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1 Summary of Some of the Basic Concepts of

Analysis

1.1 The Real Number System

One of the first tasks in an introduction to analysis is to construct the system
of real numbers. The best-known method of constructing the real number
system is by means of cuts. It is due to Dedekind. We denote the set of all
real numbers by R.

Having constructed the real number system one must then investigate the
basic properties of this system. These fall into three categories: namely (I)
algebraic properties, (II) ordering properties, and (III) the ‘no gaps’ property.

(I) Algebraic Properties.

The set R of real numbers is a field under the operations of addition
and multiplication. This means that the set R of all real numbers is an
Abelian group under the operation of addition, the set R \ {0} of non-zero
real numbers is also an Abelian group under the operation of multiplication,
and the operations of addition and multiplication satisfy the distributive laws.
Expressed in less formal terms, this simply means that there are operations
of addition, subtraction, multiplication and division defined on the set R of
real numbers, and these operations satisfy all the familiar rules (such as the
commutative laws, the associative laws, the distributive laws etc.).

(II) Ordering Properties.

The set of real numbers is ordered. If x and y are real numbers and if
x is strictly less than y then we write x < y. If x < y then we can also
denote this fact by writing y > x. We write x ≤ y if either x < y or x = y.
Similarly we write x ≥ y if either x > y or x = y. This ordering relation has
the following properties:

(i) if x and y are real numbers then one and only one of the statements

x < y, x = y, y < x

is true,

(ii) if x, y and z are real numbers, if x < y and y < z then x < z,

(iii) if x, y and z are real numbers and if y < z then x+ y < x+ z,

(iv) if x, y and z are real numbers, if x > 0 and y > 0 then xy > 0.
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(III) ‘No Gaps’ Property.

In addition to the algebraic properties and the ordering properties dis-
cussed above, the real number system is characterized by the property that
there are no ‘gaps’ or ‘holes’ in the set of real numbers. It is necessary to
express this vague statement formally in language that is logically precise.
The property of the real numbers that captures this notion of ‘no gaps’ is
the least upper bound principle (or least upper bound axiom), which we now
describe.

A subset S of the set R of real numbers is said to be bounded above if
there exists a real number u such that s ≤ u for all s ∈ S. A real number u
with this property is said to be an upper bound for the set S. A least upper
bound (or supremum) for the set S is a real number l with the properties
that l is an upper bound for the set S which is less than any other upper
bound for the set S. Clearly any subset of the set of real numbers can have
at most one least upper bound.

The least upper bound principle states that if S is a subset of the set R
of real numbers which is bounded above, then the set S has a (unique) least
upper bound (or supremum), denoted by supS.

One easily deduces from the least upper bound principle the correspond-
ing result that if S is a subset of R which is bounded below then the set S
has a (unique) greatest lower bound (or infimum), denoted by inf S, which
has the properties that inf S ≤ s for all s ∈ S and if v is a lower bound for
the set S (i.e., v ≤ s for all s ∈ S) then v ≤ inf S. Indeed the greatest lower
bound of the set S is given by the formula

inf S = − sup{x ∈ R : −x ∈ S}.

We have now described the properties which characterize the set R of
real numbers. It turns out that these properties (the algebraic properties,
the ordering properties and the least upper bound principle) are sufficient to
characterize the real number system uniquely. Thus it is not necessary to
use the explicit definition of real numbers (in terms of cuts) in order to prove
theorems about real numbers: we can deduce such theorems from the prop-
erties listed above. Of course the algebraic properties (i.e. the properties of
addition, subtraction, multiplication and division) and the ordering proper-
ties should be very familiar! However, to prove many important theorems
of analysis we need the ‘no gaps’ property that is expressed formally by the
least upper bound principle.

When one studies number systems, one meets a famous theorem of classi-
cal Greek mathematics (given in Euclid) which states that there is no rational
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number x satisfying the equation x2 = 2 (i.e. there do not exist integers p
and q with the property that p2 = 2q2). One is also told that numbers like
π and e are not rational numbers. Thus one learns that there is a system
of real numbers which contains all the rational numbers together with num-
bers such as

√
2,
√

3, π and e. However if one wants to be able to prove
theorems involving the real number system then it is not much use to know
merely that “the set of real numbers consists of the set of rational numbers
together with certain other numbers such as

√
2,
√

3, π and e”. One needs
a far more precise characterization of the real numbers in order to be able
to prove significant theorems involving real numbers. This is where the least
upper bound principle comes in. It is the key to a number of deep theorems
concerning real numbers and continuous functions.

1.2 Euclidean Space

We define n-dimensional Euclidean space Rn to be the space which consists of
all n-tuples (x1, x2, . . . , xn) of real numbers. Thus R1 (denoted also by R) is
the real line, R2 is the (Euclidean) plane (i.e. the familiar plane in which are
located all the triangles, parallel lines etc. of good old-fashioned schoolroom
geometry) and R3 represents standard Euclidean space. The functions that
one considers are often defined over some subset of Rn known as the domain
of that function. Thus, for example, the function x 7→ 1/x is defined over
the set

{x ∈ R : x 6= 0}

consisting of all non-zero real numbers. If f is a real-valued function whose
domain is a subset D of Rn for some n, then we write f :D → R in order
to denote the fact that the function f is defined on the set D (i.e., f(x) is
defined for all x ∈ D) and f maps the elements of D into the set R of real
numbers.

We add and subtract elements of Rn and multiply them by scalars (i.e.
real numbers) in the obvious fashion. Thus if we are given elements x and y
of Rn represented by the n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) then we
define x + y and x− y to be the elements of Rn represented by the n-tuples
(x1 + y1, x2 + y2, . . . , xn + yn) and (x1− y1, x2− y2, . . . , xn− yn) respectively.
Similarly we denote by λx the element of Rn represented by the n-tuple
(λx1, λx2, . . . , λxn), for all real numbers λ.

There is an inner product (or scalar product) defined on n-dimensional
Euclidean space: if x and y are elements of Rn, represented by the n-tuples
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) respectively then the inner product x.y
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of x and y is defined by

x.y = x1y1 + x2y2 + · · ·+ xnyn.

Note that x.y = y.x and (λx).y = λ(x.y) = x.(λy) for all x,y ∈ Rn and
λ ∈ R, and that (x + y).z = x.z + y.z for all x,y, z ∈ Rn. The inner product
satisfies an important inequality known as Schwarz’ Inequality.

Lemma 1.1 (Schwarz’ Inequality) Let x and y be elements of Rn. Then
|x.y| ≤ |x||y|.

Proof Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), and let us consider
the quantity A(λ, µ) defined by

A =
n∑
j=1

(λxj − µyj)2.

Note that A(λ, µ) is a sum of squares, so that A(λ, µ) ≥ 0. But if we expand
out the expression defining A(λ, µ) we see that

A(λ, µ) =
n∑
j=1

(
λ2x2

j − 2λµxjyj + µ2y2
j

)
= λ2|x|2 − 2λµx.y + µ2|y|2,

hence
λ2|x|2 − 2λµx.y + µ2|y|2 ≥ 0

for all λ, µ ∈ R. In particular, if we take λ = |y|2 and µ = x.y we see that

|y|4|x|2 − 2|y|2(x.y)2 + (x.y)2|y|2 ≥ 0,

which simplifies to
|y|2

(
|x|2|y|2 − x.y2

)
≥ 0.

It follows from this that |x.y| ≤ |x||y| when y 6= 0. But the inequality is
trivially satisfied when y = 0. This proves Schwarz’ inequality.

