Course 223, 1988–89, Annual Examination (SF Trinity Term)

- 1. (a) State and prove Rolle's Theorem.
 - (b) Let $f: \mathbb{R} \to \mathbb{R}$ be a 3 times differentiable function on \mathbb{R} , and let a and b be real numbers satisfying a < b. Suppose that

$$f(a) = 0,$$
 $f'(a) = 0,$ $f(b) = 0,$ $f'(b) = 0.$

Prove that there exists some ξ satisfying $a < \xi < b$ for which $f'''(\xi) = 0$.

- (c) State the *Mean Value Theorem*, and prove this theorem (either by using *Rolle's Theorem*, or otherwise).
- 2. (a) Let f: [a, b] → R be a real-valued function defined over a closed bounded interval [a, b]. Suppose that the function f is bounded above and below on the interval [a, b]. Let P be a partition of the interval [a, b], given by

$$P = \{t_0, t_1, \ldots, t_n\},\$$

where $a = t_0 < t_1 < \cdots < t_{n-1} < t_n = b$. Define the upper sum U(P, f) and the lower sum L(P, f) of f for the partition Pof [a, b].

- (b) Let $f:[a,b] \to \mathbb{R}$ be a function on the interval [a,b] which is bounded above and below on [a,b]. Define what is meant by saying that the function f is *Riemann-integrable* on [a,b], and define the *Riemann integral* $\int_a^b f(t) dt$ of a Riemann-integrable function f on the interval [a,b].
- (c) Let $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ be real-valued functions on the interval [a, b] which are bounded above and below. Suppose that f and g are both Riemann-integrable on [a, b]. Prove that their sum f + g is also Riemann-integrable on [a, b] and that

$$\int_{a}^{b} (f(t) + g(t)) dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt.$$

3. (a) Let $f: D \to \mathbb{R}$ be a real-valued function defined over some open interval D in \mathbb{R} which contains a and a + h. Suppose that f is k times differentiable on D and that the kth derivative $f^{(k)}$ of f is continuous on D. Prove that

$$f(a+h) = f(a) + \sum_{j=1}^{k-1} \frac{h^j}{j!} f^{(j)}(a) + r_k(a;h),$$

where

$$r_k(a;h) = \frac{h^k}{(k-1)!} \int_0^1 (1-t)^{k-1} f^{(k)}(a+th) \, dt.$$

(b) Let $f: (-1, 1) \to \mathbb{R}$ be defined by $f(x) = \log(1 + x)$. Show that if |h| < 1 then

$$(1-t)^{k-1}|f^{(k)}(th)| < \frac{(k-1)!}{(1+th)}$$

for all $t \in [0, 1]$. Hence show that

$$\log(1+h) = \sum_{j=0}^{+\infty} \frac{(-1)^{j-1}h^j}{j}$$

whenever |h| < 1.

- 4. (a) Let f₁, f₂, f₃, f₄,... be a sequence of real-valued functions defined over some subset D of R. Let f be a real-valued function on D. Define what is meant by saying that the sequence f₁, f₂, f₃, f₄,... of functions converges uniformly on D to the function f.
 - (b) Give an example of a *uniformly convergent* sequence $f_1, f_2, f_3, f_4, \ldots$ of continuous real-valued functions defined over the whole of \mathbb{R} with the property that

$$\lim_{j \to +\infty} \int_{-\infty}^{+\infty} f_j(t) \, dt \neq \int_{-\infty}^{+\infty} \left(\lim_{j \to +\infty} f_j(t) \right) \, dt.$$

[N.B., you should verify that your example does indeed possess the required properties.]

[The Examination contained two further questions supplied by another examiner.]

©TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1989