example If the sets A, B and C have 3, 5 and 7 elements respectively then
their Cartesian product has 105 elements, since 105 = 3× 5× 7.

Example Suppose that one to construct a database containing information
on students taking a course such as 2BA1. Each record in the database is
to specify the student number, the name, and the degree programme being
followed by the student. Let I be the set consisting of all strings of eight
decimal digits, let N be a set containing all the student names, and let D be
the set of all degree programmes taught at Trinity College Dublin. Then a
record in the database determines an element of the set I ×N ×D, such as

(63009987, Śıle Nı́ Shé, CSLL German).

The collection of all such records contained in the database can be viewed
as a subset of the Cartesian product I ×N ×D of the set I, N and D. The
language of sets and Cartesian products is used in discussions of relational
databases.

A subset of the Cartesian product A1×A2×· · ·×An of sets A1, A2, . . . , An

is sometimes referred to as an n-ary relation on the sets A1, A2, . . . , An.

2.10 Functions between Sets

Definition Let A and B be sets. A function f : A → B from A to B assigns
to each element a of A an element f(a) of B. The set A on which the function
is defined is referred to as the domain of the function f : A → B. The set B
into which the domain is mapped by f is referred to as the codomain of the
function f .

Example Let R be the set of real numbers. The function q: R → R defined
by q(x) = x2 for all real numbers x is a function from the set R of real
numbers to itself.

Example There is a function r: R \ {0} → R, where r(x) = 1/x for all
non-zero real numbers x. The domain of this function is the set R \ {0} of
all non-zero real numbers (i.e., the set {x ∈ R : x 6= 0}). The domain of this
function cannot be extended to the entire set R of real numbers since the
reciprocal of zero is not defined. According the above definition the value of
a function must be defined at all elements of its domain.

Example Let A be the set of letters in the English alphabet (including
both upper-case and lower-case letters). Then there is a function f : A → N
which sends each letter to its ASCII code. Then, for example, f(A) = 65,
f(B) = 66, f(a) = 97 and f(b) = 98.

23

Given any set A, there is a function 1A: A → A from the set A to itself
which sends each element a of A to itself. This function is referred to as the
identity function on A.

Definition Let A and B be sets, and let f : A → B be a function from A to
B. The range of the function f is the subset f(A) of B defined by

f(A) = {b ∈ B : b = f(a) for some a ∈ A}.

In other words, the range of a function is the set consisting of all elements of
the codomain of the function that are images under the function of elements
of its domain.

Definition Let A be a set. A Boolean function on A is a function f : A →
{T, F} whose domain is A and whose codomain is the set {T, F} whose
elements are the truth values T = true and F = false.

2.11 Compositions of Functions

Let A, B and C be sets, let f : A → B be a function A to B, let g: B → C be
a function from B to C. Then there is a function g ◦ f : A → C obtained by
composing the functions f and g. This function is defined at each element a
of A by the formula (g ◦ f)(a) = g(f(a)). (In other words, in order to
apply the composition function g ◦ f to an element a of A, we first apply
the function f to the element a, and then we apply the function g to the
resulting element f(a) of B to obtain an element g(f(a)) of C.

Example Let R denote the set of real numbers, and let f : R → R and
g: R → R be the functions defined by f(x) = (x + 1)2 and g(x) = sin x for
all real numbers x. Then g ◦ f = h where h: R → R is the function defined
by h(x) = sin(x + 1)2 for all real numbers x. Also f ◦ g = k, where k: R → R
is the function defined by k(x) = (sin x + 1)2 for all real numbers x.

Remark Note that ‘g ◦ f ’ denotes the composition function ‘f followed by
g’. The functions are specified in this order (which may at first seem odd)
in order that (g ◦ f)(a) = g(f(a)) for all elements a of the domain A of the
function f .

2.12 The Graph of a Function

Let A and B be sets. To every function f : A → B from A to B there
corresponds a subset Γ(f) of the Cartesian product A×B, where

Γ(f) = {(a, b) ∈ A×B : b = f(a)}.

24

Mathematicians often refer to the subset of A×B corresponding to a function
f : A → B as the graph of the function. The following example suggests the
reason for this terminology.

Example Let q: R → R be the function from the set R of real numbers to
itself defined such that q(x) = x2 for all real numbers x. The graph of this
function is the subset of R× R given by

{(x, y) ∈ R× R : y = x2}.

Note that this subset consists of the Cartesian coordinates of the points of
the plane that lie on the curve that represents the graph of the given function.

Whilst every function from A to B determines a corresponding sub-
set Γ(f) of A × B, it is not possible to obtain every subset of A × B in
this fashion. Indeed it is easy to see that a subset R of A×B is the graph of
some function f : A → B if and only if, for every element a of A, there exists
exactly one element b of B for which (a, b) ∈ R. If the subset R of A×B has
this property, then the corresponding function f : A → B is characterized by
the property that, for each element a of A, f(a) is the unique element of B
for which (a, f(a)) ∈ R.

Remark In some books, including many textbooks on discrete mathematics
written for students of computer science, a function from a set A to a set B
is formally defined as a subset of the Cartesian product A × B with the
property that for each element a of A there exists exactly one element b of
B for which the ordered pair (a, b) belongs to the given subset. In essence,
in this approach, functions are being identified with their graphs.

2.13 The Inverse of a Function

Definition Let A and B be sets, and let f : A → B be a function from A
to B. A function g: B → A from B to A is said to be the inverse of the
function f if g(f(a)) = a for all elements a of A and f(g(b)) = b for all
elements b of B. If there exists a function g: B → A that is the inverse of
f : A → B, then the function f is said to be invertible and the inverse of a
function f : A → B is denoted by f−1: B → A.

Example Let R+ denote the set of all non-negative real numbers, and let
q: R+ → R+ denote the function defined by q(x) = x2 for each non-negative
real number x. This function is invertible, and its inverse q−1: R+ → R+

is given by q−1(x) =
√

x, where, for each non-negative real number x,
√

x
denotes the unique non-negative real number that is a square root of x.

25

Example Let A be the set of letters in the English alphabet (including both
upper-case and lower-case letters), and let

I = {n ∈ N : 65 ≤ n ≤ 90 or 97 ≤ n ≤ 122}.

There is then a function f : A → I that sends each letter of the alphabet to
its ASCII code. The inverse function f−1: I → A sends each natural number
within the specified ranges to the letter of the English alphabet which it
represents. Thus, for example, f−1(65) = A, f−1(66) = B, f−1(90) = Z,
f−1(97) = a, f−1(98) = b and f−1(122) = z.

2.14 Injective, Surjective and Bijective Functions

Many functions are not invertible. The following example illustrates some of
the reasons why certain functions may not be invertible.

Example Let W be the set of all English words occurring as headwords in
some specified dictionary, let N denote the set of natural numbers and let
λ: W → N denote the function that sends each word to its length. (Thus, for
example, λ(to) = 2 and λ(indecipherable) = 14.) This function λ: W → N
is not invertible.

One feature of this function which results in its not being invertible is
the fact that there are natural numbers that are the image of more than one
word. For example

λ(to) = λ(by) = λ(at) = 2.

λ(physical) = λ(computer) = 8.

If one were to seek to define function µ: N → W that was the inverse of
λ: W → N then one would run into problems in seeking to define val-
ues such as µ(2) and µ(8). Indeed if such an inverse function µ: N → W
were to exist, then it would have to satisfy µ(λ(α)) = α for all words α in
the dictionary. In particular we would have µ(λ(physical)) = physical
and µ(λ(computer)) = computer. But µ(λ(physical)) = µ(8), and
µ(λ(computer)) = µ(8), and therefore the inverse function µ: N → W
would also have to satisfy µ(λ(physical)) = µ(λ(computer)), and there-
fore the words ‘physical’ and ‘computer’ would have to be identical, which
is clearly not the case. This demonstrates the impossibility of finding an
inverse function to λ.

Another type of problem can also arise in seeking to define an inverse
µ: N → W to the function λ: W → N. How do we define µ(1000)? Now the
inverse function µ would have to satisfy λ(µ(n)) = n for all natural numbers,
and in particular would have to satisfy λ(µ(1000)) = 1000. Therefore µ(1000)

26

would have to be a headword in the specified dictionary with 1000 letters!
We take it for granted that no such headword exists.

Definition Let A and B be sets, and let f : A → B be a function from A to
B. We say that the function f is injective if f(x) 6= f(y) for all elements x
and y of A with x 6= y. We say that the function f is surjective if, given any
element b of B, there exists some element a of A such that f(a) = b. We say
that the function f is bijective if it both injective and surjective.

Thus a function is injective if and only if distinct elements of its domain
get mapped to distinct elements of its codomain. A function is surjective if
every element of the codomain is the image of some element of the domain.

Example Let R+ denote the set of non-negative real numbers, and let
q: R+ → R+ be the function given by q(x) = x2 for all non-negative real
numbers x. Let x and y be non-negative real numbers. If x < y then
x2 < y2. If x > y then x2 > y2. But if x 6= y then either x < y or x > y.
It follows that if x 6= y then x2 6= y2. The function q: R+ → R+ is there-
fore injective. Also, given any non-negative real number x, there exists a
non-negative real number

√
x whose square is equal to x. It follows that the

function q: R+ → R+ is both injective and surjective. It is therefore bijective.
This function also has an inverse q−1: R+ → R+, where q−1(x) =

√
x for all

non-negative real numbers x.

Example Let s: R → R by the function given by s(x) = x2 for all real
numbers x. This function is not injective. For example, −2 and 2 are distinct
elements of R, but s(−2) = 4 = s(2). Moreover the function is not surjective,
since any negative real number such as −4 is not in the range of the function.
This function s: R → R is neither injective nor surjective. Moreover one can
easily satisfy oneself that it does not have an inverse. (Such an inverse, were
it to exist, would have to be defined for all real numbers, not merely the
non-negative ones.)

Remark Note that the expressions defining the values q(x) and s(x) of the
functions of the previous two examples are the same, but these two functions
have different domains and different codomains, and are therefore regarded
as being different functions. In determining whether or not functions are
injective or surjective, it is crucial to take into account the domain and
codomain given in the specification of the function.

One can readily verify that the composition of two injections is itself an
injection, and that the composition of two surjections is itself a surjection.
It follows directly that the composition of two bijections is a bijection.

27

Theorem 2.4 A function f : A → B is invertible if and only if it is both
injective and surjective.

Proof First we show that an invertible function must be both injective and
surjective. Suppose that the function f : A → B has an inverse g: B → A.
Then g(f(a)) = a for all elements a of the domain A, and f(g(b)) = b for all
elements b of the codomain B. Let x and y be elements of A. If f(x) = f(y)
then x = g(f(x)) = g(f(y)) = y. Thus f(x) and f(y) cannot be equal unless
x = y. It follows that if x 6= y then f(x) 6= f(y). We see therefore that an
invertible function must be injective.

An invertible function must also be surjective. For if g: B → A is an
inverse of f : A → B then f(g(b)) = b for all elements b of the codomain B,
and thus there exists at least one element of the domain, namely g(b), which
is mapped by f to the element b.

We have now shown that an invertible function must be both injective
and surjective. It remains to show that a function that is both injective and
surjective is invertible.

Let f : A → B be a function that is both injective and surjective. Let b be
an element of the set B. There exists at least one element x of A satisfying
f(x) = b, since the function f is surjective. If y is an element of A and if
y 6= x, then f(y) 6= f(x), because the function f is injective, and therefore
f(y) 6= b. We conclude that, for each element b of B, there exists exactly one
element x of the set A satisfying f(x) = b; let us denote this element by g(b).
We obtain in this way a function g: B → A such that, for each element b of
B, g(b) is the unique element x of A satisfying f(x) = b.

Clearly f(g(b)) = b for all elements b of B. In order to prove that the
function g: B → A is the inverse of f : A → B, we must also prove that
g(f(a)) = a for all elements a of A. Let a be an element of the set A.
Now f(g(b)) = b for all elements b of B; letting b = f(a), we see that
f(g(f(a))) = f(a). But then g(f(a)) and a are both elements of A that are
mapped by f to the element f(a) of B. It follows that g(f(a)) = a, since
the function f is injective. We have thus shown that g(f(a)) = a for any
element a of the domain A of the function f . We conclude that the function
g: B → A is indeed the inverse of f : A → B, and thus the function f is
invertible, as required.

The above theorem shows that a function between sets is invertible if and
only if it is a bijection.

Example Let q: [−3, 1] → [0, 9] be the function defined by q(x) = x2 for all
x ∈ [−3, 1], where

[−3, 1] = {x ∈ R : −3 ≤ x ≤ 1} and [0, 9] = {x ∈ R : 0 ≤ x ≤ 9}.

28

(We recall that, given any real numbers a and b satisfying a ≤ b, the set
of real numbers x satisfying a ≤ x ≤ b is denoted by [a, b].) The function
q: [−3, 1] → [0, 9] is surjective, since for each real number y satisfying 0 ≤ y ≤
9, there exists at least one real number x satisfying −3 ≤ x ≤ 1 such that
q(x) = y; one such real number x is given by x = −√y, where

√
y denotes

the positive square root of y. However the function q is not injective. Indeed
q(1) = q(−1) = 1. The function q: [−3, 1] → [0, 9] is therefore not bijective,
and hence is not invertible.

Example Let f : [0, 2] → [0, 2] and g: [0, 2] → [0, 2] be the functions defined
by

f(x) =

{
x2 if 0 ≤ x ≤ 1;
3− x if 1 < x ≤ 2;

g(x) =

{
x2 if 0 ≤ x < 1;
3− x if 1 ≤ x ≤ 2.

The function f : [0, 2] → [0, 2] is not injective since f(1) = f(2) = 1. This
function is not surjective, since there is no element x of the domain [0, 2]
for which f(x) = 2. The function f is thus not bijective, and hence is not
invertible. The function g: [0, 2] → [0, 2], on the other hand, is invertible,
with inverse given by

g−1(x) =

{√
x if 0 ≤ x < 1;

3− x if 1 ≤ x ≤ 2.

It follows from this that the function g: [0, 2] → [0, 2] must be both injective
and surjective.

2.15 Partial Mappings

There is a generalization of the concept of a function between sets that is used
in theoretical computer science. This is the concept of a partial mapping.

A partial mapping (or partial function) f : A 7→ B associates to some
(but not necessarily all) elements a of A a corresponding element f(a) of
B. Partial mappings may be used in computer science to represent functions
that are not defined for all their input values. For example, suppose that one
has an algorithm which takes as input a natural number n and which, if it
terminates, returns some other natural number f(n). However there may be
values of n for which the algorithm does not terminate, and for such values,
the return value f(n) is not defined. This situation is then represented by a
partial mapping f : N 7→ N.

29

The domain of a partial mapping f : A 7→ B is defined to be the subset
of A consisting of all elements a of A for which f(a) is defined. The range of
the partial mapping f : A 7→ B is defined to be the subset of B consisting of
all elements of B that are of the form f(a) for some element a of the domain
of the partial mapping.

A partial mapping f : A 7→ B is said to be total if its domain is the whole
of A. Thus a partial mapping f : A 7→ B is total if and only if it is in fact a
function from A to B.

A theory of partial mappings may be developed that generalizes the the-
ory of functions between sets.

30

3 Graph Theory

3.1 Undirected Graphs

An undirected graph can be thought of as consisting of a finite set V of points,
referred to as the vertices of the graph, together with a finite set E of edges,
where each edge joins two distinct vertices of the graph.

We now proceed to formulate the definition of an undirected graph in
somewhat more formal language.