The length (or norm) of an element x of Rn is denoted by |x|, and is
defined by |x| =

√
x.x. Thus if x is represented by the n-tuple (x1, x2, . . . , xn)

then
|x|2 = x2

1 + x2
2 + · · ·x2

n.

If x and y are elements of Rn then the quantity |x−y| measures the distance
from the point x to the point y. (Note that this notion of distance corre-
sponds to the familiar notion of distance on the Euclidean plane R2 and on
standard 3-dimensional Euclidean space R3, by Pythagoras’ Theorem!). We
can deduce from Schwarz’ inequality the following inequality.
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Lemma 1.2 Let x and y be elements of Rn. Then

|x + y| ≤ |x|+ |y|.

Proof We expand out the quantity |x + y|2, using the definition of this
quantity as the inner product of x + y with itself. Thus

|x + y|2 = (x + y).(x + y)

= x.x + y.y + 2x.y

= |x|2 + |y|2 + 2x.y

≤ |x|2 + |y|2 + 2|x||y|
= (|x|+ |y|)2

(where we have used Schwarz’ inequality). Hence |x + y| ≤ |x| + |y|, as
required.

In particular, if x, y and z are points in Rn then

|x− y| ≤ |x− z|+ |z− y|

This important inequality is known as the triangle inequality. It describes
the fact that, for any triangle in Rn, the length of any side of that triangle
is less than the sum of the lengths of the other two sides.

1.3 Open and Closed Sets

There is a particularly important class of subsets of n-dimensional Euclidean
space Rn. These sets are known as open sets. A subset D of Rn is said to be
open if and only if, given any element a of D there exists some δ > 0 (which
might depend on a) such that all elements of Rn which satisfy |x − a| < δ
belong to D (i.e., D contains all points whose distance from a is less than
δ). In more informal language, all that this definition is saying is that a
subset D of Rn is open if and only if, for each point of D, the immediate
neighbourhood of that point is contained in D.

Example Let c and d be real numbers satisfying c < d. The open interval
(c, d) is defined to be the subset of R consisting of all real numbers t which
satisfy the inequality c < t < d. We claim that the set (c, d) is an open subset
of R. For if t is a real number satisfying c < t < d then we can choose δ > 0
such that t− δ > c and t+ δ < d. Then all numbers x satisfying |x− t| < δ
are contained in the set (c, d).
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Let a be a point of n-dimensional Euclidean space Rn. Given a strictly
positive real number δ, let B(a, δ) denote the set

{x ∈ Rn : |x− a| < δ}

consisting of all points x in Rn whose distance from the point a is less than
δ. We claim that the set B(a, δ) is an open set. In order to verify this, we
must check that if x is any point belonging to B(a, δ) then there exists some
δ1 > 0 such that all points y of Rn which satisfy |y − x| < δ1 belong to
B(a, δ) (i.e., we must show that, given any point x of B(a, δ), there exists
some δ1 > 0 such that B(x, δ1) ⊂ B(a, δ)). But this follows if we choose
δ1 = δ − |x− a|, for then δ1 > 0 (recall that x belongs to B(a, δ) if and only
if |x− a| < δ) and if |y − x| < δ1 then

|y − a| ≤ |y − x|+ |x− a|
< δ1 + |x− a| = δ,

by the triangle inequality. The subset B(a, δ) of Rn defined above is referred
to as the open ball with radius δ about a, for obvious geometric reasons. (In
the case when n = 2, one also refers to this set as the open disk with radius
δ about a, again for obvious geometric reasons.)

The definition of an open set can be rephrased as follows: a subset D of
Rn is open if and only if, for every point a of D, there exists some δ > 0
(which will usually depend on the choice of the point a) such that the open
ball B(a, δ) of radius δ about a is contained in D.

Now let X be some subset of n-dimensional Euclidean space Rn, and let
a be a point of X. Given δ > 0 we define the subset BX(a, δ) of X by

BX(a, δ) = {x ∈ X : |x− a| < δ}.

More informally, BX(a, δ) is the set consisting of all points x belonging to
the set X whose distance from a is less than δ. We refer to BX(a, δ) as the
open ball in X of radius δ about a.

We say that a subset U of X is open in X if and only if, given any point a
of U there exists some δ > 0 such that the open ball BX(a, δ) in X of radius
δ is contained in X. To express this another way: a subset U of X is open
in X if and only if for all points a of U there exists some δ > 0 (which may
depend on a) such that all points of X whose distance from a is less than δ
are contained in U .

We now prove that the union of any collection of open subsets of n-
dimensional Euclidean space is itself open. We also show that any finite
intersection of open subsets of this Euclidean space is itself open.
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Lemma 1.3 Let (Uα : α ∈ A) be a collection of open sets in n-dimensional
Euclidean space Rn. Then the union

⋃
α∈A Uα of all the open sets of this

collection is itself an open set. Also let U1, U2, . . . , Uk be a finite collection of
open sets. Then the intersection

U1 ∩ U2 ∩ · · · ∩ Uk

of this finite collection of open sets is itself an open set.

Proof We show that the union of all the open sets in the collection (Uα : α ∈
A) is itself an open set. Let a be a point which is an element of this union.
Then a is an element of Uα for one of the open sets Uα of this collection.
Therefore there exists some δ > 0 such that if x is a point of Rn which
satisfies |x − a| < δ (i.e. if the point x is within a distance δ of a) then x
is a member of Uα. But of course this means that all points of Rn that are
within a distance δ of a belong to the union

⋃
α∈A Uα of all the open sets of

the collection. Therefore this union is itself an open set.
Next we show that the intersection U1∩U2∩ · · · ∩Uk of the open sets U1,

U2,. . ., Uk is itself an open set. Let a be a point of this intersection. Then
there exist strictly positive real numbers δ1, δ2,. . ., δk such that

{x ∈ Rn : |x− a| < δi} ⊂ Ui

for i = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0, and
if x is a point of Rn which satisfies |x− a| < δ then x is an element of Ui for
i = 1, 2, . . . , k and thus

x ∈ U1 ∩ U2 ∩ · · · ∩ Uk.

Thus given any point a of U1∩U2∩ · · · ∩Uk there exists a ball (whose radius
is strictly positive) about the point a which is contained in the intersection
U1 ∩ U2 ∩ · · · ∩ Uk. Thus this intersection of open sets is itself open.

Let x be a point in Rn. A subset N of Rn is said to be a neighbourhood
of the point x if there exists an open set U such that x ∈ U and U ⊂ N . To
express this another way, a subset N of Rn is a neighbourhood of the point
x if and only if there exists some δ > 0 such that the open ball B(x, δ) of
radius δ about x is contained in N . (For if there exists some δ > 0 with this
property then B(x, δ) is an open set which contains x and which is a subset
of N ; conversely if U is an open set in Rn such that x ∈ U and U ⊂ N then
the fact that U is open implies that there exists some δ > 0 such that

B(x, δ) ⊂ U ⊂ N.)
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This gives us another characterization of open sets: a subset U of Rn is open
if and only if U is a neighbourhood of every point that belongs to U .

A subset F of n-dimensional Euclidean space is said to be closed if the
complement Rn \ F of the set F in Rn is open (where

Rn \ F ≡ {x ∈ Rn : x is not an element of F}).

The closure D of a subset D of Rn is defined to be the smallest closed
set in Rn which contains D. More formally, the closure D is characterized
by the properties that D is a closed set containing D and if F is any other
closed set containing D then D ⊂ F .

We now show that a point x of Rn belongs to the closure D of the set
D if and only if the intersection of the set D with the open ball B(x, δ) of
radius δ about x is non-empty for all strictly positive real numbers δ.

