
Course 223, 1987–88, Supplemental Examina-

tion (SF)

1. Let Rn and Rm be Euclidean spaces of dimensions n and m respectively,
and let ϕ:Rn → Rm be a function mapping Rn into Rm.

(a) State precisely what it means to say that the function ϕ is con-
tinuous.

(b) State precisely what is meant by saying that a subset V of Rm is
open.

(c) Prove that the function ϕ:Rn → Rm is continuous if and only if
ϕ−1(V ) is an open set in Rn for every open set V in Rm

2. Let K be a subset of Rn and let f :K → R be a continuous real-valued
function on K.

(a) State precisely what is meant by saying that the function f is
uniformly continuous on K.

(b) Use the formal definition of uniform continuity to show that if a
real-valued function f is not uniformly continuous on a subset K
of Rn then there exists a strictly positive real number ε0 and se-
quences (xi : i ∈ N) and (yi : i ∈ N) of points of K such that such
that |xi − yi| < 1/i and |f(xi)− f(yi)| ≥ ε0.

(c) Every sequence of points in a closed bounded subset K of Rn

possesses a subsequence which converges to a point of K. By using
this fact, or otherwise, prove that if f :K → R is a continuous
function on a closed bounded set K then f is uniformly continuous
on K.

3. (a) Let a and b be real numbers satisfying a < b, and let f : [a, b]→ R
be a bounded function on the closed bounded interval [a, b]. Define
the upper and lower Riemann integrals of f on [a, b], and define
what is meant by saying that the function f is Riemann integrable
on [a, b]. [If you use the quantities L(P, f) and U(P, f) employed
in lectures then you should state the precise definition of these
quantities.]

(b) Let f : [a, b]→ R be a continuous function on the closed bounded
interval [a, b]. Prove that f is Riemann-integrable on [a, b]. [You
may assume without proof the theorem that states that continuous
functions are uniformly continuous on closed bounded sets.]
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4. (a) State the Fundamental Theorem of Calculus.

(b) Let F :R→ R be the function defined by

F (x) =


∫ x

0

t cos
1

t
dt if x > 0;

0 if x ≤ 0.

Is the function F differentiable over the whole of R. [Justify your
answer.]

(c) Find the derivative of the function G:R→ R defined by

G(x) =

∫ (x+1)2

−(x−1)2
e−t

2

dt.

[State clearly all theorems that you use.]

5. Let ϕ:Rn → Rm be a function mapping Rn into Rm, and let a be a point
of Rn. Let the components of the map ϕ be denoted by ϕ1, ϕ2, . . . , ϕm.

(a) State precisely what it means to say that the function ϕ is differ-
entiable at the point a.

(b) Show that if the function ϕ is differentiable at a then the derivative
of ϕ at the point a is represented by the Jacobian matrix

∂ϕ1

∂x1

∂ϕ1

∂x2
. . .

∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2
. . .

∂ϕ2

∂xn
...

...
...

∂ϕm
∂x1

∂ϕm
∂x2

. . .
∂ϕm
∂xn


,

where the partial derivatives occuring in this matrix are evaluated
at the point a.

(c) Write down an example of a function ϕ:Rn → Rm (where n and
m are suitably chosen positive integers) which has the property
that all the partial derivatives occuring in the above Jacobian
matrix exist at some point a of Rn, yet the function ϕ itself is not
differentiable at the point a.
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6. Let f :R2 → R be a continuous function defined on R2. Suppose that
the functions

∂f(x, y)

∂x
,

∂f(x, y)

∂y
,

∂2f(x, y)

∂x∂y
,

∂2f(x, y)

∂y∂x

exist and are continuous at each point (x, y) of R2. Prove that

∂2f(x, y)

∂x∂y
=
∂2f(x, y)

∂y∂x
.

7. Let (x, y, z) denote the standard Cartesian coordinates on R3.

(a) Prove that d(gω) = g dω + dg ∧ ω for all smooth 1-forms ω and
for all smooth real-valued functions g on R3.

(b) Let ω be the smooth 1-form on R3 defined by

ω = ey
2

cosx cos z dx+ 2yey
2

sinx cos z dy − ey2 sinx sin z dz.

Show by direct calculation that dω = 0. Write down a smooth
function f on R3 with the property that ω = df .

(c) Let η be the smooth 2-form on R3 defined by

η = sinx cos y sin z dx ∧ dy − cosx sin y cos z dx ∧ dz.

Calculate ω ∧ η and dη (where ω is the 1-form defined in (a)).
Does there exist a smooth 1-form ξ on R3 with the property that
dξ = η? [Justify your answer.]

(d) Let β be a smooth 3-form on R3. Does there always exist a smooth
2-form α on R3 with the property that dα = β? [Justify your
answer.]

8. Let (x, y, z) denote the standard Cartesian coordinates on R3. Let D
and E be open sets in R3 and let ϕ:D → E be a smooth map from
D into E. Let ϕ1, ϕ2 and ϕ3 denote the Cartesian components of the
map ϕ

(a) Let P , Q and R be smooth real-valued functions on E, and let η
be the smooth 1-form on E defined by

η = P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz.

Derive an expression for the pullback ϕ∗η of the 1-form η in terms
of the functions P , Q, R, the components of the map ϕ and their
partial derivatives.
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(b) Prove that ϕ∗(df) = d(f ◦ϕ) for all smooth real-valued functions f
on E.

(c) Prove that d(ϕ∗η) = ϕ∗dη for all smooth 1-forms η on E.

(d) Let ϕ:R3 → R3 be the smooth map defined by

ϕ(x, y, z) = (x sin y cos z, x sin y sin z, x cos z).

Let ω be the 2-form on R3 defined by ω = dx∧dy. Calculate ϕ∗ω.

9. Let (x, y, z, t) denote the standard Cartesian coordinates on R4.

(a) Let γ: [0, 2π]→ R4 be the closed curve in R4 defined by

γ(θ) = (cos θ, sin θ, cos 2θ, sin 2θ).

Show that
∫
γ
η = 0, where η is the smooth 1-form on R3 defined

by
η = x dz + z dx− y dt− t dy.

(b) Let M be the 3-dimensional oriented submanifold of R4 (with
boundary) defined by

M = {(x, y, z, t) ∈ R4 :

t > 0, x2 + y2 + z2 ≤ 1, x2 + y2 + z2 − t2 = 1},

where the orientation on M is chosen such that the restriction
to M of the Cartesian coordinates (x, y, z) defines a positively-
oriented coordinate system on M . Let ω be the 3-form on R4

defined by

ω = 7t2 dx∧dy∧dz−zt dx∧dy∧dt+yt dx∧dz∧dt−xt dy∧dz∧dt.

Calculate
∫
M
ω (where M is oriented as described above).
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