Let V be a set. We denote by V2 the set consisting of all subsets of V
with exactly two elements. Thus, for any set V ,

V2 = {A ∈ PV : |A| = 2},

where PV denotes the power set of V (i.e., the set consisting of all subsets
of V), and |A| denotes the number of elements in a subset A of V .

Definition An undirected graph (V, E) consists of a finite set V together
with a subset E of V2 (where V2 is the set consisting of all subsets of V with
exactly two elements). The elements of V are the vertices of the graph; the
elements of E are the edges of the graph.

Example Let a, b and c label the three vertices of a triangle in the plane.
Then there is an undirected graph (V, E) which consists of the vertices and
edges of this triangle.

a b

c

Here

V = {a, b, c};
E = {{a, b}, {b, c}, {c, a}}.

Example Let a, b, c and d label the four vertices of a square in the plane
(labelled in cyclic order around the square). Then there is an undirected
graph (V, E) which consists of the vertices and edges of this square.

31

a b

cd

Here

V = {a, b, c, d};
E = {{a, b}, {b, c}, {c, d}, {d, a}}.

Note that, in this example, not every subset of V2 with exactly two elements
is an edge of the graph. (Indeed the diagonals {a, c} and {b, d} are not edges
of this graph.)

Let (V, E) be an undirected graph. In order to simplify notation, we
shall often denote by a b an edge {a, b} of the graph whose endpoints are the
vertices a and b.

Definition A graph is said to be trivial if it consists of a single vertex.

We may denote a graph by a single letter such as G. Writing G = (V, E)
indicates that V is the set of vertices and E is the set of edges of some
graph G.

3.2 Incidence and Adjacency

Definition If v is a vertex of some graph, if e is an edge of the graph, and
if e = v v′ for some vertex v′ of the graph, then the vertex v is said to be
incident to the edge e, and the edge e is said to be incident to the vertex v.

(We see therefore that an edge of a graph is incident to a vertex of the
graph, and the vertex is incident to the edge, if and only if the vertex is one
of the endpoints of the edge.)

Definition Two distinct vertices v and v′ of a graph (V, E) are said to be
adjacent if and only if v v′ ∈ E.

(We see therefore that two distinct vertices of a graph are adjacent if and
only if they are the endpoints of an edge of the graph.)

32

3.3 Incidence and Adjacency Tables and Matrices

The following example illustrates how we may associate incidence and adja-
cency tables or matrices with graphs.

Example Let a, b, c and d represent the four vertices of a square in the
plane, and consider the graph consisting of the vertices and edges of this
square. Let s, t, u and v denote the four edges of the square, where s = a b,
t = b c, u = c d and v = d a.

a b

cd

s

t

u

v

The incidence relations between the vertices a, b, c and d and the edges
s, t, u and v can be expressed by the following table:

s t u v

a 1 0 0 1
b 1 1 0 0
c 0 1 1 0
d 0 0 1 1

Such a table is known as the incidence table for the graph.
If a vertex is incident to an edge then the corresponding entry in the table

has the value 1; otherwise that entry has the value 0.
If the vertices are ordered (as first vertex, second vertex, etc.) and if the

edges are also ordered, then this information may be encoded in a matrix,
known as an incidence matrix. In this example, if the vertices are ordered
as a, b, c, d (so that a is the first vertex, b is the second vertex, c is the third
vertex, and d is the fourth vertex), and if the edges are ordered as s, t, u, v,
then the corresponding incidence matrix is

1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 .

33

Definition Let (V, E) be a graph with m vertices and n edges. Let the ver-
tices be ordered as v1, v2, . . . , vm, and let the edges be ordered as e1, e2, . . . , en.
The incidence matrix for such a graph then takes the form

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 ,

where the entry aij in the ith row and jth column has the value 1 if the ith
vertex is incident to the jth edge, but has the value 0 otherwise.

One may introduce in a similar fashion the adjacency table and the adja-
cency matrix of a graph.

Definition Let (V, E) be a graph with m vertices, and let the vertices be
ordered as v1, v2, . . . , vm. The adjacency matrix for such a graph then takes
the form

b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...
bm1 am2 . . . bmm

 ,

where the entry bij in the ith row and jth column has the value 1 if the ith
vertex is adjacent to the jth vertex but has the value 0 otherwise.

Note that the adjacency matrix of any (undirected) graph is symmetric:
bij = bji for all indices i and j, where bij denotes the entry in the ith row
and jth column of the adjacency matrix.

Example Consider the graph consisting of the vertices and edges of a square
in the plane. Suppose that the vertices are ordered in anticlockwise order
around the square, starting from some chosen vertex of the square.

1 2

34

34

Then the adjacency matrix for this graph is the matrix
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

3.4 Complete Graphs

Definition A graph (V, E) is said to be complete if and only if, {v, v′} ∈ E
for all v ∈ V and v′ ∈ V satisfying v 6= v′.

(Thus a graph is complete if and only if any two distinct vertices of the
graph are the endpoints of an edge of the graph.)

A complete graph with n vertices is denoted by Kn.

3.5 Bipartite Graphs

Definition A graph (V, E) is said to be bipartite if there exist subsets V1

and V2, such that

(i) V1 ∪ V2 = V ;

(ii) V1 ∩ V2 = ∅;

(iii) each edge in E is of the form {v, w} with v ∈ V1 and w ∈ V2.

If in addition {v, w} is an edge of the graph for every v ∈ V1 and w ∈ V2 then
the graph (V, E) is said to be a complete bipartite graph. In the case when
V1 has p elements and V2 has q elements, such a complete bipartite graph is
denoted by Kp,q.

Example Let (V, E) be a graph with

V = {a, b, c, d, e},
E = {a c, a d, a e, b c, b d, b e}.

Let V1 = {a, b} and V2 = {c, d, e}. Then the conditions in the above
definition are satisfied by the graph (V, E) and the subsets V1 and V2, and
therefore the graph is bipartite. Moreover it is a complete bipartite graph.

35

a

b

c

d

e

V1

V2

3.6 Isomorphism of Graphs

Definition An isomorphism between two graphs (V, E) and (V ′, E ′) is a
bijective function ϕ: V → V ′ with the following property: for any two distinct
vertices a and b belonging to V , {a, b} ∈ E if and only if {ϕ(a), ϕ(b)} ∈ E ′.
If there exists such an isomorphism ϕ: V → V ′ between two graphs (V, E)
and (V ′, E ′) then these graphs are said to be isomorphic.

We recall that a function ϕ: V → V ′ is bijective if and only if it has a well-
defined inverse ϕ−1: V ′ → V . Thus a bijection ϕ: V → V ′ sets up a one-to-one
correspondence between the vertices of V and V ′: to every vertex of V there
corresponds a vertex of V ′, and vice versa. Such a one-to-one correspondence
between the vertices belonging to V and V ′ is an isomorphism between the
graphs (V, E) and (V ′, E ′) when it has the following additional property: a
pair of distinct vertices belonging to V are the endpoints of an edge of (V, E)
if and only if the corresponding vertices belonging to V ′ are the endpoints of
an edge of (V ′, E ′). There is then a one-to-one correspondence between the
edges of the two graphs, induced by the one-to-one correspondence between
their vertices.

3.7 Subgraphs

Definition Let (V, E) and (V ′, E ′) be graphs. The graph (V ′, E ′) is said to
be a subgraph of (V, E) if and only if V ′ ⊂ V and E ′ ⊂ E (i.e., if and only if
the vertices and edges of (V ′, E ′) are all vertices and edges of (V, E)).

36

Let (V, E) be a graph, and let V ′ be a subset of V . Let

E ′ = {{a, b} ∈ E : a ∈ V ′ and b ∈ V ′},

(so that E ′ be the set of all edges {a, b} belonging to E whose endpoints a
and b belong to V ′). Then (V ′, E ′) is a subgraph of (V, E). It is referred to
as the restriction of the graph (V, E) to V ′, or as the graph induced on V ′

by the graph (V, E). If the graph (V, E) is denoted by G, then its restriction
(V ′, E ′) to V ′ may be denoted by G|V ′ .

3.8 Vertex Degrees

Definition Let (V, E) be a graph. The degree deg v of a vertex v of this
graph is defined to be the number of edges of the graph that are incident
to v (i.e., the number of edges of the graph which have v as one of their
endpoints).

Definition A vertex of a graph of degree 0 is said to be an isolated vertex.

Definition A vertex of a graph of degree 1 is said to be an pendant vertex.

Theorem 3.1 Let (V, E) be a graph. Then∑
v∈V

deg v = 2|E|,

where
∑
v∈V

deg v denotes the sum of the degrees of all the vertices of the graph,

and |E| denotes the number of edges of the graph.

Proof Clearly
∑
v∈V

deg v counts the number of times an edge of a graph is

incident on a vertex of the graph. But this quantity must be twice the number
of edges of the graph, since each edge is incident on exactly two vertices.

Corollary 3.2
∑
v∈V

deg v is an even integer.

Corollary 3.3 In any graph, the number of vertices of odd degree must be
even.

Definition A graph is said to be k-regular, for some non-negative integer k,
if every vertex of the graph has degree equal to k. A regular graph is a graph
that is k-regular for some non-negative integer k.

37

Corollary 3.4 Let (V, E) be a k-regular graph. Then k|V | = 2|E|, where
|V | denotes the number of vertices and |E| denotes the number of edges of
the graph.

Proof If the graph is k-regular then the sum of the degrees of the vertices
of the graph is equal to k|V |. The result then follows immediately from
Theorem 3.1.

Example The graph consisting of the vertices and edges of a square is 2-
regular, since every vertex (i.e., every corner of the square) is incident to
exactly two edges.

Example A complete graph with n vertices is (n − 1)-regular, since each
vertex is adjacent to all the remaining n− 1 vertices.

Example A complete bipartite graph Kp,q is regular if and only if p = q.

3.9 Walks, Trails and Paths

Definition Let (V, E) be a graph. A walk v0 v1 v2 . . . vn of length n in
the graph from a vertex a to a vertex b is determined by a finite sequence
v0, v1, v2, . . . , vn of vertices of the graph such that v0 = a, vn = b and vi−1 vi

is an edge of the graph for i = 1, 2, . . . , n.

A walk v0 v1 v2 . . . vn in a graph is said to traverse the edges vi−1vi for
i = 1, 2, . . . , n and to pass through the vertices v0, v1, . . . , vn.

Each vertex v in a graph determines a walk of length of length zero in
the graph, consisting of the single vertex v; such a walk is said to be trivial.

Definition Let (V, E) be a graph. A trail v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the edges vi−1vi are distinct for i = 1, 2, . . . , n.

A trail in a graph is thus a walk in the graph which traverses edges of the
graph at most once.

Definition Let (V, E) be a graph. A path v0 v1 v2 . . . vn of length n in the
graph from a vertex a to a vertex b is a walk of length n from a to b with the
property that the vertices v0, v1, . . . , vn are distinct.

A path in a graph is thus a walk in the graph which passes through
vertices of the graph at most once.

Definition A walk, trail or path in a graph is said to be trivial if it is a
walk v of length zero determined by a single vertex v of v; otherwise it is
said to be non-trivial.

38

v0

v1

v2

v3v4

v5 v6

v7

v8 v9

A trail v0 v1 . . . v9 in a graph

3.10 Connected Graphs

Definition An undirected graph is said to be connected if, given any two
vertices u and v of the graph, there exists a path in the graph from u to v.

Theorem 3.5 Let u and v be vertices of a graph. Then there exists a path
in the graph from u to v if and only if there exists a walk in the graph from
u to v.

Proof Any path in a graph from one vertex to another is a walk. It therefore
only remains to show that if there exists a walk in the graph from a vertex u
to a vertex v, then there must also exist a path in the graph from u to v.

Now if there exists at least one walk from u to v, then there must exist
a walk from u to v whose length is less than or equal to that of every other
walk from u to v. Let this walk be a0 a1 . . . an, where a0 = u and an = v.
We claim that this walk is in fact a path from u to v. Indeed were it the
case that aj = ak for some integers j and k satisfying 0 ≤ j < k ≤ n then
the walk a0 . . . aj ak+1 . . . an from u to v obtained on omitting the edges
aj aj+1, . . . , ak−1 ak would be a walk from u to v whose length was strictly
less than that of the given walk (which is the shortest walk from u to v). But
this is clearly impossible. Hence a0, a1, . . . , an must be distinct, and thus the
the walk a0 a1 . . . an is a path from u to v.

Corollary 3.6 An undirected graph is connected if and only if, given any
two vertices u and v of the graph, there exists a walk in the graph from u to
v.

3.11 The Components of a Graph

Let (V, E) be an undirected graph. We can define a relation ∼ on the set V
of vertices of the graph, where two vertices a and b of the graph satisfy a ∼ b

39

if and only if there exists a walk in the graph from a to b.

Lemma 3.7 Let (V, E) be an undirected graph. Then the relation ∼ on the
set V of vertices of the graph is an equivalence relation, where two vertices
u and v of the graph satisfy u ∼ v if and only if there exists a walk in the
graph from u to v.

Proof We must prove that the relation ∼ on V is reflexive, symmetric and
transitive.

Clearly v ∼ v for any vertex v of the graph, since the trivial walk v is
walk from v to itself. Thus the relation ∼ is reflexive.

Let u and v be vertices of the graph satisfying u ∼ v. Then there exists
a walk u a1 a2 . . . an−1 v from u to v. This walk may be reversed to obtain a
walk v an−1 an−2 . . . a1 u from v to u. We conclude that if u ∼ v then v ∼ u.
Thus the relation ∼ is symmetric.

Finally let u, v and w be vertices of the graph for which u ∼ v and
v ∼ w. Then there exists a walk u a1 a2 . . . an−1 v from u to v, and a walk
v b1 b2 . . . br−1 w from v to b. These two walks may be concatenated to yield
a walk

u a1 a2 . . . an−1 v b1 b2 . . . br−1 w

from u to w, showing that u ∼ w. Thus the relation ∼ is transitive. We have
shown that this relation is reflexive, symmetric and transitive. It is therefore
an equivalence relation.

The equivalence relation ∼ on the set V of vertices of the graph (V, E)
gives rise to a partition of V as the disjoint union of subsets V1, V2, . . . , Vm,
where

(i) V1 ∪ V2 ∪ · · · ∪ Vk = V ;

(ii) Vi ∩ Vj = ∅ if i 6= j;

(iii) two vertices u and v belong to a single subset Vi if and only if there
exists a walk in (V, E) from u to v (i.e., if and only if u ∼ v).

If u and v are the endpoints of some edge u v of the graph (V, E), then u ∼ v
(since an edge can be considered as a walk of length one), and thus u and v
belong to the same set Vi. Thus, if we define

Ei = {u v ∈ E : u ∈ Vi and v ∈ Vi},

then (V1, E1), (V2, E2), . . . , (Vk, Ek) are subgraphs of (V, E), and

V = V1 ∪ V2 ∪ · · · ∪ Vk, E = E1 ∪ E2 ∪ · · · ∪ Ek.

40

These subgraphs are disjoint since Vi ∩ Vj = ∅ and Ei ∩ Ej = ∅ if i 6= j.
Moreover the graph (Vi, Ei) is the restriction of the graph (V, E) to Vi (also
describable as the graph induced on Vi by (V, E)) for i = 1, 2, . . . , k.

The subgraphs (Vi, Ei) of (V, E) are referred to as the components (or
connected components) of the graph (V, E).

(V1, E1) (V2, E2) (V3, E3)

A graph with three components

Lemma 3.8 The vertices and edges of any walk in an undirected graph are
all contained in a single component of that graph.

Proof Let v0 v1 . . . vn be a walk in a graph (V, E). Then v0 v1 . . . vr is a
walk in (V, E) from v0 to vr for each integer r between 1 and m. It follows
that each vertex vr through which the walk passes must belong to the same
component of the graph as v0. Therefore all the vertices and edges of this
walk belong to a single component of the graph, namely that component
which contains the vertex v0.