Lemma 1.4 Let D be a subset of n-dimensional Euclidean space Rn and let
D be the closure of D. Then a point x of Rn belongs to D if and only if for
every δ > 0 there exists a point y of D with the property that |y − x| < δ.

Proof Let E be the subset of Rn consisting of all points x of Rn which have
the property that the intersection of the set D with the open ball B(x, δ) of
radius δ about x is non-empty for all strictly positive real numbers δ. We
must show that E = D.

First we show that E is closed. To prove this, we must show that the
complement Rn\E of E in Rn is open. But it follows from the definition of E
that if a point x of Rn belongs to Rn\E then there exists some δ1 > 0 with the
property that B(x, δ1)∩D = ∅ (where ∅ is the empty set). Let δ be defined by
δ = 1

2
δ1. If y is an element of the open ball B(x, δ) of radius δ about the point

x then it follows from the triangle inequality that B(y, δ) ⊂ B(x, δ1) (since
δ1 = 2δ). But δ1 was chosen such that B(x, δ1) ∩D = ∅. It follows that if y
belongs to B(x, δ) then B(y, δ)∩D = ∅, and so y belongs to the complement
Rn \E of E (by the definition of the set E). We have therefore shown that if
x is an element of Rn \E then there exists some strictly positive real number
δ such that the open ball B(x, δ) of radius δ is contained in Rn \ E. Thus
Rn \ E is open, and so E is closed.

Now let F be a closed set which contains D. We show that the comple-
ment Rn \ F of F in Rn is contained in Rn \E. But Rn \ F is open, hence if
x is an element of Rn \ F then there exists some δ > 0 such that

B(x, δ) ⊂ Rn \ F.

But then B(x, δ) ∩D = ∅ (because D ⊂ F ), and thus x belongs to Rn \ E.
This shows that the complement Rn \ F of F in Rn is contained in Rn \ E,
so that E is a subset of F .
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We have therefore shown that E is a closed subset of Rn containing D
which is contained in every other closed set F that contains D. Therefore
the set E is the closure of D in Rn, which is what we set out to prove.

Example The closure of the subset (0, 1) of R is the set [0, 1] (where (0, 1)
is the set of all real numbers t satisfying 0 < t < 1 and [0, 1] is the set of all
real numbers satisfying 0 ≤ t ≤ 1).

Example Let D be the open unit ball in R3, consisting of those points
(x1, x2, x3) in R3 which satisfy

x2
1 + x2

2 + x2
3 < 1.

Then the closure D consists of all points (x1, x2, x3) of R3 which satisfy

x2
1 + x2

2 + x2
3 ≤ 1.

1.4 Continuity

A real-valued function f :D → R defined on a subset D of Rn is said to be
continuous at an element a of D if and only if, for all ε > 0 there exists some
δ > 0 (which may depend on a) such that

|f(x)− f(a)| < ε

whenever x belongs to D and

|x− a| < δ.

If f is a real-valued function defined on a subset D of some Euclidean
space, and if f is continuous at every point of D then we say that f is
continuous on D.

There is no excuse for not being able to quote this definition of continuity.
Thus if you are not at present able to reproduce this definition (e.g., on
the back of an envelope) without looking it up in your lecture notes, then
you should learn it NOW! You should also have some idea as to what the
definition of continuity means in practical terms. For example, let us consider
a real-valued function f :R3 → R defined on 3-dimensional Euclidean space
R3. Let a be a point of R3. We suppose that some ‘margin of error’ is
specified, measured by some strictly positive real number ε. To say that the
function f is continuous at a is to say that, however small the margin of
error that we allow ourselves (i.e., however close ε is to zero), we can always
find some ball about the point a so that the value of f at any point of this
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ball agrees with the value of f at the point a to within the specified ‘margin
of error’ ε (i.e., we can find a ball B(a, δ) about a such that

f(a)− ε < f(x) < f(a) + ε

at all points x within this ball).
We can rephrase the definition of continuity in terms of ‘neighbourhoods’.

Recall that if N is a subset of Rn containing the point a then N is said to
be a neighbourhood of the point a if and only if there exists some δ > 0
such that the ball B(a, δ) of radius δ about a is contained in N . Thus a set
N is a neighbourhood of the point a if it contains all points of Rn that are
‘sufficiently close’ to the point a. One can readily verify that a function f
defined on some subset D of some Euclidean space is continuous at a point
a of D if and only if, for all ε > 0, there exists a neighbourhood of a in D
such that the value of f at any point of this neighbourhood agrees with the
value of f at the point a to within an error of ε.

An important result states that compositions of continuous functions are
themselves continuous. Let f :D → R be a real-valued function defined on
a subset D of Rn and let g:E → R be a real-valued function defined on a
subset E of R. If f(D) ⊂ E (i.e., if the image of the set D under the map
f is contained in the domain E of g, so that g(f(x)) is well-defined for all
x ∈ D) then we can form the composition g ◦ f of f and g. This is the
function defined by (g ◦ f)(x) = g(f(x)) for all x ∈ D.

Lemma 1.5 Let f :D → R be a real-valued function defined on a subset D
of Rn and let g:E → R be a real-valued function defined on a subset E of
R, where f(D) ⊂ E. Suppose that f is continuous at some point a of D
and that g is continuous at f(a). Then the composition g ◦ f of f and g is
continuous at a.

Proof Let ε > 0 be given. We must show that there exists some δ > 0 such
that

|g(f(x))− g(f(a))| < ε

for all points x ofD which satisfy |x−a| < δ. Now the definition of continuity,
applied to the function g (with δ replaced by η), shows that, given ε > 0,
there exists some η > 0 such that |g(t) − g(f(a))| < ε for all t ∈ E which
satisfy |t−f(a)| < η. Also the definition of continuity, applied to the function
f shows that there exists δ > 0 such that |f(x) − f(a)| < η for all x ∈ D
which satisfy |x − a| < δ. Thus if x is an element of D which satisfies
|x− a| < δ then

|g(f(x))− g(f(a))| < ε.

This is what we set out to prove.
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1.5 Limits

Let f :D → R be a real-valued function defined on a subset D of Rn. Let
a be a point of the closure D of D. Let l be a real number. We say that l
is the limit of f(x) is x tends to a if, for all ε > 0 there exists some δ > 0
(which may depend on a) such that

|f(x)− l| < ε

whenever x belongs to D and

0 < |x− a| < δ.

(Note that in the above definition of the limit of a function f(x) as x
tends to a point a we require the point a to belong to the closure D of the
domain D of the function f . This is done merely in order to ensure that it is
indeed sensible to talk about the limit of the function. For example, if f is
a function defined on the set {t ∈ R : t > 0} of positive real numbers then it
makes sense to talk about the limit of f(t) as t tends to 1 or as t tends to 0,
but it makes little sense to talk about the limit of f as t tends to −2 (say).)

The concept of a limit is very closely related to the concept of continuity.
Indeed if D:D → R is a real-valued function defined over a subset D of Rn

then f is continuous at a point a of D if and only if limx→a f(x) exists and is
equal to f(a). This follows immediately on comparing the formal definition
of a limit given above with the formal definition of continuity.

1.6 ‘Calculus of Limits’

We shall prove various useful results concerning the behaviour of limits. The
proofs involve so-called ‘epsilon-delta’ arguments. Any student who has dif-
ficulty in constructing proofs of this sort would be well-advised to study the
the proofs of these results in some detail, since they exhibit many of the
techniques used in constructing ‘epsilon-delta’ proofs.

Lemma 1.6 Let f and g be real-valued functions defined on some subset D
of Rn. Let a be a point of the closure D of D. Suppose that

lim
x→a

f(x) = l

and
lim
x→a

g(x) = m.