Lemma 3.9 Each component of an undirected graph is connected.

Proof Let (V, E) be a graph, and let u and v be vertices belonging to Vi,
where (Vi, Ei) is one of the components of this graph. Then there exists
a walk in (V, E) from u to v. But the vertices and edges of this walk are
contained in a single component of the graph (V, E), by Lemma 3.8, and
that component must obviously be the component (Vi, Ei) that contains the
vertices u and v. Thus there exists a walk in (Vi, Ei) from u to v. We conclude
that the graph (Vi, Ei) is connected.

Remark The importance of the concept of the components of a graph is
that it enables us to reduce the study of undirected graphs in general to the
study of connected graphs. Indeed any undirected graph can be represented
as a disjoint union of connected subgraphs: these subgraphs are the compo-
nents of the given graph. These connected components may then be studied

41

individually. Moreover properties of any one component do not affect those
of any other, since no edge of the graph passes from any one component of
the graph to any other.

3.12 Circuits

Definition Let (V, E) be a graph. A walk v0 v1 v2 . . . vn in the graph is said
to be closed if v0 = vn.

Thus a walk in a graph is closed if and only if it starts and ends at the
same vertex.

Definition Let (V, E) be a graph. A circuit in the graph is a non-trivial
closed trail in the graph.

We see therefore that a circuit in a graph is a closed walk with no repeated
edges, and passing though at least two vertices.

Definition A circuit v0 v1 v2 . . . vn−1 v0 in a graph is said to be simple if the
vertices v0, v1, v2, . . . vn−1 are distinct.

Remark Some authors use the term cycle to denote a simple circuit in a
graph. Others use the term cycle to refer to a circuit in the graph, irrespective
of whether or not it is simple.

We now prove two theorems that provide sufficient conditions for a graph
to contain simple circuits.

Theorem 3.10 If a graph has no isolated or pendant vertices then it con-
tains at least one simple circuit.

Proof Let (V, E) be a graph with no isolated or pendant vertices. The
length of any path in this graph cannot exceed |V | − 1, where |V | denotes
the number of vertices of the graph, since a path of length m passes through
m + 1 distinct vertices. Therefore there exists a path v0 v1 v2 . . . vm in the
graph whose length m is greater than or equal to the length of every other
path in the graph. Now the final vertex vm of the graph is adjacent to at least
two vertices of the graph, since the graph contains no isolated or pendant
vertices. One of these vertices is vm−1. If none of the vertices v0, v1, . . . , vm−2

were incident to vm then there would exist a vertex w adjacent to vm that
was distinct from v0, v1, . . . , vm, and then v0, v1, . . . , vm w would be a path in
the graph with length exceeding m, which is impossible. It follows that at

42

least one of the vertices v0, v1, . . . , vm−2 is incident to vm; let that vertex be
vk, where 0 ≤ k ≤ m − 2. Then vk vk+1 . . . vm vk is a simple circuit in the
graph. Thus a graph with no isolated or pendant vertices always contains a
simple circuit.

Theorem 3.11 Let u and v be vertices of a graph, where u 6= v. Suppose
that there exist at least two distinct paths in the graph from u to v. Then the
graph contains at least one simple circuit.

Proof Let a0 a1 a2 . . . am and b0 b1 b2 . . . bn be two distinct paths in the
graph with a0 = b0 = u and am = bn = v. We may suppose that m ≤ n.
Now the fact that paths are distinct ensures that there exists at least inte-
ger i satisfying 0 < i ≤ m for which ai 6= bi. Let the smallest such integer i
be r + 1, where r is an integer in the range 0 ≤ r < m. Then ar = br and
ar+1 6= br+1. Now the condition ai ∈ {bj : r < j ≤ n} is satisfied when
i = m, since am = bn. Let s be the smallest integer satisfying r < s ≤ m
for which as ∈ {bj : r < j ≤ n}. Then as = bt for some integer t satisfying
r < t ≤ n. Moreover none of the vertices ai with r < i < s belong to the set
{bj : r < j < t}. It follows that

ar ar+1 . . . as bt−1 . . . br+1ar

is a simple circuit in the graph. Thus the graph has at least one simple
circuit, as required.

3.13 Eulerian Trails and Circuits

Definition An Eulerian trail in a graph is a trail that traverses every edge
of the graph.

Note that an Eulerian trail in a graph must traverse every edge of the
graph exactly once, since a trail traverses an edge of the graph at most once.

Definition An Eulerian circuit in a graph is a circuit that traverses every
edge of the graph.

It follows from these definitions that any closed Eulerian trail is an Eule-
rian circuit.

Example Let (V, E) be the complete graph K5 on five vertices a, b, c, d and
e, where

V = {a, b, c, d, e},
E = {a b, a c, a d, a e, b c, b d, b e, c d, c e, d e}.

43

a

b c

de

This graph has Eulerian circuits. One of them is the following:

a b c a d e c d b e a.

Remark Eulerian trails and circuits are named after the Swiss mathemati-
cian Leonhard Euler (1707–1783), who first studied the problem of the exis-
tence of such circuits in connection with the problem of the Seven Bridges of
Königsberg. The citizens of this city used to amuse themselves by attempting
to devise a walk around the city that would cross each of the seven bridges
exactly once. They always failed in this attempt, for reasons explained by
Euler.

We shall derive necessary and sufficient conditions for the existence of
Eulerian trails and circuits in a connected graph. The following theorem will
give rise to a necessary condition for the existence of an Eulerian trail or
circuit.

Theorem 3.12 Let v0 v1 . . . vm be a trail in a graph, and let v be a vertex
of that graph. Then the number of edges of the trail incident to the vertex v
is even, except in the case when the trail is not closed and the trail starts or
finishes at v, in which case the number of edges of the trail incident to the
vertex v is odd.

Proof First suppose that v 6= v0 and v 6= vm. The edges of the trail that are
incident to v are then those of the form vi−1 vi and vi vi+1 with 0 < i < m
and vi = v. It follows that the number of edges of the trail incident to v is
then equal to twice the number of integers i satisfying 0 < i < m for which
v = vi, and is thus even.

44

If v = v0, and if the trail is not closed (i.e., if vm 6= v0), then the edges of
the trail incident to v are the edge v0 v1 together with the edges vi−1 vi and
vi vi+1 for those integers i satisfying 1 < i < m for which v = vi. Therefore
the number of edges of the trail incident to v is then equal to one plus twice
the number of integers i satisfying 1 < i < m for which v = vi, and is
thus odd. Similarly the number of edges of the trail incident to v is odd
in the case when v = vm and the trail is not closed. Finally, in the case
when the trail is closed and v = v0 = vm, the edges incident to v are v0 v1

and vm−1 vm, together with the edges vi−1 vi and vi vi+1 for those integers i
satisfying 1 < i < m for which v = vi. The total number of edges of the trail
incident to v is therefore even.

Corollary 3.13 Let v be a vertex of a graph. Then, given any circuit in the
graph, the number of edges incident to v that are traversed by that circuit is
even.

Corollary 3.14 If a graph admits an Eulerian circuit then the degree of
every vertex of the graph must be even.

Proof Let v be a vertex of the graph. It follows from Corollary 3.13 that
the number of edges of any Eulerian circuit incident to v is even. But every
edge incident to v is an edge of an Eulerian circuit, since an Eulerian circuit
by definition traverses every edge of the graph. It follows that the degree of
the vertex v is even, as required.

Example Any attempt to find an Eulerian circuit in the complete graph K4

on four vertices is guaranteed to fail, since such a graph is 3-regular (i.e., the
degree of each of the four vertices of the graph is equal to 3).

Corollary 3.15 If a graph admits an Eulerian trail that is not a circuit then
the degrees of exactly two vertices of the graph must be odd, and the degrees
of the remaining vertices must be even. The two vertices with odd degrees
will then be the initial and final vertices of the Eulerian trail.

Proof As in the proof of Corollary 3.15 we see from Theorem 3.12 that the
degree of a vertex of the graph must be even unless that vertex is one of the
two endpoints of the trail, in which case the degree must be odd.

We shall now work towards a proof of the fact that a non-trivial connected
graph has an Eulerian circuit if the degree of each of its vertices is even. For
this we use the results of the following lemmas.

45

Lemma 3.16 Let v w be an edge of a graph in which the degree of every
vertex is even. Then there exists a circuit of the graph which traverses the
edge v w.

Proof Let v0 = v and v1 = w. Suppose that, for some positive integer k a
trail v0 v1 . . . vk has been constructed in the graph starting at the vertex v
and traversing the edge v w. Suppose also that vk 6= v. It follows from
Theorem 3.12 that the number of edges of the trail incident to vk must be
odd. But the degree of vk is even. It follows that the number of edges of the
trail incident to vk must be strictly less than the degree of vk, and therefore
there must exist at least one edge of the graph incident to vk which is not
traversed by the trail v0 v1 . . . vk. Let that edge be vk vk+1, where vk+1 is a
vertex adjacent to vk. Then v0 v1 . . . vk vk+1 is a trail of length k + 1 in the
graph which starts at v and traverses the edge v w.

Now the length of any trail in a graph cannot exceed the number of edges
of the graph, since each edge of the graph is traversed at most once by any
trail. It follows that successive extensions of the trail v w will ultimately
result in a trail that cannot be extended to a longer trail. This must then
be closed (since we have just shown that if the trail is not closed then it can
always be extended). This closed trail is then the required circuit.

Lemma 3.17 Suppose that a graph contains a circuit of length m and a
circuit of length n. Suppose also that no edge of the graph is traversed by
both circuits, and that at least one vertex of the graph is common to both
circuits. Then the graph contains a circuit of length m + n.

Proof Let u be a vertex of the graph which is common to both circuits.
We may clearly suppose that both circuits start from and finish at this ver-
tex u. Let the first circuit be u v1 . . . vm−1 u and let the second circuit be
u w1 . . . wn−1 u. We can then concatenate these two circuits together to ob-
tain a third circuit

u v1 . . . vm−1 u w1 . . . wn−1u

of length m + n.

Lemma 3.18 Let (V, E) be a connected graph, and let some trail in this
graph be given. Suppose that no vertex of the graph has the property that
some but not all of the edges of the graph incident to that vertex are traversed
by the trail. Then the given trail is an Eulerian trail.

Proof Let V1 be the set of vertices through which the trail passes, and let
V2 denote the set consisting of any remaining vertices of the graph. Then
V1 ∪ V2 = V and V1 ∩ V2 = ∅. We will prove that V2 = ∅.

46

Now any vertex belonging to V1 is incident to at least one edge traversed
by the trail. But then all edges incident to a vertex belonging to V1 must
be traversed by the trail. But then any vertex of V adjacent to a vertex in
V1 must itself belong to V1, and thus no edge can join a vertex in V1 to a
vertex in V2. If the set V2 were non-empty then there could not exist any
path joining a vertex in V2 to a vertex in V1, and thus the graph would not be
connected. Therefore V2 must be empty, and V1 = V . But then every edge
of (V, E) must be traversed by the trail, and thus the trail is an Eulerian
trail.

Lemma 3.19 Let (V, E) be a connected graph with the property that the
degree of every vertex of the graph is even, and let some circuit in this graph
be given. Suppose that there is some vertex v of the graph with the property
that some but not all of the edges of the graph incident to that vertex are
traversed by the given circuit. Then there exists a second circuit in the graph
(V, E) which passes through the vertex v and which does not traverse any
edge which is traversed by the given circuit.

Proof let E ′ denote the subset of E consisting of those edges of the graph
that are not traversed by the given circuit. Then (V, E ′) is a subgraph of the
given graph (V, E). Given any vertex w, the number of edges of the given
circuit that are incident to w is equal to d(w) − d′(w), where d(w) is the
number of edges in E incident to w, and d′(w) is the number of edges in
E ′ incident to w. It follows from Lemma 3.13 that d(w) − d′(w) is an even
integer. But the degree d(w) of each vertex w of the graph (V, E) is even,
by assumption, and therefore d′(w) is also even. Thus the degree of every
vertex in the subgraph (V, E ′) is even.

Now the vertex v of the graph has the property that some but not all
of edges incident to this vertex are traversed by the given trail. Therefore
some at least of the edges of the graph (V, E) incident to v are edges also
of the subgraph (V, E ′). It then follows from Lemma 3.16 that the subgraph
(V, E ′) contains a circuit which passes through the vertex v. This circuit is
of course a circuit in the graph (V, E), it passes through the vertex v, and it
does not traverse any edge of the graph (V, E) that is traversed by the given
circuit.

Theorem 3.20 A non-trivial connected graph contains an Eulerian circuit
if the degree of every vertex of the graph is even.

Proof Let (V, E) be a non-trivial connected graph with the property that
the degree of every vertex is even. An easy application of Lemma 3.16 shows

47

that such a graph contains at least one circuit. It therefore contains a circuit
which is at least as long as every other circuit in the graph. We shall show
that this circuit of maximal length is an Eulerian circuit.

Now if the graph were to contain some vertex v with the property that
some but not all of the edges of the graph incident to that vertex are traversed
by this circuit of maximal length, then it would follow from Lemma 3.19 that
there would exist a second circuit in the graph (V, E) which would also pass
through the vertex v, and which would not traverse any edge traversed by
the circuit of maximal length. But it would then follow immediately from
Lemma 3.17 that the graph would contain a circuit which was longer than
the circuit of maximal length, which is clearly impossible.

We conclude therefore that the graph cannot contain any vertex v with
the property that some but not all of the edges of the graph incident to
that vertex are traversed by the circuit of maximal length. It now follows
from Lemma 3.18 that such a circuit of maximal length must be an Eulerian
circuit.

Remark A careful examination of the proofs of Lemma 3.16, Corollary 3.17
and Lemma 3.19 shows that they provide an algorithm for constructing an
Eulerian circuit in a non-trivial connected graph whose vertices all have even
degree. Indeed the proof of Lemma 3.16 shows how circuits can be con-
structed in such a graph, and the proofs of Corollary 3.17 and Lemma 3.19
show how to replace a circuit that is not an Eulerian circuit by a strictly
longer circuit. A finite number of such replacements must ultimately result
in an Eulerian circuit.

On combining the results of Corollary 3.14 and Theorem 3.20 we conclude
that a non-trivial connected graph has an Eulerian circuit if and only if the
degree of each of its vertices is even.

We now prove the result corresponding to Theorem 3.20 for non-trivial
connected graphs with exactly two vertices whose degree is odd.

Corollary 3.21 Suppose that a connected graph has exactly two vertices
whose degrees are odd. Then there exists an Euler trail in the graph join-
ing the two vertices with odd degrees.

Proof Let (V, E) be the graph, and let v and w be the two vertices of this
graph whose degree is odd. We may embed the graph (V, E) as a subgraph
of a larger graph (V ′, E ′) whose vertices all have even degree. We choose the
graph (V ′, E ′) such that V ′ = V ∪ {u} and E ′ = E ∪ {v u, uw}, where u
is a vertex of V ′ that does not belong to V , and is the only such vertex of

48

V ′. The graph (V ′, E ′) is then non-trivial and connected, and every vertex
of (V ′, E ′) has even degree. (Indeed the degree of the vertex u in the graph
(V ′, E ′) is equal to 2, and the degrees of the vertices v and w in the graph
(V ′, E ′) exceed by one their degrees in the graph (V, E).) It follows from
Theorem 3.20 that the graph (V ′, E ′) has an Eulerian circuit. We may order
the vertices of this circuit so that the final two edges of the circuit are w u
and u v. Deletion of these two edges from the circuit yields the required
Eulerian trail in the graph (V, W) from v to w.

3.14 Hamiltonian Paths and Circuits

Definition A Hamiltonian path in a graph is a path that passes (exactly
once) through every vertex of the graph.

Thus a path v0 v1 v2 . . . vn in a graph (V, E) is a Hamiltonian path if and
only if V = {v0, v1, . . . , vn}. A Hamiltonian path passes can have no repeated
vertices (since it is a path) and therefore passes through each vertex of the
graph exactly once.

Definition A Hamiltonian circuit in a graph is a simple circuit that passes
through every vertex of the graph.

Thus a circuit v0 v1 v2 . . . vn−1 v0 in a graph (V, E) is a Hamiltonian cir-
cuit if and only if every vertex of the graph occurs exactly once in the list
v0, v1, . . . , vn−1.

Remark Hamiltonian circuits are are named after William Rowan Hamilton
(1805–1865), who showed in 1856 that such circuits could be found in the
graph consisting of the vertices and edges of a dodecahedron. Hamilton de-
veloped an ‘icosian calculus’ for the study such circuits in the dodecahedron,
and formulated a game, the icosian game, in which people were challenged
to complete any path of length two in this graph to a Hamilton circuit in the
graph.

3.15 Forests and Trees

Definition A graph is said to be acyclic if it contains no circuits.

Definition A forest is an acyclic graph.

Definition A tree is a connected forest.

49

F
D

CB

G

K

M

PZ

H

Q

X

J L

N

R

W

V T

S

Hamilton’s circuit round the edges of a dodecahedron

Note that the components of any forest are trees.

Example The graph (V, E), where

V = {a, b, c, d, e, f, g},
E = {a b, b c, b d, c e, b f, c g},

is a tree.

a

b

cd

e

f

g

The vertices a, d, e, f and g are pendant vertices (i.e., each of these
vertices is incident to exactly one edge of the graph, and is therefore of
degree one.) The tree has 7 vertices and 6 edges.

50

Theorem 3.22 Every forest contains at least one isolated or pendant vertex.

Proof If a graph has no isolated or pendant vertices, then it contains a
circuit (Theorem 3.10). But a forest contains no circuits. Therefore must
have at least one isolated or pendant vertex.

Theorem 3.23 A non-trivial tree contains at least one pendant vertex.

Proof A non-trivial graph has more than one vertex. If a non-trivial graph
has an isolated vertex then there does not exist any path or walk from that
vertex to any other vertex of the graph, and therefore the graph is not con-
nected. But a tree is by definition connected. Therefore a non-trivial tree
cannot have any isolated vertex. However a tree is a forest, and therefore
contains at least one vertex that is either an isolated vertex or a pendant
vertex (Theorem 3.22). Such a vertex must then be a pendant vertex.

Theorem 3.24 Let (V, E) be a tree. Then |E| = |V | − 1, where |V | and
|E| denote respectively the number of vertices and the number of edges of the
tree.

Proof We can prove the result by induction on the number |V | of vertices
of the tree. The result is clearly true when the tree is trivial, since it then
consists of one vertex and no edges.

Suppose that every tree with m vertices has m− 1 edges. Let (V, E) be
a tree with m + 1 vertices. At least of these vertices is a pendant vertex
(Theorem 3.23). Let v be a pendent vertex, let w be the vertex that is
adjacent to v, let V ′ = V \ {v}, and let E ′ = E \ {v w}. Then (V ′, E ′) is
a subgraph of (V, E), and this subgraph has m vertices. (This subgraph is
obtained from the original graph by deleting the vertex v and the edge v w
from that graph.) We claim that this subgraph (V ′, E ′) is in fact a tree.

First we show that (V ′, E ′) is connected. Now, given any two vertices in
V ′, there exists a path in (V, E) from one vertex to the other. This path
could not pass through the vertex v, since otherwise the path would have to
pass through w twice (going out to v and then returning from v), which is
impossible since a path by definition has no repeated vertices. Therefore this
path is in fact a path in (V ′, E ′). We conclude that (V ′, E ′) is connected.

Now the tree (V, E) does not contain any circuits. It follows immediately
that the connected subgraph (V ′, E ′) does not contain any circuits, and is
thus a tree. It has m vertices.

The induction hypothesis now ensures that the tree (V ′, E ′) has m −
1 edges, and therefore the tree (V, E) has m edges. The required result
therefore follows by the Principle of Mathematical Induction.

51

Theorem 3.25 Given two distinct vertices of a tree, there exists a unique
path in the tree from the first vertex to the the second.

Proof Let u and v be distinct vertices of the tree. There must exist at least
one path in the tree from u to v, since any tree is connected. Were there
to exist more than one, then it would follow from Theorem 3.11 that there
would exist at least one circuit in the tree, which is impossible, since that
a tree cannot contain any circuits. Therefore there must exist exactly one
path in the tree from u to v.

3.16 Spanning Trees

Definition A spanning tree in a graph (V, E) is a subgraph of the graph
(V, E) that is a tree which includes every vertex of the graph (V, E).

A spanning tree in a graph

Theorem 3.26 Every connected graph contains a spanning tree

Proof Let (V, E) be a connected graph. The collection consisting of all the
connected subgraphs of (V, E) with the same vertices as (V, E) is non-empty,
since it includes the graph (V, E) itself. Choose a subgraph (V, E ′) in this
collection such that the number |E ′| of edges in this subgraph is less than
or equal to the number of edges of any other subgraph in the collection. We
claim that (V, E ′) is the required spanning tree. Clearly (V, E ′) is connected
and has the same vertices as V . It only remains to show that (V, E ′) does
not contain any circuits.

Suppose that (V, E ′) were to contain a circuit. Let v w be an edge tra-
versed by some circuit in (V, E ′), and let E ′′ = E \ {v w}. There would then
exist a walk from v to w whose edges belong to E ′′. (Such a walk could

52

consist of the remaining edges of the circuit traversing the edge v w.) More-
over every vertex in V could be joined to v by a walk whose edges belong to
E ′, and could therefore be joined either to v or to w by a walk whose edges
belong to E ′′. It would then follow that every vertex of V could be joined to
v by a walk whose edges belong to E ′′, and therefore the graph (V, E ′′) would
be a connected subgraph of (V, E) with the same vertices as (V, E) and with
fewer edges than (V, E ′), which is impossible. We conclude therefore that
the subgraph (V, E ′) of (V, E) cannot contain any circuits and is therefore
the required spanning tree.

Corollary 3.27 Let (V, E) be a connected graph with |V | vertices and |E|
edges. Suppose that |E| = |V | − 1. Then the graph (V, E) is a tree.

Proof A connected graph (V, E) contains a spanning tree, by Theorem 3.26.
This spanning tree must have |V | − 1 edges, by Theorem 3.24. But the
spanning tree then has the same number of edges as the original graph (V, E),
and must therefore be the same as this graph. It follows that the graph (V, E)
must be a tree, since it is a spanning tree of itself.

3.17 Directed Graphs

Definition An directed graph or digraph (V, E) consists of a finite set V
together with a subset E of V × V . The elements of V are the vertices of
the digraph; the elements of E are the edges of the digraph.

An edge of a digraph (V, E) is an ordered pair (a, b) where a and b are
vertices of the graph. These vertices need not be distinct: a digraph may
contain loops of the form (a, a), where a is some vertex of the digraph. Also
the vertices of an edge of a digraph are ordered: if a and b are distinct vertices
of the graph then (a, b) 6= (b, a), and moreover neither, one only, or both of
(a, b) and (b, a) may be edges of the digraph.

Let (a, b) be an edge of a directed graph (V, E). We say that a is the
initial vertex and b is the terminal vertex of the edge. Moreover we say that
the vertex b is adjacent from the vertex a, and the vertex a is adjacent to
the vertex b, and the edge (a, b) is incident from the vertex a and incident
to the vertex b.

3.18 Adjacency Matrices of Directed Graphs

Definition Let (V, E) be a directed graph, and let the vertices of the graph
be ordered as v1, v2, . . . , vm. The adjacency matrix of the directed graph is

53

the m×m matrix (bij), or
b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
. . .

...
bm1 am2 . . . bmm

 ,

where

bij =
{

1 if (vi, vj) ∈ E;
0 otherwise.

Example Let (V, E) be the directed graph whose vertices are ordered as v1,
v2, v3 and v4, and whose edges are ordered as e1, e2, e3 and e4, where

e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), e4 = (v4, v1).

v1 v2

v3v4

e1

e2

e3

e4

The adjacency matrix of this digraph is
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 ,

3.19 Directed Graphs and Binary Relations

There is a correspondence between directed graphs and binary relations on
finite sets.

Let V be a finite set. Corresponding to any relation R on V there is a
directed graph (V, E), where

E = {(a, b) ∈ V × V : aRb}.

Conversely any directed graph (V, E) gives rise to a relation R on the set V
of vertices of the digraph, where vertices a and b of the graph satisfy aRy if
and only if (a, b) ∈ R.

54

4 Abstract Algebra

4.1 Binary Operations on Sets

Definition A binary operation ∗ on a set A is an operation which, when
applied to any elements x and y of the set A, yields an element x ∗ y of A.

Example The arithmetic operations of addition, subtraction and multipli-
cation are binary operations on the set R of real numbers which, when ap-
plied to real numbers x and y, yield the real numbers x + y, x − y and xy
respectively.

However division is not a binary operation on the set of real numbers,
since the quotient x/y is not defined when y = 0. (Under a binary operation ∗
on a set must determine an element x∗ y of the set for every pair of elements
x and y of that set.)

4.2 Commutative Binary Operations

Definition A binary operation ∗ on a set A is said to be commutative if
x ∗ y = y ∗ x for all elements x and y of A.

Example The operations of addition and multiplication on the set R of real
numbers are commutative, since x + y = y + x and x× y = y× x for all real
numbers x and y. However the operation of subtraction is not commutative,
since x− y 6= y− x in general. (Indeed the identity x− y = y− x holds only
when x = y.)

4.3 Associative Binary Operations

Let ∗ be a binary operation on a set A. Given any three elements x, y and
z of a set A, the binary operation, applied to the elements x ∗ y and z of A,
yields an element (x ∗ y) ∗ z of A, and, applied to the elements x and y ∗ z of
A, yields an element x ∗ (y ∗ z) of A.

Definition A binary operation ∗ on a set A is said to be associative if
(x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y and z of A.

Example The operations of addition and multiplication on the set R of real
numbers are associative, since (x+y)+ z = x+(y + z) and (x×y)× z = x×
(y× z) for all real numbers x, y and z. However the operation of subtraction
is not associative. For example (1− 2)− 3 = −4, but 1− (2− 3) = 2.

55

When a binary operation ∗ is associative it is not necessary to retain
the parentheses in expressions such as (x ∗ y) ∗ z or x ∗ (y ∗ z). These two
expressions may both be written without ambiguity as x ∗ y ∗ z.

4.4 Semigroups

Definition A semigroup consists of a set on which is defined an associative
binary operation.

We may denote by (A, ∗) a semigroup consisting of a set A together with
an associative binary operation ∗ on A.

Definition A semigroup (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of natural numbers, with the operation of addition, is a
commutative semigroup, as is the set of natural numbers with the operation
of multiplication.

Let (A, ∗) be a semigroup. Given any element a of A, we define

a1 = a,

a2 = a ∗ a,

a3 = a ∗ a2 = a ∗ (a ∗ a),

a4 = a ∗ a3 = a ∗ (a ∗ (a ∗ a)),

a5 = a ∗ a4 = a ∗ (a ∗ (a ∗ (a ∗ a))),
...

In general we define an recursively for all natural numbers n so that a1 = a
and an = a ∗ an−1 whenever n > 1.

Remark In the case of the semigroup consisting of the set of natural num-
bers with the operation of multiplication, the value of ‘an’ given by the above
rule is the nth power of a natural number a. However in the case of the semi-
group consisting of the set of natural numbers with the operation of addition
it is not the nth power of a, but is na.

Theorem 4.1 Let (A, ∗) be a semigroup, and let a be an element of A. Then
am ∗ an = am+n for all natural numbers m and n.

56

Proof We prove this theorem by induction on m.
Now it follows immediately from the definition of an+1 that a ∗ an = a1+n

for all natural numbers n. Thus the theorem is true in the case when m = 1.
Suppose that the required result is true in the case when m = s for some

natural number s, so that as ∗ an = as+n for all natural numbers n. Then

as+1 ∗ an = (a ∗ as) ∗ an = a ∗ (as ∗ an) = a ∗ as+n = as+1+n

for all natural numbers n. Thus if the required result is true when m = s
then it is also true when m = s + 1. We conclude using the Principle of
Mathematical Induction that the identity am∗an = am+n holds for all natural
numbers m and n, as required.

Theorem 4.2 Let (A, ∗) be a semigroup, and let a be an element of A. Then
(am)n = amn for all natural numbers m and n.

Proof The result may be proved by induction on the natural number n.
The identity (am)n = amn clearly holds whenever n = 1. Suppose that
s is a natural number with the property that (am)s = ams for all natural
numbers m. Then

(am)s+1 = (am)s ∗ am = ams ∗ am = ams+m = am(s+1).

Thus if the identity (am)n = amn holds when n = s then it also holds when
n = s + 1. We conclude from the Principle of Mathematical Induction that
this identity holds for all natural numbers n.

Remark Note that the above proof made use of the fact that the binary
operation on a semigroup is associative.

4.5 The General Associative Law

Let (A, ∗) be a semigroup, and let x, y, z and w be elements of A. We can use
the associative property of ∗ to show that the value of a product involving
x, y, z, w is independent of the manner in which that product is bracketed,
though it generally depends on the order in which x, y, z and w occur in that
product (unless that binary operation is also commutative). For example,

(x ∗ (y ∗ z)) ∗ w = ((x ∗ y) ∗ z) ∗ w

= (x ∗ y) ∗ (z ∗ w)

= x ∗ (y ∗ (z ∗ w))

= x ∗ ((y ∗ z) ∗ w)

57

All the above products may therefore be denoted without ambiguity by the
expression x ∗ y ∗ z ∗ w from which the parentheses have been dropped.

The analogous property holds for products involving five or more elements
of the semigroup.

In any semigroup, the value of a product of three or more elements of the
semigroup depends in general on the order in which those elements occur in
the product (unless the binary operation is commutative), but the value of
the product is independent of the manner in which the product is bracketed.
This general result is often referred to as the General Associative Law, and
can be proved using induction on the number of elements that occur in the
product.

4.6 Identity elements

Definition Let (A, ∗) be a semigroup. An element e of A is said to be an
identity element for the binary operation ∗ if e∗x = x∗e = x for all elements
x of A.

Example The number 1 is an identity element for the operation of multi-
plication on the set N of natural numbers.

Example The number 0 is an identity element for the operation of addition
on the set Z of integers.

Theorem 4.3 A binary operation on a set cannot have more than one iden-
tity element.

Proof Let e and f be identity elements for a binary operation ∗ on a set A.
Then e = e∗f = f . Thus there cannot be more than one identity element.

4.7 Monoids

Definition A monoid consists of a set on which is defined an associative
binary operation with an identity element.

We see immediately from the above definition that a semigroup is a
monoid if and only if it has an identity element.

Definition A monoid (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

58

Example The set N of natural numbers with the operation of multiplica-
tion is a commutative monoid. Indeed the operation of multiplication is
both commutative and associative, and the identity element is the natural
number 1.

Example The set N of natural numbers with the operation of addition is
not a monoid, since there is no identity element for the operation of addition
that belongs to the set of natural numbers.

Let a be an element of a monoid (A, ∗). We define a0 = e, where e is the
identity element.