Then
lim
x→a

(f(x) + g(x)) = l +m

13



and
lim
x→a

(f(x)− g(x)) = l −m.

Proof In order to prove that

lim
x→a

(f(x) + g(x)) = l +m,

we must show that, given any ε > 0, there exists some δ > 0 such that

|(f(x) + g(x))− (l +m)| < ε

for all points x of D which satisfy 0 < |x − a| < δ. Similarly, in order to
prove that

lim
x→a

(f(x)− g(x)) = l −m,

we must show that, given any ε > 0, there exists some δ > 0 such that

|(f(x)− g(x))− (l −m)| < ε

for all points x of D which satisfy 0 < |x− a| < δ.
Now

|(f(x) + g(x))− (l +m)| ≤ |f(x)− l|+ |g(x)−m|
and

|(f(x)− g(x))− (l −m)| ≤ |f(x)− l|+ |g(x)−m|
(by Lemma 1.2). On applying the definition of limits to the function f ,
we conclude that, given any ε1 > 0, there exists some δ1 > 0 such that
|f(x)− l| < ε1 for all points x of D which satisfy 0 < |x− a| < δ1. Similarly,
applying the definition of limits to the function g, we conclude that, given
any ε2 > 0, there exists some δ2 > 0 such that |g(x)−m| < ε2 for all points
x of D which satisfy 0 < |x− a| < δ2. In particular, suppose that we choose
ε1 = 1

2
ε and ε2 = 1

2
ε. We conclude that there exist δ1 > 0 and δ2 > 0

such that |f(x) − l| < 1
2
ε at every point x of D satisfying 0 < |x − a| < δ1,

|g(x)−m| < 1
2
ε at every point x of D satisfying 0 < |x− a| < δ2. Let δ be

the minimum of δ1 and δ2. Then δ > 0. Moreover, if x is a point of D which
satisfies 0 < |x− a| < δ then

|(f(x) + g(x))− (l +m)|
≤ |f(x)− l|+ |g(x)−m|
< 1

2
ε+ 1

2
ε = ε

and similarly
|(f(x)− g(x))− (l −m)| < ε.

But this is what we set out to prove.
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Next we show that the limit of a product of two functions is the product
of the limits of these functions, provided that these limits exist. The method
of proof is the same as that used in proving Lemma 1.6, but the details of
the proof are somewhat more complicated.

Lemma 1.7 Let f and g be real-valued functions defined on some subset D
of Rn. Let a be a point of the closure D of D. Suppose that

lim
x→a

f(x) = l

and
lim
x→a

g(x) = m.

Then
lim
x→a

(f(x)g(x)) = lm.

Proof To show that limx→a (f(x)g(x)) = lm. we must show that given any
ε > 0 there exists some δ > 0 such that

|f(x)g(x)− lm| < ε

whenever 0 < |x− a| < δ. Now

f(x)g(x)− lm = f(x) (g(x)−m) + (f(x)− l)m,

and hence

|f(x)g(x)− lm| ≤ |f(x)| |g(x)−m|+ |f(x)− l| |m|.

It therefore suffices to show that

|f(x)| |g(x)−m| < 1
2
ε

and
|f(x)− l| |m| < 1

2
ε

for all points x of D that are sufficiently close to the point a.
Now limx→a f(x) = l. Thus, given any ε1 > 0, there exists some δ1 > 0

such that |f(x)− l| < ε1 for all points x of D which satisfy 0 < |x− a| < δ1.
We first apply this result when

ε1 =
ε

2(|m|+ 1)
.
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We conclude that there exists δ1 > 0 such that if x is a point of D which
satisfies 0 < |x− a| < δ1 then

|f(x)− l| < ε

2(|m|+ 1)
,

and hence
|f(x)− l| |m| < 1

2
ε.

If we apply the definition of the limit of f as x tends to a (given above)
in the particlar case where ε1 = 1 we see that there exists δ3 > 0 such that if
0 < |x− a| < δ3 then |f(x)− l| < 1. Thus |f(x)| < |l|+ 1 for all points x of
D satisfying 0 < |x−a| < δ3. Also the formal definition of the limit, applied
to the function g, states that, given any ε2 > 0, there exists some δ2 > 0 such
that |g(x)−m| < ε2 for all points x of D which satisfy 0 < |x− a| < δ2. We
apply this result when

ε2 =
ε

2(|l|+ 1)

in order to conclude that there exists δ2 > 0 such that if x is a point of D
which satisfies 0 < |x− a| < δ2 then

|g(x)−m| < ε

2(|l|+ 1)
.

Thus if x ∈ D satisfies the inequalities 0 < |x− a| < δ2 and 0 < |x− a| < δ3

then
|f(x)| |g(x)−m| < (|l|+ 1)

ε

2(|l|+ 1)
= 1

2
ε.

Let us choose δ to be the minimum of δ1, δ2 and δ3. Then δ > 0. If x is any
point of D which satisfies 0 < |x− a| < δ then

|f(x)− l| |m| < 1
2
ε.

and
|f(x)| |g(x)−m| < 1

2
ε,

(since 0 < |x− a| is less than δ1, δ2 and δ3). Thus if 0 < |x− a| < δ then

|f(x)g(x)− lm| < ε.

This shows that
lim
x→a

(f(x)g(x)) = lm.
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It is perhaps worthwhile to describe in a more informal fashion the rea-
soning underlying the above proof. First of all we should have a clear idea
of the objective: given any strictly positive real number ε, no matter how
small, we have to show that the value of f(x)g(x) is within ε of the number
lm for all points x of D that are ‘sufficiently close’ to the point a. The basic
trick involved is to observe that

f(x)g(x)− lm = f(x) (g(x)−m) + (f(x)− l)m.

Thus we can ensure that f(x)g(x) is close to lm by arranging matters so
that f(x) is close to l and g(x) is close to m. More specifically, if we arrange
matters such that

|f(x)| |g(x)−m| < 1
2
ε

and
|f(x)− l| |m| < 1

2
ε

then
|f(x)g(x)− lm| < ε.

This illustrates an obvious but useful technique: if we have a sum of k terms
and we wish to ensure that the modulus of the sum is less than some strictly
positive number ε then it suffices to arrange matters so that the modulus of
each individual term is less than ε/k. We now have to work on the terms
|f(x)| |g(x)−m| and |f(x)− l| |m|. The second of these expressions is the
easier to work with: to show that |f(x)− l| |m| is less than 1

2
ε, we merely

have to show that |f(x)− l| is less than ε/(2(|m|+ 1)) for all points x of D
‘sufficiently close’ to a. To do this we simply apply the definition of the limit
(applied to the function f).

It remains to show that |f(x)| |g(x)−m| is less than 1
2
ε at all points x of

D that are ‘sufficiently close’ to a. We know that limx→a f(x) = l. Therefore
the f(x) is close to l at all points x of D that are ‘sufficiently close’ to a.
In particular, if x is ‘sufficiently close’ to a, then |f(x)| < |l| + 1. Thus it
suffices to show that |g(x)−m| is less than ε/(2(|l| + 1)) for all points x of
D that are ‘sufficiently close’ to a. To do this we simply apply the definition
of the limit (applied to the function g).

Thus in order to show that

|f(x)g(x)− lm| < ε

at all points x of D that are sufficiently close to the point a it suffices to
choose δ to be a strictly positive real number that is chosen sufficiently small
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that if x is any point of D whose distance |x− a| from a is less than δ then
all three inequalities

|f(x)− l| < ε

2(|m|+ 1)
,

|g(x)−m| < ε

2(|l|+ 1)
,

|f(x)| < |l|+ 1

are valid simultaneously, then the inequality

|f(x)g(x)− lm| < ε

holds for all values x of D for which 0 < |x− a| < δ. This is what we need
to prove in order to show that

lim
x→a

(f(x)g(x)) = lm.