Theorem 4.4 Let (A, ∗) be a monoid, and let a be an element of A. Then
am ∗ an = am+n for all non-negative integers m and n.

Proof Any monoid is a semigroup. It therefore follows from Theorem 4.1
that am ∗ an = am+n when m > 0 and n > 0. It also follows directly from
the definition of the identity element that the result is also true if m = 0 or
if n = 0.

Theorem 4.5 Let (A, ∗) be a monoid, and let a be an element of A. Then
(am)n = amn for all non-negative integers m and n.

Proof It follows directly from Theorem 4.2 that (am)n = amn whenever m
and n are both positive. But this identity holds also when m or n is zero,
since both sides of the identity are then equal to the identity element of the
monoid.

4.8 Inverses

Definition Let (A, ∗) be a monoid with identity element e, and let x be an
element of A. An element y of A is said to be the inverse of x if x ∗ y =
y ∗x = e. An element x of A is said to be invertible if there exists an element
of A which is an inverse of x.

Theorem 4.6 An element of a monoid can have at most one inverse.

Proof Let (A, ∗) be a monoid with identity element e, and let x, y and z be
elements of A. Suppose that x ∗ y = y ∗ x = e and x ∗ z = z ∗ x = e. Then

y = y ∗ e = y ∗ (x ∗ z) = (y ∗ x) ∗ z = e ∗ z = z,

and thus y = z. Thus an element of a monoid cannot have more than one
inverse.

59

Remark The above proof shows in fact that if x is an element of a monoid
(A, ∗), and if y and z are elements of A satisfying y ∗ x = x ∗ z = e, where e
is the identity element of the monoid, then y = z.

Let (A, ∗) be a monoid, and let x be an invertible element of A. We
shall denote the inverse of x by x−1. (This inverse element x−1 is uniquely
determined by x, by Theorem 4.6.)

Theorem 4.7 Let (A, ∗) be a monoid, and let x and y be invertible elements
of A. Then x ∗ y is also invertible, and (x ∗ y)−1 = y−1 ∗ x−1.

Proof Let e denote the identity element of the monoid. Then x ∗ x−1 =
x−1 ∗ x = e and y ∗ y−1 = y−1 ∗ y = e, and therefore

(x ∗ y) ∗ (y−1 ∗ x−1) = ((x ∗ y) ∗ y−1) ∗ x−1 = (x ∗ (y ∗ y−1)) ∗ x−1

= (x ∗ e) ∗ x−1 = x ∗ x−1 = e,

(y−1 ∗ x−1) ∗ (x ∗ y) = y−1 ∗ (x−1 ∗ (x ∗ y)) = y−1 ∗ ((x−1 ∗ x) ∗ y)

= y−1 ∗ (e ∗ y) = y−1 ∗ y = e.

and thus the element y−1 ∗ x−1 has the properties required of an inverse of
the element x∗y. We conclude that x∗y is indeed invertible, and (x∗y)−1 =
y−1 ∗ x−1.

Theorem 4.8 Let (A, ∗) be a monoid, let a and b be elements of A, and let
x be an invertible element of A. Then a = b ∗ x if and only if b = a ∗ x−1.
Similarly a = x ∗ b if and only if b = x−1 ∗ a.

Proof Let e denote the identity element of the monoid. Suppose that a =
b ∗ x. Then

a ∗ x−1 = (b ∗ x) ∗ x−1 = b ∗ (x ∗ x−1) = b ∗ e = b.

Conversely, if b = a ∗ x−1, then

b ∗ x = (a ∗ x−1) ∗ x = a ∗ (x−1 ∗ x) = a ∗ e = a.

Similarly if a = x ∗ b then

x−1 ∗ a = x−1 ∗ (x ∗ b) = (x−1 ∗ x) ∗ b = e ∗ b = b,

and, conversely, if b = x−1 ∗ a then

x ∗ b = x ∗ (x−1 ∗ a) = (x ∗ x−1) ∗ a = e ∗ a = a.

60

Let (A, ∗) be a monoid, and let a be an invertible element of A. We
extend the definition of an to negative integers n by defining an to be the
inverse (aq)−1 of aq whenever q > 0 and n = −q.

Theorem 4.9 Let (A, ∗) be a monoid, and let a be an invertible element of
A. Then am ∗ an = am+n for all integers m and n.

Proof The proof breaks down into a case-by-case analysis, depending on the
signs of the integers m and n.

The appropriate definitions ensure that the identity am ∗an = am+n holds
if m = 0 or if n = 0.

The result has already been verified if both m and n are positive (see
Theorem 4.1 and Theorem 4.4).

Suppose that m and n are both negative. Then am = (a−m)−1, an =
(a−n)−1 and am+n = (a−(m+n))−1. Now a−n ∗ a−m = a−n−m = a−(m+n). It
follows from Theorem 4.7 that

am+n = (a−(m+n))−1 = (a−n ∗ a−m)−1 = (a−m)−1 ∗ (a−n)−1 = am ∗ an.

The only remaining cases to consider are those when m and n have dif-
ferent signs.

Let p and q be non-negative integers. Now ap+q = ap ∗ aq = aq ∗ ap. It
follows from Theorem 4.8 that

ap = ap+q ∗ a−q = a−q ∗ ap+q, aq = ap+q ∗ a−p = a−p ∗ ap+q,

and hence

a−p = aq ∗ a−(p+q) = a−(p+q) ∗ aq, a−q = ap ∗ a−(p+q) = a−(p+q) ∗ ap.

Suppose that m < 0, n > 0 and m + n ≥ 0. On setting p = −m and
q = m + n we see that am+n = aq = a−p ∗ ap+q = am ∗ an. Next suppose
that m < 0, n > 0 and m + n < 0. On setting p = −m − n and q = n
we see that am+n = a−p = a−(p+q) ∗ aq = am ∗ an. Next suppose that
m > 0, n < 0 and m + n ≥ 0. On setting p = m + n and q = −n we
see that am+n = ap = ap+q ∗ a−q = am ∗ an. Finally suppose that m > 0,
n < 0 and m + n < 0. On setting p = m and q = −m − n we see that
am+n = a−q = ap ∗ a−(p+q) = am ∗ an. The result has now been verified for all
integers m and n, as required.

Theorem 4.10 Let (A, ∗) be a monoid, and let a be an invertible element
of A. Then (am)n = amn for all integers m and n.

61

Proof Let m be an integer. First we prove by induction on n that (am)n =
amn for all positive integers n. The result clearly holds when n = 1. Suppose
(am)s = ams for some positive integer s. It then follows from Theorem 4.9
that

(am)s+1 = (am)s ∗ am = ams ∗ am = am(s+1).

It follows from the Principle of Mathematical Induction that (am)n = amn

for all positive integers n. The result is also true when n = 0, since both
sides of the identity are then equal to the identity element of the monoid.
Finally suppose that n is a negative integer. Then n = −q for some positive
integer q, and (am)q = amq. On taking the inverses of both sides of this
identity, we find that

(am)n = ((am)q)−1 = (amq)−1 = a−mq = amn,

as required. We can now conclude that the identity (am)n = amn holds for
all integers m and n.

4.9 Groups

Definition A group consists of a set A together with a binary operation ∗
on A with the following properties:—

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all elements x, y and z of A (i.e., the
operation ∗ is associative);

(ii) there exists an element e of A with the property that e ∗ x = x ∗ e = x
for all elements x of A (i.e., there exists an identity element e for the
binary operation ∗ on A);

(iii) given any element x of A, there exists an element y of A satisfying
x ∗ y = y ∗ x = e (i.e., every element of A is invertible).

We see immediately from this definition that a group can be characterized
as a monoid in which every element is invertible.

Definition A group (A, ∗) is said to be commutative (or Abelian) if the
binary operation ∗ is commutative.

Example The set of integers with the operation of addition is a commutative
group.

Example The set of real numbers with the operation of addition is a com-
mutative group.

62

Example The set of non-zero real numbers with the operation of multipli-
cation is a commutative group.

Example The set of integers with the operation of multiplication is not a
group, since not every element is invertible. Indeed the only integers that
are invertible are +1 and −1.

Example Let n be a natural number, and let

Zn = {0, 1, . . . , n− 1}.

Any integer k may be expressed uniquely in the form k = qn + r for some
integers q and r with 0 ≤ r < n. (When k is positive, q and r are the quotient
and remainder respectively, when k is divided by n in integer arithmetic.)
Then r is the unique element of Zn for which k − r is divisible by n. In
particular, given any elements x and y of Zn, there exist unique elements s
and p of Zn such that x + y − s and xy − p are divisible by n. We define
x ⊕n y = s and x ⊗n y = p. Then ⊕n and ⊗n are binary operations on the
set Zn.

We show that the binary operation ⊕n is associative. Let x, y and z be
integers belonging to Zn, and let u = x⊕n y and v = y⊕n z. Then x + y− u
and y + z − v are both divisible by n. Now

(u + z)− (x + v) = (y + z − v)− (x + y − u).

It follows that (u + z)− (x + v) is divisible by n, and hence u⊕n z = x⊕n v.
Thus (x⊕n y)⊕n z = x⊕n (y ⊕n z).

We also show that the binary operation ⊗n is associative. Let x, y and z
be integers belonging to Zn, and let p = x⊗n y and q = y⊗n z. Then xy− p
and yz − q are both divisible by n. Now

pz − xq = x(yz − q)− (xy − p)z.

It follows that pz − xq is divisible by n, and hence p ⊗n z = x ⊗n q. Thus
(x⊗n y)⊗n z = x⊗n (y ⊗n z).

Now 0 ⊕n x = x ⊕n 0 = x and 1 ⊗n x = x ⊗n 1 = x for all x ∈ Zn. It
follows that (Zn,⊕n) is a monoid with identity element 0, and (Zn,⊗n) is a
monoid with identity element 1.

Every element x of the monoid (Zn,⊕n) is invertible: the inverse of x is
n− x if x 6= 0, and is 0 if x = 0. Thus (Zn,⊕n) is a group.

However (Zn,⊗n) is not a group if n > 1. Indeed 0 is not an invertible
element, since 0⊗n x = 0 for all elements x of Zn, and therefore there cannot
exist any element x of Zn for which 0⊗n x = 1.

63

It can be shown that an element x of (Zn,⊗n) is invertible in this monoid
if and only if the highest common factor of x and n is equal to 1. It follows
from this that the non-zero elements of Zn constitute a group under ⊗n if
and only if the natural number n is a prime number.

Let us consider the particular case when n = 9. The ‘multiplication table’
for the monoid (Z9,⊗9) is the following:—

⊗9 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 4 6 8 1 3 5 7
3 0 3 6 0 3 6 0 3 6
4 0 4 8 3 7 2 6 1 5
5 0 5 1 6 2 7 3 8 4
6 0 6 3 0 6 3 0 6 3
7 0 7 5 3 1 8 6 4 2
8 0 8 7 6 5 4 3 2 1

From this table we see that the invertible elements are 1, 2, 4, 5, 7 and 8.
Indeed 1⊗9 1 = 1, 2⊗9 5 = 1, 4⊗9 7 = 1, 8⊗9 8 = 1.

4.10 Homomorphisms and Isomorphisms

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f : A → B from A to B is said to be a homomorphism if f(x ∗ y) =
f(x) ∗ f(y) for all elements x and y of A.

Example Let q be an integer, and let f : Z → Z be a the function from the
set of integers to itself defined by f(n) = qn for all integers n. Then f is a
homomorphism from the group (Z, +) to itself, since

f(m + n) = q(m + n) = qm + qn = f(m) + f(n)

for all integers m and n.

Example Let R∗ denote the set of non-zero real numbers, let a be a non-
zero real number, and let f : Z → R∗ be the function defined by f(n) = an

for all integers m and n. Then f : Z → R∗ is a homomorphism from the
group (Z, +) of integers under addition to the group (R∗,×) of non-zero real
numbers under multiplication, since

f(m + n) = am+n = aman = f(m)f(n)

for all integers m and n.

64

Example This last example can be generalized. Let a be an invertible
element of a monoid (A, ∗), and let f : Z → A be the function from Z to
A defined by f(n) = an. Then this function is a homomorphism from the
group (Z, +) of integers under addition to the monoid (A, ∗) since it follows
from Theorem 4.9 that

f(m + n) = am+n = am ∗ an = f(m) ∗ f(n)

for all integers m and n.

We recall that a function f : A → B is said to be injective if distinct
elements of A get mapped to distinct elements of B (i.e., if x and y are
elements of A and if x 6= y then f(x) 6= f(y)). Also a function f : A → B is
said to be surjective if each element of B is the image f(a) of at least one
element a of A. A function f : A → B is said to be bijective if it is both
injective and surjective. One can prove that a function f : A → B has a
well-defined inverse f−1: B → A if and only if it is bijective.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. A func-
tion f : A → B from A to B is said to be an isomorphism if it is both a
homomorphism and a bijective function.

Theorem 4.11 Let (A, ∗) and (B, ∗) be semigroups, monoids or groups.
Then the inverse f−1: B → A of any isomorphism f : A → B is itself an
isomorphism.

Proof The inverse f−1: B → A of an isomorphism f : A → B is itself a
bijective function whose inverse is the function f : A → B. It remains to
show that f−1: B → A is a homomorphism. Let u and v be elements of B,
and let x = f−1(u) and y = f−1(v). Then u = f(x) and v = f(y), and
therefore

f(x ∗ y) = f(x) ∗ f(y) = u ∗ v

and therefore
f−1(u ∗ v) = x ∗ y = f−1(u) ∗ f−1(v),

showing that the function f−1: B → A is a homomorphism from (B, ∗) to
(A, ∗), as required.

Definition Let (A, ∗) and (B, ∗) be semigroups, monoids or groups. If there
exists an isomorphism from (A, ∗) to (B, ∗) then (A, ∗) and (B, ∗) are said
to be isomorphic.

65

5 Formal Languages

5.1 Alphabets and Words

Let A be a finite set. We shall refer to this set A as an alphabet and we may
refer to the elements of A as letters. (For example, the set A might be the set
of letters in the English language, or in any other world language, or the set
{0, 1} of binary digits, or the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} of decimal digits.)

For any natural number n, we define a word of length n over the alpha-
bet A to be a string of the form a1a2 . . . an in which ai ∈ A for i = 1, 2, . . . , n.
We shall denote by An the set of all words of length n over the alphabet A.
In particular, A1 = A.

Example Let A = {a, b, c}. Then

A2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
A3 = {aaa, aab, aac, aba, abb, abc, . . . , ccc}

Remark The set An can be identified with the Cartesian product A×A×
· · · ×A of n copies of the set A. The elements of this Cartesian product are
ordered n-tuples (a1, a2, . . . , an) whose components a1, a2, . . . , an are elements
of the set A. However, in the interests of brevity, it is convenient to drop
the parentheses and commas, denoting any element (a1, a2, . . . , an) of this
Cartesian product by the corresponding string or word a1a2 . . . an of length n.

We denote by A+ the union of the sets An for all natural numbers n, so
that

A+ =
∞⋃

n=1

Ai = A ∪ A2 ∪ A3 ∪ A4 ∪ · · · .

The set A+ is thus the set of all words of positive length over the alphabet n.

Example Let A = {0, 1}. Then A+ is the set of all binary strings whose
length is finite and non-zero, and contains strings such as 1, 0, 10, 101, 010,
010101, and 000010010.

We introduce also an empty word ε, which we regard as a word of length
zero. This may be thought of as the empty string, not involving any of the
letters from the alphabet A. We define A0 = {ε}, and we denote by A∗ the
set {ε}∪A+ obtained by adjoining the empty word ε to the set A+ of words
of positive length over the alphabet A. Thus

A∗ = {ε} ∪ A+ =
∞⋃

n=0

Ai = {ε} ∪ A ∪ A2 ∪ A3 ∪ A4 ∪ · · · .