Next we examine the effect on limit of a function on composing that
function with some other continuous function.

Lemma 1.8 Let f :D → R be a real-valued function defined on a subset D
of Rn, and let a be a point of the closure D of the set D. Suppose that

lim
x→a

f(x) = l

for some real number l. Let g:E → R be a continuous real-valued function
defined on a subset E of R, where E contains an open neighbourhood of l.
Then

lim
x→a

g(f(x)) = g(l).

Proof Let ε > 0 be given. We must show that there exists some δ > 0 such
that

|g(f(x))− g(l)| < ε

for all points x of D which satisfy 0 < |x − a| < δ. Now the definition
of continuity, applied to the function g (with δ replaced by η), shows that,
given ε > 0, there exists some η > 0 such that |g(t)− g(l)| < ε for all t ∈ E
which satisfy |t− l| < η. Also the definition of limits, applied to the function
f shows that there exists δ > 0 such that |f(x) − l| < η for all x ∈ D
which satisfy 0 < |x − a| < δ. Thus if x is an element of D which satisfies
0 < |x− a| < δ then

|g(f(x))− g(l)| < ε.

This is what we set out to prove.
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Lemma 1.9 Let f and g be real-valued functions defined on some open sub-
set D of Rn. Let a be a point of the closure D of D. Suppose that

lim
x→a

f(x) = l

and
lim
x→a

g(x) = m,

where m 6= 0. Then

lim
x→a

(
f(x)

g(x)

)
=

l

m
.

Proof Let r:R \ {0} → R be the reciprocal function on the set R \ {0} of
non-zero real numbers defined by r(t) = 1/t. We show that this function r is
continuous on R\{0}. Once we have shown this, then we can apply Lemmas
1.7 and 1.8 in order to deduce the desired result. Indeed

lim
x→a

(
1

g(x)

)
= lim

x→a
r(g(x)) = r(m) =

1

m

by Lemma 1.8, and hence

lim
x→a

(
f(x)

g(x)

)
=

l

m
,

by Lemma 1.7.
We must therefore show that the reciprocal function r is continuous on

R \ {0}. Let s be a non-zero real number. Suppose that we are given some
ε > 0. Let δ be the mininum of 1

2
|s| and 1

2
ε|s|2). If t is a real number

satisfying |t− s| < δ then |t| ≥ |s| − |t− s| and so |t| > 1
2
|s|. Thus if t is any

non-zero real number satisfying |t− s| < δ then∣∣∣∣1t − 1

s

∣∣∣∣ =

∣∣∣∣s− tts

∣∣∣∣ < 2

|s|2
|t− s| < ε

(since |t − s| < δ ≤ 1
2
ε|s|2). We have therefore shown that, given any ε > 0

there exists some δ > 0 such that if t is any non-zero real number satisfying
|t − s| < δ then |r(t) − r(s)| < ε. Thus we have verified that the reciprocal
function r is continuous at s, where s is an arbitrary non-zero real number.
This completes the proof, since we have already shown that the desired result
follows from the continuity of the reciprocal function.
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1.7 Properties of Continuous Functions

Let f :D → R be a real-valued function defined on a subset D of Rn. We
noted above that the function f is continuous at a point a of D if and only
if the limit limx→a f(x) exists and is equal to f(a).

If f and g are real-valued functions defined on a subset D of Rn then we
denote by f + g,f − g and f.g the sum, difference and product respectively
of the functions f and g. Naturally these functions are defined by

(f + g)(x) = f(x) + g(x),

(f − g)(x) = f(x)− g(x),

(f.g)(x) = f(x)g(x).

If g is not identically zero then the quotient f/g of f and g is defined on the
set {x ∈ D : g(x) 6= 0} (where (f/g)(x) = f(x)/g(x)).

Theorem 1.10 Let f and g be real-valued functions defined on a subset D
of n-dimensional Euclidean space Rn. Let a be a point of D. Suppose that
the functions f and g are continuous at the point a. Then the functions f+g
and f − g and f.g are also continuous at a. If also g(a) is non-zero then the
function f/g is continuous at a.

Proof We know that

lim
x→a

f(x) = f(a),

lim
x→a

g(x) = g(a),

because f and g are continuous at a. We conclude from Lemmas 1.6 and 1.7
that

lim
x→a

(f(x) + g(x)) = f(a) + g(a),

lim
x→a

(f(x)− g(x)) = f(a)− g(a),

lim
x→a

f(x)g(x) = f(a)g(a).

Hence f + g, f − g and f.g are continuous at a. Similarly it follows from
Lemma 1.9 that f/g is continuous at a.

We have already proved that a composition of continuous functions is
itself continuous (see Lemma 1.5). Using this result and Theorem 1.10 we
obtain a plentiful supply of continuous functions: every polynomial func-
tion is continuous, and a rational function (i.e., a quotient of polynomial
functions) is continuous at all points at which it is well-defined.
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1.8 ‘Vector-Valued Functions’

Let D be a subset of n-dimensional Euclidean space Rn. We shall be con-
sidering ‘vector-valued’ functions ϕ:D → Rm that map D into Rm for some
positive integer m. A typical example of such a function is provided by a
vector field on 3-dimensional Euclidean space (such as an electric field or
a magnetic field). Such a vector field, defined over some subset D of 3-
dimensional Euclidean space can be regarded as a function from D to R3

(i.e., it maps a point of D to a triple of real numbers which specify the 3
components of the vector field at that point).

The definitions of continuity and of limits for such functions are analogous
to those for real-valued functions that are given above. Thus a function
ϕ:D → R which maps a subset D of Rn into Rm is said to be continuous at
an element a of D if and only if, for all ε > 0 there exists some δ > 0 (which
may depend on a) such that

|ϕ(x)− ϕ(a)| < ε

whenever x belongs to D and

|x− a| < δ.

(Here of course |ϕ(x) − ϕ(a)| measures the distance from ϕ(x) to ϕ(a)| in
the Euclidean space Rm.

If a is an element of the closure of D and if v is an element of Rm then
we say that v is the limit of ϕ(x) as x tends to a if, for every ε > 0 there
exists some δ > 0 such that |ϕ(x) − v| < ε whenever x belongs to D and
0 < |x− a| < δ.

If ϕ:D → Rm is a function which maps a subset D of Rn into Rm then
the components of the function ϕ are the real-valued functions ϕ1, ϕ2,. . ., ϕm
defined such that

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) .

The following lemma enables us to deduce results concerning ‘vector-
valued functions’ directly from corresponding results for real-valued func-
tions.

Lemma 1.11 Let ϕ:D → Rm be a function which maps a subset D of Rn

into Rm. Let a be a point of the closure D of D and let v be an element of
Rm. Then

lim
x→a

ϕ(x) = v
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if and only if
lim
x→a

ϕi(x) = vi

for i = 1, 2, . . . ,m, where ϕi(x) denotes the ith component of ϕ(x) and vi
denotes the ith component of v.

Proof Suppose that limx→a ϕ(x) = v. We show that limx→a ϕi(x) = vi
for all i. Let ε > 0 be given. Then there exists some δ > 0 such that
|ϕ(x)− v| < ε whenever x belongs to D and 0 < |x− a| < δ. But

|ϕi(x)− vi| ≤ |ϕ(x)− v|

for all i, hence |ϕi(x)− vi| < ε whenever x belongs to D and 0 < |x−a| < δ.
This shows that limx→a ϕi(x) = vi for all i.

Conversely we must show that if limx→a ϕi(x) = vi for i = 1, 2, . . . ,m
then limx→a ϕ(x) = v. Let ε > 0 be given. Applying the definition of the
limit of a function (with ε replaced by ε/

√
m we see that there exist strictly

positive real numbers δ1, δ2,. . ., δm such that

|ϕi(x)− vi| <
ε√
m

whenever x belongs to D and 0 < |x− a| < δi. Let δ be the minimum of δ1,
δ2,. . ., δm. Then δ > 0, and if x is a point of D which satisfies 0 < |x−a| < δ
then

|ϕi(x)− vi| <
ε√
m

for i = 1, 2, . . . ,m. But

|ϕ(x)− v|2 =
m∑
i=1

|ϕi(x)− vi|2,

hence |ϕ(x)−v|2 < ε2. We have therefore shown that, given any ε > 0 there
exists some δ > 0 such that |ϕ(x) − v| < ε whenever x belongs to D and
0 < |x− a| < δ. We deduce that limx→a ϕ(x) = v, as required.

Using this result together with Lemma 1.6 we deduce immediately that
if ϕ:D ∈ Rm and ψ:D ∈ Rm are functions which map D into Rm and if
limx→a ϕ(x) = v and limx→a ψ(x) = w then

lim
x→a

(ϕ(x) + ψ(x)) = v + w

and
lim
x→a

(ϕ(x)− ψ(x)) = v −w.
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Similarly we can use Lemma 1.7 together with Lemma 1.11 to deduce that

lim
x→a

ϕ(x).ψ(x) = v.w.

Also if f :D → R is a real-valued function on D and if limx→a f(x) = λ then

lim
x→a

f(x)ϕ(x) = λv.

Thus if the functions ϕ, ψ and f are continuous at a then so are ϕ+ψ, ϕ−ψ,
ϕ.ψ and fϕ (where (ϕ.ψ)(x) = ϕ(x).ψ(x)).

We now show that a composition of continuous ‘vector-valued’ functions
is continuous. The proof is closely modelled on that of Lemma 1.5.

Lemma 1.12 Let ϕ:D → Rm be a function defined on a subset D of Rn and
let ψ:E → Rp be a real-valued function defined on a subset E of Rm, where
ϕ(D) ⊂ E. Suppose that ϕ is continuous at some point a of D and that ψ is
continuous at ϕ(a). Then the composition ψ ◦ϕ of ϕ and ψ is continuous at
a.

Proof Let ε > 0 be given. We must show that there exists some δ > 0 such
that

|ψ(ϕ(x))− ψ(ϕ(a))| < ε

for all points x ofD which satisfy |x−a| < δ. Now the definition of continuity,
applied to the function ψ (with δ replaced by η), shows that, given ε > 0,
there exists some η > 0 such that |ψ(u) − ψ(ϕ(a))| < ε for all u ∈ E
which satisfy |u−ϕ(a)| < η. Also the definition of continuity, applied to the
function ϕ shows that there exists δ > 0 such that |ϕ(x)− ϕ(a)| < η for all
x ∈ D which satisfy |x− a| < δ. Thus if x is an element of D which satisfies
|x− a| < δ then

|ψ(ϕ(x))− ψ(ϕ(a))| < ε.

This is what we set out to prove.

1.9 The Relationship between Continuous Functions
and Open Sets

One can give a very elegant characterization of the notion of continuity in
terms of open sets. For simplicity, we consider functions defined over the
whole of Rn.

Let ϕ:Rn → Rm be a function that maps Rn into Rm. Given any subset
V of Rm, we denote by ϕ−1(V ) the subset

ϕ−1(V ) = {x ∈ Rn : ϕ(x) ∈ V }

of Rn consisting of all points of Rn that are mapped into V by ϕ.
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Theorem 1.13 Let ϕ:Rn → Rn be a real-valued function over the whole of
n-dimensional Euclidean space Rn. Then the function ϕ is continuous on Rn

if and only if ϕ−1(V ) is an open subset of Rn for every open subset V of Rm

Proof Suppose that ϕ:Rn → Rm is continuous. Let V be an open set in
Rm. We must show that ϕ−1(V ) is open. Let a be a point of ϕ−1(V ).
Then ϕ(a) ∈ V and hence there exists some ε > 0 such that the open ball
B(ϕ(a), ε) of radius ε about ϕ(a) is contained in the open set V . Applying
the definition of continuity to the function ϕ we see that there exists some
δ > 0 such that |ϕ(x) − ϕ(a)| < ε whenever |x − a| < δ. This means that
the image ϕ(B(a, δ)) of the open ball B(a, δ) under the map ϕ is contained
in B(ϕ(a), ε) and is thus contained in V . Therefore

B(a, δ) ⊂ ϕ−1(V ).

We have therefore shown that given any point a of ϕ−1(V ) there exists an
open ball about a which is contained in the set ϕ−1(V ). Thus we have shown
that ϕ−1(V ) is open.

Conversely, suppose that ϕ:Rn → Rm is a map with the property that
ϕ−1(V ) is an open subset of Rn for every open subset V of Rm. We must
show that ϕ is continuous. Thus we must show that, given any point a of
Rn and given any ε > 0 there exists some δ > 0 (where δ might depend on
the choice of the point a) such that |ϕ(x)− ϕ(a)| < ε whenever |x− a| < δ.
But if we are given ε > 0 then the open ball B(f(a), ε) of radius ε about a is
an open set in Rm, and therefore ϕ−1(B(f(a), ε)) is an open set in Rn. But
a is a point of this set, hence there exists some δ > 0 such that

B(a, δ) ⊂ ϕ−1(B(f(a), ε))

(where B(a, δ) is the open ball of radius δ about a). But this means that if
x is a point of Rn which satisfies |x − a| < δ then |ϕ(x) − ϕ(a)| < ε. Thus
ϕ is continuous at a.

Applying this theorem in the case of a function mapping Rn into R we
deduce the following result.

Corollary 1.14 Let f :Rn → R be a continuous real-valued function defined
over the whole of Rn. Then, for every real number c, the sets

{x ∈ Rn : f(x) > c}

and
{x ∈ Rn : f(x) < c}

are open.
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Proof Note that

{x ∈ Rn : f(x) > c} = f−1{t ∈ R : t > c}

and
{x ∈ Rn : f(x) < c} = f−1{t ∈ R : t < c}.

Also the sets {t ∈ R : t > c} and {t ∈ R : t > c} are open subsets of R. The
result therefore follows immediately from the preceding theorem.

1.10 Sequences

Let (xi : i ∈ N) be a sequence of points in Rn. The sequence is said to
converge to a point a of Rn if, for any ε > 0 there exists some natural
number N such that |xi − a| < ε for all i satisfying i ≥ N . If the sequence
(xi : i ∈ N) converges to the point a then we say that a is the limit of the
sequence, and we write

a = lim
i→+∞

xi.

One can prove that if the sequences (xi : i ∈ N) (yi : i ∈ N) in Rn

converge to points a and b of Rn, then

lim (xi + yi) = a + b,

lim (xi.yi) = a.b.

If also (λi : i ∈ N) is a sequence of real numbers which converges to a real
number β then

limλixi = βa.

We now prove two important properties of continuous functions.

Lemma 1.15 Let D be a subset of n-dimensional Euclidean space Rn, and
let (xi : i ∈ N) be a sequence of points in D which converges to some point
a of D. Let φ:D → Rm be a continuous function mapping D into Rm for
some m. Then

lim
i→+∞

φ(xi) = φ(a).