66

Each word in A∗ has a length which is a non-negative integer. The empty
word is the only word in A∗ whose length is zero.

We denote the length of a word w by |w|.

Definition Let A be a finite set, and let w1 and w2 be words over the
alphabet A, with w1 = a1a2 . . . am and w2 = b1b2 . . . bn. The concatenation
of the words w1 and w2 is the word w1 ◦ w2, where

w1 ◦ w2 = a1a2 . . . amb1b2 . . . bn.

The concatenation w1 ◦ w2 of two words w1 and w2 may also be denoted
by w1w2.

Example Let A be the set of lower case letters in the English alphabet, and
let w1 and w2 be the words ‘book’ and ‘case’ respectively. Then w1 ◦ w2 is
the word ‘bookcase’ and w2 ◦ w1 is the word ‘casebook’. Note that, in this
instance, w1 ◦ w2 6= w2 ◦ w1.

Note that |w1 ◦ w2| = |w1| + |w2| for all words w1 and w2 over some
alphabet.

The operation ◦ of concatenation on the set of words over some alphabet
is not commutative if that alphabet has more than one element. Indeed if a
and b are distinct elements of this alphabet then a ◦ b is the string ab, and
b ◦ a is the string ba, and therefore a ◦ b 6= b ◦ a.

Let w1, w2 and w3 be words over some alphabet A. Then (w1 ◦w2)◦w3 =
w1 ◦ (w2 ◦ w3). Indeed if

w1 = a1a2 . . . am, w2 = b1b2 . . . bn, w3 = c1c2 . . . cp,

then (w1 ◦ w2) ◦ w3 and w1 ◦ (w2 ◦ w3) both denote the word

a1a2 . . . amb1b2 . . . bnc1c2 . . . cp.

The empty word ε has the property that ε◦w = w◦ε = w for all words w
over an alphabet A.

The following theorem follows directly from these observations.

Theorem 5.1 Let A be a finite set. Then (A∗, ◦) is a monoid, where the
set A∗ is the set of words over the alphabet A, and ◦ is the operation of
concatenation of words. The identity element of this monoid is the empty
word ε.

67

Definition Let A be a finite set. A language over A is a subset of A∗. A
language L over A is said to be a formal language if there is some finite set
of rules or algorithm that will generate all the words that belong to L and
no others.

Let A be a finite set. The union and intersection of any finite collection of
languages over A are themselves languages over A. In particular, the union
L1 ∪ L2 and intersection L1 ∩ L2 of two languages L1 and L2 over A is a
language over A.

The concatenation of languages L1 and L2 over A is the language L1 ◦L2,
where

L1 ◦ L2 = {w1 ◦ w2 ∈ A∗ : w1 ∈ L1 and w2 ∈ L2}.

The concatenation L1 ◦ L2 of the languages L1 and L2 may also be denoted
by L1L2.

Given any language L, we can form languages Ln for all natural num-
bers n, where L1 = L and Ln = L ◦ Ln−1 for all natural numbers n. The
associativity of the concatenation operation ensures that Lm ◦ Ln = Lm+n

for all natural numbers m and n. We define L0 = {ε}. The language L then
determines languages L+ and L∗ over A, where

L+ =
∞⋃

n=1

Li = L ∪ L2 ∪ L3 ∪ L4 ∪ · · ·

and

L∗ = {ε} ∪ L+ =
∞⋃

n=0

Li = {ε} ∪ L ∪ L2 ∪ L3 ∪ L4 ∪ · · · .

5.2 Simple Grammars to Generate English Sentences

We describe a simple grammar to construct a certain collection of English
sentences. This grammar is specified by the following collection of produc-
tions or replacement rules:

〈S〉 → 〈NP〉〈VP〉
〈VP〉 → 〈V〉〈NP〉
〈NP〉 → 〈T〉〈QN〉
〈QN〉 → 〈Adj〉〈QN〉
〈QN〉 → 〈N〉
〈T〉 → the

〈N〉 → cat

68

〈N〉 → dog

〈Adj〉 → black

〈Adj〉 → old

〈Adj〉 → small

〈V〉 → saw

〈V〉 → chased

Here 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉, 〈V〉, represent certain
phrases or words that may form part of sentences generated by the grammar.
They may be interpreted as follows:—

• 〈S〉 represents the sentence to be generated by the grammar;

• 〈VP〉 represents a ‘verb phrase’;

• 〈NP〉 represents a ‘noun phrase’;

• 〈QN〉 represents a noun optionally preceded by one or more adjectives;

• 〈T〉 represents the definite article ‘the’ (which will subsequently replace
it);

• 〈N〉 represents a noun chosen from the set the set {dog, cat};

• 〈Adj〉 represents an adjective chosen from the set {black, old, small};

• 〈V〉 represents a verb chosen from the set {saw, chased};

Each of these productions specifies that the entity on the left hand side of
the arrow may be replaced by the string on the right hand side of the arrow.

We may apply these productions successively, starting with the symbol
〈S〉, in order to obtain the sentences generated by the grammar.

Example We may generate the sentence ‘The dog chased the old black cat’

69

as follows:

〈S〉 ⇒ 〈NP〉〈VP〉 (〈S〉 → 〈NP〉〈VP〉)
⇒ 〈T〉〈QN〉〈VP〉 (〈NP〉 → 〈T〉〈QN〉)
⇒ the 〈QN〉〈VP〉 (〈T〉 → the)
⇒ the 〈N〉〈VP〉 (〈QN〉 → 〈N〉)
⇒ the dog 〈VP〉 (〈N〉 → dog)
⇒ the dog 〈V〉〈NP〉 (〈VP〉 → 〈V〉〈NP〉)
⇒ the dog chased 〈NP〉 (〈V〉 → chased)
⇒ the dog chased 〈T〉〈QN〉 (〈NP〉 → 〈T〉〈QN〉)
⇒ the dog chased the 〈QN〉 (〈T〉 → the)
⇒ the dog chased the 〈Adj〉〈QN〉 (〈QN〉 → 〈Adj〉〈QN〉)
⇒ the dog chased the old 〈QN〉 (〈Adj〉 → old)
⇒ the dog chased the old 〈Adj〉〈QN〉 (〈QN〉 → 〈Adj〉〈QN〉)
⇒ the dog chased the old black 〈QN〉 (〈Adj〉 → black)
⇒ the dog chased the old black 〈N〉 (〈QN〉 → 〈N〉)
⇒ the dog chased the old black cat. (〈N〉 → cat)

The production used at each step of the derivation is specified on the right.
At each stage a single instance of 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉 or
〈V〉 is replaced by the appropriate string.

In grammars such as the one we are studying, words such as ‘the’, ‘black’,
‘old’, ‘small’, ‘cat’, ‘dog’, ‘chased’, ‘saw’ are referred to as terminals. Entities
such as 〈S〉, 〈VP〉, 〈NP〉, 〈QN〉, 〈T〉, 〈N〉, 〈Adj〉 and 〈V〉 are referred to as
nonterminals. Each production in a context-free grammar specifies that a
single occurrence of the nonterminal specified to the left of the arrow may be
replaced by the string specified to the right of the arrow. Such replacements
are applied, one at a time, to transform strings made up of terminals and
nonterminals to other strings of the same kind.

Grammars defined by means of productions may be specified in a more
compact form, introduced by John Backus and Peter Naur, and employed
in a report on the high-level programming language ALGOL-60 published
in 1960. Our grammar for simple English sentences may be presented in
Backus-Naur form as follows:

〈S〉 → 〈NP〉〈VP〉
〈VP〉 → 〈V〉〈NP〉
〈NP〉 → 〈T〉〈QN〉
〈QN〉 → 〈Adj〉〈QN〉 | 〈N〉
〈T〉 → the

70

〈N〉 → cat | dog

〈Adj〉 → black | old | small

〈V〉 → saw | chased

Each item in this list specifies that the nonterminal occurring to the left of
the arrow may be replaced by one of various alternatives; the alternatives
are separated by the meta-character |.

One may verify that the sentences generated by the grammar are of the
following form: the sentence consists of the definite article ‘the’, optionally
followed by one or more of the adjectives ‘black’, ‘old’ and ‘small’, followed
by one of the nouns ‘cat’ and ‘dog’, followed by one of the verbs ‘saw’ and
‘chased’, followed by the definite article ‘the’, optionally followed by one or
more of the listed adjectives, followed by one of the listed nouns. From this
description one may verify that the sentences generated by simple grammar
we have described are the same as those generated by the grammar specified
in Backus-Naur form as follows:—

〈S〉 → the 〈T1〉
〈T1〉 → black 〈T1〉 | old 〈T1〉 | small 〈T1〉 | cat 〈T2〉 | dog 〈T2〉
〈T2〉 → saw 〈T3〉 | chased 〈T3〉
〈T3〉 → the 〈T4〉
〈T4〉 → black 〈T4〉 | old 〈T4〉 | small 〈T4〉 | cat 〈F〉 | dog 〈F〉
〈F〉 → ε

This grammar is an example of a regular grammar. A regular grammar is
determined by productions in which a single nonterminal is replaced, either
by a terminal followed by a nonterminal, or by a single terminal, or by the
empty string ε.

Example The sentence ‘The dog chased the old black cat’ is generated in
the regular grammar presented above as follows:

〈S〉 ⇒ the 〈T1〉
⇒ the dog 〈T2〉
⇒ the dog chased 〈T3〉
⇒ the dog chased the 〈T4〉
⇒ the dog chased the old 〈T4〉
⇒ the dog chased the old black 〈T4〉
⇒ the dog chased the old black cat 〈F〉
⇒ the dog chased the old black cat.

71

If a language is generated by a regular grammar then it is possible to
construct a finite state acceptor for that language. This is a finite state
machine which may be used to determine whether or not a given string
belongs to the language.

We describe a finite state acceptor for the collection of sentences generated
by the regular grammar described above. This machine has a finite number of
internal states. One of these states is the initial state of the machine. Some
of the states of a finite state acceptor are regarded as final states. Words
taken from the list

the, black, old, small, cat, dog, saw, chased

are successively input into the machine. Each time one of these words is
input the machine either remains in the state it is currently in, or it makes
a transition to some other internal state, determined by the current state
and the input word. We consider such a machine with seven internal states,
which we label as S, T1, T2, T3, T4, F and E. The following table describes
the effect of inputting each word:

the black old small cat dog saw chased
S T1 E E E E E E E

T1 E T1 T1 T1 T2 T2 E E
T2 E E E E E E T3 T3
T3 T4 E E E E E E E
T4 E T4 T4 T4 F F E E
F E E E E E E E E
E E E E E E E E E

The words label the columns of the table, the internal states label the rows,
and each entry in the table specifies the state that results when the current
state is that labelling the row and the input word is that labelling the column.
For example, if the machine is in state T1, and if the input word is ‘cat’, then
the internal state of the machine is changed to the state T2. The state E
may be regarded as an ‘error state’: the machine enters this state whenever
a word is input that may not occur at the relevant position in the sentence.
Moreover, once the machine is in the state E, it remains in this state, no
matter which word is input. The state S is the initial or starting state.
There is a single final state, which is the state F. A finite sequence of words
is accepted by the machine if and only if successively inputting these words
causes the machine to move from state S to state F.

72

5.3 Well-Formed Formulae in Logic

We shall investigate the grammar of well-formed formulae in the Proposi-
tional Calculus. We begin with a discussion of basic principles of this calcu-
lus.

Let p and q be Boolean variables. Such variables may represent proposi-
tions that might be true in certain circumstances, or false in other circum-
stances. A Boolean variable may therefore take on one of two values: true
(T) or false (F).

Example Let the Boolean variable p represent the proposition (x > y),
where x and y are arbitrary real numbers. If x = 10 and y = 5 then p is
true. But if x = 5 and y = 10 then p is false.

In the Propositional Calculus we also have two Boolean constants. We
shall denote one of these by T: it may represent a proposition that is true in
all circumstances. We shall denote the other constant by F: it may represent
a proposition that is false in all circumstances.

In the Propositional Calculus we may build more complicated formulae
out of simpler formulae using the operations of negation ¬, conjunction ∧
and and disjunction ∨. Negation is a unary operation, whereas conjunction
and disjunction are binary operations.

Let p be a Boolean variable. The negation ¬p of p has the property that it
is true whenever p is false, and it is false whenever p is true. The relationship
between p and ¬p is therefore expressed by the following truth table:—

p ¬p
T F
F T

Let p and q be Boolean variables. The conjunction p ∧ q of p and q is
true if and only if both p and q are true. The disjunction p ∨ q of p and q is
true if and only if at least one of p and q is true. The relationship between
p, q, p ∧ q and p ∨ q are therefore expressed by the following truth tables:—

p q p ∧ q
T T T
T F F
F T F
F F F

p q p ∨ q
T T T
T F T
F T T
F F F

The conjunction p ∧ q may be thought of as representing the proposition
p AND q. Similarly the disjunction p ∨ q may be thought of as representing
the proposition p OR q.

73

We may build up more complicated formulae using these basic operations
of negation, conjunction and disjunction. For example, if p, q and r are
Boolean variables, and if the Boolean variable s is used to represent the
conjunction p ∧ q of p and q, then we may write

¬s = ¬(p ∧ q), s ∧ r = (p ∧ q) ∧ r,

s ∨ r = (p ∧ q) ∨ r, r ∨ s = r ∨ (p ∧ q), etc.

Consider the propositions represented by the formulae (p∧ q)∧ r and p∧
(q∧r). These two propositions are true if and only if each of the propositions
p, q and r is true. They are false if any one of the propositions p, q and r is
false. It follows that no ambiguity will result if we write p∧ q ∧ r in place of
(p∧ q)∧ r or p∧ (q∧ r). More generally, we can define the conjunction of any
finite number of propositions: the conjunction p1∧p2∧· · ·∧pn of propositions
p1, p2, . . . , pn is true if and only if every one of the propositions p1, p2, . . . , pn is
true. We may define in a similar fashion the disjunction of any finite number
of propositions: the disjunction p1∨p2∨· · ·∨pn of propositions p1, p2, . . . , pn

is true if and only if at least one of the propositions p1, p2, . . . , pn is true.
Let us now consider what meaning, if any, one might assign to a formula

such as ‘p ∧ q ∨ r’. One might consider interpreting a formula of this form
either as (p ∧ q) ∨ r or as p ∧ (q ∨ r). The following truth table exhibits the
dependence of the truth values of these two latter formulae on those of p, q
and r:—

p q r p ∧ q q ∨ r (p ∧ q) ∨ r p ∧ (q ∨ r)
T T T T T T T
T T F T T T T
T F T F T T T
T F F F F F F
F T T F T T F
F T F F T F F
F F T F T T F
F F F F F F F

We see from this truth table that (p∧ q)∨ r and p∧ (q ∨ r) do not represent
equivalent propositions. For example, if p is false, q is true and r is true,
then (p ∧ q) ∨ r is true, but p ∧ (q ∨ r) is false.

We would need to resolve this ambiguity in some way if we were to ad-
mit expressions such as ‘p ∧ q ∨ q’. One approach would be to assign higher
precedence to one or other of the binary operations ∧ and ∨. (This would
correspond to the convention in evaluating expressions in ordinary arithmetic

74

and algebra, where multiplication is assigned a higher precedence than addi-
tion.) A second possible approach would involve assigning equal precedence
to the two operations ∧ and ∨ whilst adopting the convention that evalu-
ations of formulae in the Propositional Calculus involving these operations
proceed from left to right in the absence of any parentheses indicating the
order in which the operations are to be performed. (This would correspond
to a standard convention in evaluating expressions in ordinary arithmetic
and algebra involving additions and subtractions.)

However a sensible approach would involve regarding a formula such as
‘p∧ q∨ r’ as being ill-formed, on the grounds that it is inherently ambiguous
in the absence of parentheses that would specify the order in which the
operations ∧ and ∨ are to be performed. One would not then seek to assign
any truth value to such a formula, any more than one would seek to assign
a truth value to a jumble of symbols such as ‘p) ∧ ∨(((qr’.

We are then led to the problem of providing a formal specification to
determine which strings of characters involving ‘p’, ‘q’, ‘r’ etc., ‘¬’, ‘∧’, ‘∨’
‘(’ and ‘)’ are to be regarded as well-formed formulae in the Propositional
Calculus. A related problem is that of designing an algorithm to determine
whether or not a string involving these characters is to be regarded as a
well-formed formula of the Propositional Calculus.

A formula of the Propositional Calculus consists of a string of characters
taken from some finite set. This set would contain characters such as ¬,
∧ and ∨ to denote the operations of negation, conjunction and disjunction
respectively. It might also contain parentheses ‘(’ and ‘)’ that can be used to
determine in the usual fashion the order in which the binary operations are
to be performed and the subformulae to which they are to be applied. We
could introduce characters T and F to denote the Boolean constants ‘true’
and ‘false’ respectively. It remains to consider how Boolean variables are to
be represented. We could certainly use single letters p, q, r, s. But this would
only enable us to write down formulae with at most four distinct proposi-
tional variables. Were we to use single letters from the English alphabet
in both upper and lower case to denote propositional variables, this would
restrict us to formulae with at most fifty-two distinct Boolean variables. But
there should be no limit to the number of distinct Boolean variables that we
could introduce into a well-formed formula. We therefore need a scheme for
representing unlimited quantities of Boolean variables within our formula.
We could do this by using p′, p′′, p′′′, p′′′′ etc., in addition to single letters
such as p. Here p′′′′, for example, is to be regarded as a string of length 5,
consisting of the letter p, followed by four instances of the prime character ′.
Accordingly we shall specify that a propositional variable is to be represented
by the letters p, q, r, s, either alone or else followed by a string consisting

75

of any number of prime characters. (The choice of which letters to use is of
course arbitrary; any similar choice would serve just as well.) The formulae
of the Propositional Calculus may then be regarded as strings (or words)
over the alphabet A, where

A = {¬,∧,∨, (,),T,F, p, q, r, s, ′}.
The elements of A∗ (i.e., the words over the alphabet A) are then strings of
characters taken from the set A. Some of them, such as ‘(p∧ p′)∨ (p′′ ∧ p′′′)’,
represent propositions whose truth values are determined unambiguously
from the truth values of the Boolean variables occurring within them. Oth-
ers, such as ‘)p¬)∧∨∨ (Tp′′′’ are pure gibberish. Our task is then to provide
some sort of formal specification which determines which of the strings be-
longing to A∗ are to be regarded as well-formed formulae of the Propositional
Calculus. The collection of well-formed formulae is then a language over the
alphabet A.

The method by which we specify the well-formed formulae is an example
of a context-free grammar. For this, we introduce a set N of nonterminals.
We represent each nonterminal by an appropriate identifier enclosed within
angle brackets ‘〈’ and ‘〉’. For example we shall use the nonterminal ‘〈wff〉’
to represent an arbitrary well-formed formula. Other nonterminals shall be
used to represent well-formed formulae that are of a special form. For exam-
ple, the nonterminal ‘〈negation〉’ will represent a well-formed formula that
is the negation of some other well-formed formula. Other nonterminals may
represent things such as the letters p, q, r and s of the English alphabet.

We shall refer to elements of the set A as terminals. (In any context-
free grammar, the terminals are the elements of the alphabet over which the
language specified by that grammar is defined.)

The context-free grammar will then consist of a finite collection of produc-
tions. Each production specifies that a certain nonterminal may be replaced
by some string whose elements are terminals or nonterminals. A word in A∗ is
then said to be generated by the grammar if some succession of replacements
determined by productions in the grammar transforms the nonterminal 〈wff〉
into the given word.

Our grammar will include three productions in which the nonterminal
〈wff〉 occurs on the left hand side. These are

〈wff〉 → (〈wff〉)
〈wff〉 → 〈atom〉
〈wff〉 → 〈compound〉

The effect of including the first of these productions is to ensure that, when-
ever a well-formed formula is enclosed within parentheses, the resulting for-

76

mula is also well-formed. For example, the formulae (p ∧ q), ((p ∧ q)),
(((p∧ q))), etc., are obtained in this way from the well-formed formula p∧ q,
and our grammar will therefore ensure that these formulae are also well-
formed.

If a well-formed formula is not merely other well-formed formulae enclosed
within parentheses, then it may be regarded as being either an atomic formula
or a compound formula. The atomic formulae are the Boolean constants T
and F and variables such as p, q, r, s, p′, p′′ etc. The compound formulae
are those that are constructed out of shorter well-formed formulae using the
operations of negation, conjunction and disjunction. The production

〈wff〉 → 〈atom〉

allows us to replace the nonterminal 〈wff〉 by 〈atom〉 when the well-formed
formula we are seeking to generate is a Boolean constant or a Boolean vari-
able. The production

〈wff〉 → 〈compound〉
allows us to replace the nonterminal 〈wff〉 by 〈compound〉 when the well-
formed formula we are seeking to generate is a compound formula. Successive
applications of these three productions to the nonterminal 〈wff〉 yield strings
such as

〈atom〉, 〈compound〉, (〈atom〉), (((〈compound〉))).

The sequence of steps that transform 〈wff〉 into (((〈compound〉))) may be
presented as follows:

〈wff〉 ⇒ (〈wff〉)
⇒ ((〈wff〉))
⇒ (((〈wff〉)))
⇒ (((〈compound〉)))

The first three steps apply the production 〈wff〉 → (〈wff〉) to the nonterminal
〈wff〉 in the relevant formula, replacing this nonterminal by (〈wff〉). The final
step applies the production 〈wff〉 → 〈compound〉 to the nonterminal 〈wff〉 in
the penultimate formula, replacing this nonterminal by 〈compound〉. (Where
the symbol ⇒ occurs between two strings, this indicates that the first string
can be transformed into the second string on applying one of the productions
of the grammar to a single nonterminal occuring in the first string to replace
that nonterminal by the appropriate string.) We write

〈wff〉 ∗⇒ (((〈compound〉)))

77

to indicate that the string on the left can be transformed into the string
on the right through the successive application of a finite number of pro-
ductions belonging to the grammar. (In general, where the symbol

∗⇒ is
placed between two strings, this indicates either that the first string is iden-
tical to the second, or else that the first string can be transformed into the
second through the successive application of a finite number of productions
belonging to the relevant grammar.)

The three productions which we can apply to the nonterminal 〈wff〉 can
be specified more compactly in Backus-Naur form by means of the following:

〈wff〉 → (〈wff〉) | 〈atom〉 | 〈compound〉

This indicates that the nonterminal 〈wff〉 occurring on the left hand side may
be replaced by any one of a list of alternatives presented on the right hand
side. The meta-character | is used to separate the alternatives within this
list.

We next consider the productions for producing atomic formulae. Any
atomic formula represents either a Boolean constant or a Boolean variable.
Moreover the Boolean constants are T and F. This leads us to introduce the
following four productions:

〈atom〉 → 〈constant〉
〈atom〉 → 〈variable〉

〈constant〉 → T

〈constant〉 → F

These four productions may be specified in Backus-Naur form by the follow-
ing:

〈atom〉 → 〈constant〉 | 〈variable〉
〈constant〉 → T | F

Using these productions we find that

〈atom〉 ⇒ 〈constant〉 ⇒ T, 〈atom〉 ⇒ 〈constant〉 ⇒ F,

and thus
〈atom〉 ∗⇒ T, 〈atom〉 ∗⇒ F.

We also need to specify the productions that transform the nonterminal
〈variable〉 into the formulae

p, q, r, s, p′, q′, r′, s′, p′′, q′′, r′′, s′′, p′′′, q′′′, r′′′, s′′′,

78

These transformations may be accomplished using the following productions:

〈variable〉 → 〈variable〉′

〈variable〉 → 〈letter〉
〈letter〉 → p

〈letter〉 → q

〈letter〉 → r

〈letter〉 → s

These productions can be specified in Backus-Naur form as follows:

〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

For example, the formula p′′′ is generated from the nonterminal 〈variable〉 by
the following sequence of transformations:

〈variable〉 ⇒ 〈variable〉′ ⇒ 〈variable〉′′ ⇒ 〈variable〉′′′ ⇒ 〈letter〉′′′ ⇒ p′′′.

The first three transformations use the production 〈variable〉 → 〈variable〉′,
the fourth uses the production 〈variable〉 → 〈letter〉, and the final trans-

formation uses the production 〈letter〉 → p. Thus 〈variable〉 ∗⇒ p′′′. The
formulae representing Boolean constants and variables can now all be gener-
ated from the nonterminal 〈wff〉. For example, 〈wff〉 ∗⇒ q′, since

〈wff〉 ⇒ 〈atom〉 ⇒ 〈variable〉 ⇒ 〈variable〉′ ⇒ 〈letter〉′ ⇒ q′.

Our grammar now has productions to generate any atomic formula. We
now need to add productions that will generate compound formulae. A
compound formula is either the negation of some other well-formed formula,
or the conjunction of two well-formed formulae, or the disjunction of two
such formulae. This leads us to introduce the productions

〈compound〉 → 〈negation〉
〈compound〉 → 〈conjunction〉
〈compound〉 → 〈disjunction〉

which may be specified in Backus-Naur form as

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉

Let us consider negations. If F is any well-formed formula, then ¬(F) is
a well-formed formula that represents the negation of the formula F . Also we

79

shall regard ¬F as being a well-formed formula representing the negation of F
in the cases when F is atomic or when F is itself a negation. However we will
adopt the convention that the negation operation ¬ has higher precedence
than either ∧ or ∨. Thus if F is of the form G ∧ H then ¬G ∧ H will be
equivalent to (¬G) ∧H and will not represent the negation ¬(G ∧H) of F .
Similarly ¬G ∨H is to be interpreted as (¬G) ∨H, and is not equivalent to
¬(G∨H). Therefore we only denote the negation of a well-formed formula F
by ¬F in the cases when F is atomic or a negation, and not in the cases
when F is a conjunction or disjunction. We therefore introduce the following
productions into our grammar:

〈negation〉 → ¬〈nf〉
〈nf〉 → 〈atom〉
〈nf〉 → 〈negation〉
〈nf〉 → (〈wff〉)

These productions are specified in Backus-Naur form as follows:

〈negation〉 → ¬〈nf〉
〈nf〉 → 〈atom〉 | 〈negation〉 | (〈wff〉)

Next let us consider conjunctions. If G and H are well-formed formulae
then (G) ∧ (H) is a well-formed formula representing the conjunction of G
and H. We may replace (G) ∧ (H) by G ∧ (H) without introducing any
ambiguity in the cases when G is atomic, the negation of a well-formed
formula or a conjunction of well-formed formulae. (Our rules of precedence
ensure that ¬G∧H is interpreted as (¬G)∧H and not as ¬(G∧H), since we
regard negation has having higher precedence than conjunction.) We shall
not allow ourselves to replace (G)∧ (H) by G∧ (H) when G is a disjunction
of well-formed formulae. Similarly we may replace (G)∧ (H) and G∧ (H) by
(G) ∧ H and G ∧ H respectively when the formula H is an atomic formula
or the negation of a well-formed formula, or a conjunction of well-formed
formulae, but not when H is a disjunction of well-formed formulae. These
considerations are respected if we introduce the productions

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉
〈cf〉 → 〈negation〉
〈cf〉 → 〈conjunction〉
〈cf〉 → (〈wff〉)

80

which may be specified in Backus-Naur form as follows:

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈wff〉)

With these productions we find, for example, that

〈conjunction〉 ⇒ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈negation〉
⇒ 〈atom〉 ∧ ¬〈nf〉
⇒ 〈atom〉 ∧ ¬〈atom〉

and

〈conjunction〉 ⇒ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈conjunction〉
⇒ 〈atom〉 ∧ 〈cf〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈atom〉 ∧ 〈cf〉
⇒ 〈atom〉 ∧ 〈atom〉 ∧ 〈atom〉.

We can then apply further productions in order to obtain formulae such as
p ∧ ¬q and p′ ∧ p′′ ∧ p′′′.

Finally we have to specify the productions for handling disjunction. These
are analogous to those for conjunctions, and are the following:—

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉
〈df〉 → 〈negation〉
〈df〉 → 〈disjunction〉
〈df〉 → (〈wff〉)

These can be presented in Backus-Naur form as follows:

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈wff〉)

81

With these productions we can generate formulae such as p ∨ (q ∧ r) by
applying productions successively as follows:

〈disjunction〉 ⇒ 〈df〉 ∨ 〈df〉
⇒ 〈atom〉 ∨ 〈df〉
⇒ 〈atom〉 ∨ (〈wff〉)
⇒ 〈atom〉 ∨ (〈compound〉)
⇒ 〈atom〉 ∨ (〈conjunction〉)
⇒ 〈atom〉 ∨ (〈cf〉 ∧ 〈cf〉)
⇒ 〈atom〉 ∨ (〈atom〉 ∧ 〈cf〉)
⇒ 〈atom〉 ∨ (〈atom〉 ∧ 〈atom〉)

This completes our construction of a context-free grammar that generates
the well-formed formulae of the Propositional Calculus.

This grammar is specified in Backus-Naur form by the following:—

〈wff〉 → (〈wff〉) | 〈atom〉 | 〈compound〉
〈atom〉 → 〈constant〉 | 〈variable〉

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉 | 〈negation〉 | (〈wff〉)
〈conjunction〉 → 〈cf〉 ∧ 〈cf〉

〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈wff〉)
〈disjunction〉 → 〈df〉 ∨ 〈df〉

〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈wff〉)
〈constant〉 → T | F
〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

The following are the productions of this grammar:—

〈wff〉 → (〈wff〉)
〈wff〉 → 〈atom〉
〈wff〉 → 〈compound〉

〈atom〉 → 〈constant〉
〈atom〉 → 〈variable〉

〈compound〉 → 〈negation〉

82

〈compound〉 → 〈conjunction〉
〈compound〉 → 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉
〈nf〉 → 〈negation〉
〈nf〉 → (〈wff〉)

〈conjunction〉 → 〈cf〉 ∧ 〈cf〉
〈cf〉 → 〈atom〉
〈cf〉 → 〈negation〉
〈cf〉 → 〈conjunction〉
〈cf〉 → (〈wff〉)

〈disjunction〉 → 〈df〉 ∨ 〈df〉
〈df〉 → 〈atom〉
〈df〉 → 〈negation〉
〈df〉 → 〈disjunction〉
〈df〉 → (〈wff〉)

〈constant〉 → T

〈constant〉 → F

〈variable〉 → 〈variable〉′

〈variable〉 → 〈letter〉
〈letter〉 → p

〈letter〉 → q

〈letter〉 → r

〈letter〉 → s

The well-formed formulae of the Propositional Calculus are those words F
over the alphabet

{¬,∧,∨, (,),T,F, p, q, r, s, ′}

for which 〈wff〉 ∗⇒ F .