Proof Suppose that we are given some ε > 0. Then there exists some δ > 0
such that |φ(x) − φ(a)| < ε for all points x of D which satisfy |x − a| < δ.
But from the definition of convergence (with δ playing the role of ε) we see
that there exists some positive integer N such that |xi − a| < δ for all i
satisfying i ≥ n. Thus |φ(xi) − φ(a)| < ε for all i satisfying i ≥ N . Thus
φ(xi) converges to φ(a) as i tends to +∞, as required.
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Lemma 1.16 Let D be a subset of n-dimensional Euclidean space Rn, and
let (xi : i ∈ N) be a sequence of points in D which converges to some point a of
D. Let f :D → R be a continuous real-valued function on D. If f(xi) ≥ c for
all positive integers i, where c is some real number, then f(a) ≥ c. Similarly,
if f(xi) ≤ d for all positive integers i, where d is some real number, then
f(a) ≤ d.

Proof Suppose that f(xi) ≥ c for all i. We must show that f(a) ≥ c. We
shall show that a contradiction would arise, were it the case that f(a) < c.
Indeeed suppose that the inequality f(a) < c were to hold. Then there would
exist some ε > 0 such that f(a) + ε < c. There would then exist some δ > 0
such that |f(x) − f(a)| < ε for all points x of D which satisfy |x − a| < δ,
since f is continuous. In particular, f(x) < c for all points x of D which
satisfy |x− a| < δ. But then there would exist some positive integer N such
that |xi − a| < δ for all i satisfying i ≥ N , since the sequence (xi : i ∈ N)
converges to a. Thus we would have f(xi) < c for all i satisfying i ≥ N ,
contradicting the condition that f(xi) ≥ c for all i. Thus we have shown
that f(a) ≥ c. An analogous proof shows that if f(xi) ≤ d for all i then
f(a) ≤ d.

We now prove an important property of closed sets in Euclidean space.

Lemma 1.17 Let F be a closed subset of n-dimensional Euclidean space Rn.
Let (xi : i ∈ N) be a sequence of points of F which converges to some point
a of Rn. Then the point a belongs to F .

Proof Suppose that it were the case that a does not belong to F . We show
that this leads to a contradiction. Now the definition of a closed set tells
us that the complement of F in Rn is open. Thus if it were the case that a
does not belong to F then there would exist some δ > 0 such that if x is any
point of Rn which satisfies |x − a| < δ then x does not belong to F . But
then there would exist some positive integer N such that |xi − a| < δ for all
i satisfying i ≥ N , since the sequence (xi) converges to a. Thus we would
have that xi does not belong to F if i ≥ N . This the required contradiction.
We conclude therefore that a belongs to F .

Note that one can use Lemma 1.15 and Lemma 1.17 to give another proof
of Lemma 1.16. For let (xi : i ∈ N) be a sequence of points contained in
some subset D of Rn which converges to a point a of Rn, and let f :D → R
be a continuous real-valued function on D. Then f(xi) converges to f(a)
as i tends to +∞, by Lemma 1.15. Suppose that f(xi) ≥ c for all i. Now
the subset [c,+∞) consisting of all real numbers t satisfying t ≥ c is a
closed subset of R. But f(xi) ∈ [c,+∞) for all i, hence f(a) ∈ [c,+∞), by
Lemma 1.17. Thus f(a) ≥ c. Similarly, if f(xi) ≤ d for all i then f(a) ≤ d.
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2 The Bolzano-Weierstrass Theorem

The theorems proved in this section make use of the least upper bound prin-
ciple. This principle states that any subset S of the set R of real numbers
which is bounded above has a least upper bound (or supremum), denoted by
supS. Similarly any subset of R which is bounded below has a greatest lower
bound or infimum.

One of the consequences of the least upper bound principle is the fact
that bounded increasing sequences of real numbers always converge, as do
bounded decreasing sequences of real numbers.

Lemma 2.1 Let (si : i ∈ N) be an increasing sequence of real numbers.
Suppose that there exists some constant C such that si ≤ C for all i ∈ N.
Then the sequence (si) converges, and the limit s of this sequence satisfies
s ≤ C.

Similarly let (ti : i ∈ N) be a decreasing sequence of real numbers. Suppose
that there exists some constant C ′ such that ti ≥ C ′ for all i ∈ N. Then the
sequence (ti) converges, and the limit t of this sequence satisfies t ≥ C ′.

Proof Let S be the set S = {si : i ∈ N} consisting of all of the elements of
the sequence (si). Then the constant C is an upper bound for the set S. By
the least upper bound principle we conclude that the set S has a least upper
bound supS. Define s = supS. We claim that s is the limit of the sequence
(si).

Let ε > 0 be given. Now there must exist some element sN of the sequence
(si) with the property that sN > s − ε, since otherwise s − ε would be an
upper bound for the set S, contradicting the definition of s as the least upper
bound of this set. But the sequence (si) is increasing, so that if i ≥ N then
si ≥ sN > s − ε. Also si ≤ s for all i (because s is an upper bound for the
set S. Thus if i ≥ N then s− ε < si < s, and hence |si − s| < ε.

We have therefore shown that, given any ε > 0 there exists some positive
integer N such that |si − s| < ε whenever i ≥ N . Thus we have shown that
s is the limit of the sequence s, and moreover s ≤ C (because C is an upper
bound for the set S and s is by definition the least upper bound of this set).

An analogous proof shows that the bounded decreasing sequence (ti : i ∈
N) converges. Indeed the limit of this sequence is inf T , where T = {ti : i ∈
N}.

We now define the concept of a subsequence of a sequence (si : i ∈ N) of
elements of Rn. A subsequence of the sequence (si) is defined to be a sequence
of the form (si(j) : j ∈ N), where (i(j) : j ∈ N) is an increasing sequence of
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positive integers. Thus a subsequence is a sequence obtained by making a
selection of elements of the original sequence. For example, if (s1, s2, s3, . . .)
is a sequence of elements of Rn then (s2, s4, s6, . . .) is a subsequence of the
original sequence.

An important theorem of analysis is the Bolzano-Weierstrass Theorem,
which states that every bounded sequence of real numbers possesses a con-
vergent subsequence. We now prove this result. As we shall see, the proof
given here makes essential use of the Least Upper Bound Principle.

Theorem 2.2 (Bolzano-Weierstrass) Every sequence of real numbers that is
bounded above and below possesses a convergent subsequence.

Proof Let (si : i ∈ N) be a sequence of real numbers that is bounded above
and below. For all positive integers m let us define

Sm = {si ∈ R : i ≥ m}.
Then each Sm is a subset of R that is bounded above and below. Moreover
Sr ⊂ Sm whenever r > m. Let us define am = supSm for all positive integers
m. (Note that am exists, by the Least Upper Bound Principle, because each
Sm is bounded above.) Now there exists some constant C such that si ≥ C
for all i, since the sequence (si) is bounded below. But am ≥ sm, hence
am ≥ C for all positive integers m. It follows from Lemma 2.1 that the
sequence (am : m ∈ N) converges to some real number c. We shall show that
there exists a subsequence of the sequence (si : i ∈ N) which converges to c.

We construct a subsequence (si(j) : j ∈ N) of the sequence (si) with the
property that |si(j)−c| < 1/j for all positive integers j. Suppose that we have
found i(1), i(2), . . . i(k − 1) such that |si(j) − c| < 1/j for j = 1, 2, . . . , k − 1.
We can find some positive integer m with the properties that m > i(k − 1)
and am < c+ 1/k (since (am) is a decreasing sequence of real numbers which
converges to c). Thus if i ≥ m then si < c+1/k. But c−1/k is not an upper
bound for the set Sm (because c−1/k < am and am is the least upper bound
of Sm). Therefore there must exist some i(k) ≥ m such that si(k) > c− 1/k.
Then |si(k) − c| < 1/k. In this way we can construct, by induction on j, a
subsequence (si(j) : j ∈ N) of the original sequence with the property that
|si(j) − c| < 1/j for all j. Then c = lim

j→+∞
si(j), as required.