Example We verify that the formula

(p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬r′′′)

is a well-formed formula of the Propositional Calculus. This formula may be
obtained from the nonterminal 〈wff〉 by applying successive productions as

83

follows:

〈wff〉 ⇒ 〈compound〉
⇒ 〈disjunction〉
⇒ 〈df〉 ∨ 〈df〉
⇒ (〈wff〉) ∨ 〈df〉
⇒ (〈compound〉) ∨ 〈df〉
⇒ (〈conjunction〉) ∨ 〈df〉
⇒ (〈cf〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈atom〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈variable〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (〈letter〉 ∧ 〈cf〉) ∨ 〈df〉
⇒ (p ∧ 〈cf〉) ∨ 〈df〉
⇒ (p ∧ 〈atom〉) ∨ 〈df〉
⇒ (p ∧ 〈variable〉) ∨ 〈df〉
⇒ (p ∧ 〈variable〉′) ∨ 〈df〉
⇒ (p ∧ 〈letter〉′) ∨ 〈df〉
⇒ (p ∧ r′) ∨ 〈df〉
⇒ (p ∧ r′) ∨ (〈wff〉)
⇒ (p ∧ r′) ∨ (〈compound〉)
⇒ (p ∧ r′) ∨ (〈conjunction〉)
⇒ (p ∧ r′) ∨ (〈cf〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈wff〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈compound〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((〈negation〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈nf〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈atom〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈variable〉′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬〈letter〉′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈conjunction〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈cf〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈atom〉 ∧ 〈cf〉)

84

⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈variable〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ 〈letter〉 ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ 〈cf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ 〈negation〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈nf〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈atom〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈variable〉′′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬〈letter〉′′′)
⇒ (p ∧ r′) ∨ ((¬r′′) ∧ q ∧ ¬r′′′)

Remark The grammar we have constructed to describe the well-formed for-
mulae of the Propositional Calculus generates formulae such as (((p∧q))) and
p∨((((((q)))))) which are unambiguous but which contain superfluous paren-
theses which serve no useful purpose. It is possible to modify the grammar
to ensure that the modified grammar does not generate formulae with such
superfluous parentheses. In particular we can ensure that a formula gener-
ated by the modified grammar is never enclosed within parentheses, that no
Boolean constant or variable within the formula is enclosed by itself within
parentheses, and that no subformula is enclosed by itself within two or more
sets of parentheses. This modified grammar is expressed in Backus-Naur
form as follows:—

〈wff〉 → 〈atom〉 | 〈compound〉
〈atom〉 → 〈constant〉 | 〈variable〉

〈compound〉 → 〈negation〉 | 〈conjunction〉 | 〈disjunction〉
〈negation〉 → ¬〈nf〉

〈nf〉 → 〈atom〉 | 〈negation〉 | (〈compound〉)
〈conjunction〉 → 〈cf〉 ∧ 〈cf〉

〈cf〉 → 〈atom〉 | 〈negation〉 | 〈conjunction〉 | (〈compound〉)
〈disjunction〉 → 〈df〉 ∨ 〈df〉

〈df〉 → 〈atom〉 | 〈negation〉 | 〈disjunction〉 | (〈compound〉)
〈constant〉 → T | F
〈variable〉 → 〈letter〉 | 〈variable〉′

〈letter〉 → p | q | r | s

85

5.4 Context-Free Grammars

We have discussed examples of context-free grammars. We now present and
discuss a formal definition of such grammars.

Definition A context-free grammar (V, A, 〈S〉, P) consists of a finite set V ,
a subset A of V , an element 〈S〉 of V \A, and a finite subset P of (V \A)×V ∗.

Let (V, A, 〈S〉, P) be a context-free grammar. The elements of A are
referred to as terminals. Let N = V \ A. The elements of N are referred
to as nonterminals. The nonterminal 〈S〉 is the start symbol. The set N of
nonterminals is non-empty since 〈S〉 ∈ N .

The finite set P specifies the productions of the grammar. An element of
P is an ordered pair of the form (〈T 〉, w) where 〈T 〉 ∈ N is a nonterminal
and w ∈ V ∗ is a word over the alphabet V (i.e, a finite string, where each
constituent of the string is either a terminal or a nonterminal). We denote
by

〈T 〉 → w

the production specified by an ordered pair (〈T 〉, w) belonging to the set P .

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

directly yields w′′ if there exist words u and v over the alphabet V and a
production 〈T 〉 → w of the grammar such that w′ = u〈T 〉v and w′′ = uwv.
(Either or both of the words u and v may be the empty word.)

We see therefore that a word w′ over the alphabet V directly yields an-
other such word w′′ if and only if there exists a production 〈T 〉 → w in the
grammar such that w′′ may be obtained from w′ by replacing a single oc-
currence of the nonterminal 〈T 〉 within w′ by the word w. If the word w′

directly yields w′′, then we denote this fact by writing

w′ ⇒ w′′.

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

yields w′′ if either w′ = w′′ or else there exist words w0, w1, . . . , wn over the
alphabet V such that w0 = w′, wn = w′′ and wi−1 ⇒ wi for all integers i
between 1 and n.

If the word w′ yields w′′, then we denote this fact by writing

w′ ∗⇒ w′′.

86

Definition Let (V, A, 〈S〉, P) be a context-free grammar. The language gen-
erated by this grammar is the subset L of A∗ defined by

L = {w ∈ A∗ : 〈S〉 ∗⇒ w}.

We see therefore that the language L generated by a context-free grammar
(V, A, 〈S〉, P) consists of the set of all finite strings consisting entirely of
terminals that may be obtained from the start symbol 〈S〉 by applying a
finite sequence of productions of the grammar, where the application of a
production causes a single nonterminal to be replaced by the string in V ∗

specified by that production.

5.5 Phrase Structure Grammars

There is a class of formal grammars that includes all context-free grammars.
The grammars of this more general type are known as phase structure gram-
mars

Definition A phrase structure grammar (V, A, 〈S〉, P) consists of a finite
set V , a subset A of V , an element 〈S〉 of V \ A, and a finite subset P of
(V ∗ \ A∗)× V ∗.

As in the case of context-free grammars, the elements of A are referred
to as terminals, the elements of V \ A are referred to as nonterminals, the
nonterminal 〈S〉 is the start symbol and the elements of P specify the pro-
ductions of the grammar. The production specified by an element (r, w) of P
is denoted by r → w. However the left hand side r of a production r → w in
a phrase structure grammar need not consist solely of a single nonterminal,
but may be a finite string r of elements of V ∗, provided that this string r
contains at least one nonterminal. (Note that V ∗ denotes the set of all finite
words over the alphabet V whose elements are terminals and nonterminals,
A∗ denotes the set of all finite words consisting entirely of terminals, and
thus V ∗ \A∗ denotes the set of all finite words belonging to V ∗ which contain
at least one nonterminal.)

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

directly yields w′′ if there exist words u and v over the alphabet V and a
production r → w such that w′ = urv and w′′ = uwv. (Either or both of the
words u and v may be the empty word.)

We see therefore that a word w′ over the alphabet V directly yields an-
other such word w′′ if and only if there exists a production r → w in the

87

grammar such that w′′ may be obtained from w′ by replacing a single occur-
rence of r as a substring of w′ by the string w. If the word w′ directly yields
w′′, then we denote this fact by writing

w1 ⇒ w2.

Definition Let w′ and w′′ be words over the alphabet V . We say that w′

yields w′′ if either w′ = w′′ or else there exist words w0, w1, . . . , wn over the
alphabet w such that w0 = w′, wn = w′′ and wi−1 ⇒ wi for all integers i
between 1 and n.

If the word w′ yields w′′, then we denote this fact by writing

w′ ∗⇒ w′′.

Definition Let (V, A, 〈S〉, P) be a phrase structure grammar. The language
generated by this grammar is the subset L of A∗ defined by

L = {w ∈ A∗ : 〈S〉 ∗⇒ w}.

5.6 Regular Languages

Definition Let A be a finite set, and let A∗ be the set of words over the
alphabet A. A subset L of A∗ is said to be a regular language over the
alphabet A if L = Lm for some finite sequence L1, L2, . . . , Lm of subsets of
A∗ with the property that, for each integer i between 1 and m, the set Li

satisfies at least one of the following conditions:—

(i) Li is a finite set;

(ii) Li = L∗
j for some integer j satisfying 1 ≤ j < i;

(iii) Li = Lj ◦ Lk for some integers j and k satisfying 1 ≤ j < i, 1 ≤ k < i;

(iv) Li = Lj ∪ Lk for some integers j and k satisfying 1 ≤ j < i, 1 ≤ k < i.

(Here Lj ◦ Lk denotes the set of all words over the alphabet A that are
concatenations of the form w′w′′ with w′ ∈ Lj and w′′ ∈ Lk.)

Let A be a finite set, and let A∗ be the set of all words over the alphabet A.
The regular languages over the alphabet A constitute the smallest collection C
of subsets of A∗ which satisfies the following properties:—

(i) all finite subsets of A∗ belong to C;

88

(ii) if M is a subset of A∗ belonging to C then so is M∗;

(iii) if M and N are subsets of A∗ belonging to C then so is M ◦N .

(iv) if M and N are subsets of A∗ belonging to C then so is M ∪N .

Indeed the collection of regular languages over the alphabet A has all four
properties. Moreover any collection of languages over the alphabet A with
these properties includes all regular languages. Indeed if L is a regular lan-
guage then L = Lm for some finite sequence L1, L2, . . . , Lm of subsets of A∗

which each set Li is either a finite set, or of the form L∗
j for some set Lj with

j < i, or of the form Lj ◦Lk for some sets Lj and Lk with j < i and k < i, or
of the form Lj ∪ Lk for some sets Lj and Lk with j < i and k < i. It follows
from this that if a collection C of subsets of A∗ with the four properties given
above contains Lj for all integers j satisfying 1 ≤ j < i then it also contains
Li. Therefore all of the sets L1, L2, . . . , Lm must belong to the collection C,
and, in particular, the regular language L must belong to C.

Example Let L be the set of decimal representations of integers. We give
each integer a unique decimal representation in L, so that the decimal rep-
resentation of any positive integer in L begins with a non-zero digit, the
decimal representation of zero is ‘0’, and the decimal representation of any
negative number begins with a minus sign followed by a non-zero digit. The
set L is a language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Moreover L = L9, where

L1 = {0},
L2 = {1, 2, 3, 4, 5, 6, 7, 8, 9},
L3 = L1 ∪ L2,

L4 = L∗
3,

L5 = L2 ◦ L4,

L6 = {−},
L7 = L6 ◦ L5,

L8 = L5 ∪ L7,

L9 = L8 ∪ L1.

Note that L3 is the set of decimal digits, L4 is the set of finite strings of
decimal digits (including the empty string), L5 is the set of decimal repre-
sentations of positive integers, L7 is the set of decimal representations of

89

negative integers, and L8 is the set of decimal representations of non-zero
integers. We conclude that L is a regular language over the alphabet A.

The regular languages may be characterised as those languages that are
generated by regular grammars. They may also be characterised as those
languages that are recognized by finite state acceptors. We shall give below
formal definitions of regular grammars and finite state acceptors.

5.7 Regular Grammars

Definition A context-free grammar is said to be a regular grammar if every
production is of one of the three forms

(i) 〈A〉 → b〈B〉,
(ii) 〈A〉 → b,

(iii) 〈A〉 → ε,

where 〈A〉 and 〈B〉 represent nonterminals, b represents a terminal, and ε
denotes the empty word. A regular grammar is said to be in normal form if
all its productions are of types (i) and (iii).

Lemma 5.2 Any language generated by a regular grammar may be generated
by a regular grammar in normal form.

Proof Let L be a language over an alphabet A, and let (V, A, 〈S〉, P) be
a regular grammar generating the language L. We may construct a new
regular grammar in normal form by first adding a nonterminal 〈F 〉 that
does not already belong to V , and then replacing any production which is
of the form 〈A〉 → b for some nonterminal 〈A〉 and terminal b by the pair of
productions 〈A〉 → b〈F 〉 and 〈F 〉 → ε. (Indeed the replacement of 〈A〉 by
b in any word may be accomplished in two steps, by first replacing 〈A〉 by
b〈F 〉 and then replacing 〈F 〉 by the empty word ε.) The resultant regular
grammar is in normal form and generates the same language as the given
regular grammar.

Example Let L be the set of decimal representations of integers, in which
the most significant digit of a non-zero integer is non-zero, and in which zero
is represented by ‘0’. L is a regular language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

90

This language is generated by the regular grammar whose nonterminals are
〈S〉, 〈A〉, 〈B〉 and whose productions are

〈S〉 → −〈A〉
〈S〉 → 0

〈S〉 → 1〈B〉
〈S〉 → 2〈B〉

...

〈S〉 → 9〈B〉
〈A〉 → 1〈B〉
〈A〉 → 2〈B〉

...

〈A〉 → 9〈B〉
〈B〉 → 0〈B〉
〈B〉 → 1〈B〉
〈B〉 → 2〈B〉

...

〈B〉 → 9〈B〉
〈B〉 → ε

This regular grammar is not in normal form, but to obtain a regular grammar
in normal form it suffices to introduce a new nonterminal 〈C〉, and replace
the production 〈S〉 → 0 by the two productions

〈S〉 → 0〈C〉
〈C〉 → ε

5.8 Finite State Acceptors

Definition A finite state acceptor (S, A, i, t, F) consists of finite sets S and
A, an element i of S, a function t: S × A → S from S × A to S and a
subset F of S. The set S is the set of states, the set A is the input alphabet,
the element i of S is the starting state, the function t: S × A → S is the
transition mapping and F is the set of finishing states.

A finite state acceptor is a particular type of finite state machine. Such
a machine has a finite number of internal states. Data is input discretely,

91

and each datum causes the machine either to remain in the same internal
state or else to make a transition to some other internal state determined
solely by the current state and the input datum. In a finite state acceptor
(S, A, i, t, F) the set S represents of the internal states of the machine and is
finite, and each datum is an element of the input alphabet A. The machine
is initially in the starting state i. The transition function t specifies how the
internal state of the machine changes on inputting a datum: if the machine
is currently in state s, and if the input datum is a, then the internal state
of the machine becomes s′ where s′ = t(s, a). Any finite state acceptor
determines a language L over the alphabet A, consisting of those words
a1a2 . . . an which, when the elements a1, a2, . . . , an of A are successively input,
cause the machine initially in the starting state to end up in one of the
finishing states specified by the subset F of S.

Definition Let (S, A, i, t, F) be a finite state acceptor, and let A∗ denote
the set of words over the input alphabet A. A word a1a2 . . . an of length n
over the alphabet A is said to be recognized or accepted by the finite state
acceptor if there are states s0, s1, s2, . . . , sn belonging to S such that s0 = i,
sn ∈ F , and si = t(si−1, ai) for each integer i between 1 and n.

Definition Let (S, A, i, t, F) be a finite state acceptor. A language L over
the alphabet A is said to be recognized or accepted by the finite state acceptor
if L is the set consisting of all words recognized by the finite state acceptor.

It can be proved that a language over some alphabet A is a regular lan-
guage if and only if that language is recognized by some finite state acceptor
with input alphabet A.

Example Let L be the set of decimal representations of integers, in which
the most significant digit of a non-zero integer is non-zero, and in which zero
is represented by ‘0’. L is a regular language over the alphabet A, where

A = {−, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let S = {i, a, b, c, e}, let F = {b, c}, and let t: S × A → S be the transition
mapping determined by the following transition table:—

- 0 1 2 3 4 5 6 7 8 9
i a c b b b b b b b b b
a e e b b b b b b b b b
b e b b b b b b b b b b
c e e e e e e e e e e e
e e e e e e e e e e e e

92

(Here the value of t(s, α) for a state s and character α is listed in the row of
the table labelled by s and the column labelled by α.) Then (S, A, i, t, F) is
a finite state acceptor for the regular language L.

93