Remark Given a sequence (si : i ∈ N) of real numbers that is bounded
above and below, we denote by lim sup

i→+∞
si and lim inf

i→+∞
si the quantities defined

by

lim sup
i→+∞

= lim
m→+∞

sup{si : i ≥ m},

lim inf
i→+∞

= lim
m→+∞

inf{si : i ≥ m}.
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The proof of the Bolzano-Weierstrass theorem given above shows that the
sequence (si) has a subsequence converging to lim sup

i→+∞
si. A similar proof

shows that it has a subsequence converging to lim inf
i→+∞

si.

We can generalize the Bolzano-Weierstrass Theorem to n-dimensional
Euclidean space Rn. Thus let (xi : i ∈ N) be a sequence in Rn. We say
that this sequence is bounded if there exists a positive constant C such that
|xi| ≤ C for all i ∈ N. We shall show that bounded sequences in Rn possess
convergent subsequences. First we prove a lemma which shows that if a
sequence in Rn converges ‘componentwise’ then it converges in Rn.

Lemma 2.3 Let (xi : i ∈ N) be a sequence of points in n-dimensional Eu-
clidean space Rn. Suppose that the jth components of the elements of this
sequence form a sequence of real numbers converging to some cj ∈ R. Then
the sequence (xi) converges to the point c of Rn, where c = (c1, c2, . . . , cn).

Proof Let us denote by x
(j)
i the jth component of xi for j = 1, 2, . . . , n. Let

ε > 0 be given. Then there exist positive integers N1, N2, . . . , Nn such that

|x(j)
i − cj| <

ε√
n

for all i satisfying i ≥ Nj. Let N be the maximum of N1, N2, . . . , Nn. Then

|xi − c|2 =
n∑
j=1

|x(j)
i − cj|2,

and hence |xi − c| < ε for all integers i satisfying i ≥ N . This shows that
the sequence (xi : i ∈ N) converges to c, as required.

The following theorem generalizes the Bolzano-Weierstrass theorem to
sequences in Rn.

Theorem 2.4 Every bounded sequence of points in n-dimensional Euclidean
space Rn has a convergent subsequence.

Proof Let (xi) be a bounded sequence in Rn. By the Bolzano-Weierstrass
Theorem, applied to the sequence of real numbers represented by the 1st
components of the elements of the sequence (xi), there exists a subsequence
of the sequence (xi) such that the 1st components of the elements of this
subsequence constitute a convergent sequence of real numbers. We apply the
Bolzano-Weierstrass Theorem to the 2nd components of the elements of this

29



subsequence to conclude that there exists a subsequence of the subsequence
just constructed for which the 2nd components of the elements of this new
subsequence constitute a convergent sequence of real numbers. Of course
the 1st components of the elements of this new subsequence also constitute
a convergent sequence of real numbers (since subsequences of convergent
sequences are convergent).

We can continue in this fashion to construct the required subsequence of
the original sequence. Thus suppose that, for some integer k between 2 and n,
we have found a subsequence of (xi) such that the jth components of the el-
ements of this subsequence constitute a convergent sequence of real numbers
for j = 1, 2, . . . , k−1. We can apply the Bolzano-Weierstrass Theorem to the
kth components of this subsequence to extract a further subsequence from
the subsequence already found with the property that the kth components of
the elements of this new subsequence constitute a convergent sequence of real
numbers. We have thus constructed a subsequence of the original sequence
with the property that the jth components of the elements of this subse-
quence constitute a convergent sequence of real numbers for j = 1, 2, . . . , k.
By repeatedly applying this procedure we obtain a subsequence of the origi-
nal sequence such that the jth components of this subsequence constitute a
convergent sequence for j = 1, 2, . . . , n. This subsequence is convergent, by
Lemma 2.3.

We now introduce the notion of a cluster point of a subset S of n-
dimensional Euclidean space Rn. We say that a point a of Rn is a cluster
point (or limit point) of the set S if, for every ε > 0, there exist an infinite
number of elements s of the set S with the property that |s−a| < ε. Thus a
point a of Rn is a cluster point of the set S if and only if every neighbourhood
of the point a contains infinitely many of the elements of S.

Example Let S be the subset of R consisting of all numbers of the form
1/n, where n is a non-zero integer. Then 0 is a cluster point for this set,
since given any ε > 0 there exist infinitely many non-zero integers n with the
property that |1/n| < ε. Indeed 0 is the only cluster point of the set S.

Example Let a be any real number. Then a is a cluster point of the set Q
of rational numbers (i.e., numbers of the form p/q where p and q are integers
and q 6= 0). Indeed for any ε > 0 there exist infinitely many rational numbers
r satisfying a− ε < r < a+ ε.

Corollary 2.5 Let S be an infinite subset of Rn. Suppose that S is bounded.
Then S possesses a cluster point.
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Proof There exists a sequence (si : i ∈ N) of distinct points of S, since S is
infinite. This sequence has a subsequence which converges to some point c
of Rn, by Theorem 2.4. Then c is a cluster point of the set S.

3 Continuous Functions on Closed Bounded

Subsets of Euclidean Space

We shall use the n-dimensional generalization of the Bolzano-Weierstrass
Theorem (Theorem 2.4) to show that continuous functions are bounded above
and below on closed bounded subsets of Euclidean space. (A subset K of Rn

is said to be bounded if there exists some R > 0 such that |x| ≤ R for all
x ∈ K.)

Theorem 3.1 Let K be a closed bounded subset of Rn and let f :K → R be
a continuous function on K. Then there exist constants A and B such that
A ≤ f(x) ≤ B for all points x of K.

Proof Suppose that the function f were not bounded above. Then there
would exist a sequence (xi : i ∈ N) of points of K such that f(xi) ≥ i for
all positive integers i. This sequence would have a convergent subsequence
(xi(j) : j ∈ N), by Theorem 2.4. Let c be the limit of this convergent
subsequence. The set K is closed, hence c is a point of K (by Lemma 1.17).
Now f is continuous at c. Applying the definition of continuity, we see that
there would exist some δ > 0 such that |f(x) − f(c)| < 1 for all points x
of K satisfying |x− c| < δ. There would also exist some positive integer N
such that |xi(j) − c| < δ for all j satisfying j ≥ N (since the subsequence
converges to c). However this leads to a contradiction, for we would then
have f(xi(j)) < f(c)+1 for all sufficiently large j, contradicting the fact that
f(xi(j)) ≥ i(j) for all j (where i(j)→ +∞ as j → +∞). This contradiction
shows that f is bounded above on K. Similarly the continuous function f is
bounded below on K.

The next theorem shows that continuous functions attain their bounds
on closed bounded subsets of Euclidean space.

Theorem 3.2 Let K be a closed bounded subset of Rn and let f :K → R be
a continuous function on K. Then there exist points a and b of K such that

f(a) ≤ f(x) ≤ f(b)

for all x ∈ K.
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Proof The function f is bounded above on K, by Theorem 3.1. Define

c = sup{f(x) : x ∈ K}.

We must show that there exists some point b of K such that f(b) = c. Now
for each positive integer i there exists a point xi of K for which c − 1/i <
f(xi) ≤ c. Now the sequence (xi) has a convergent subsequence (xi(j) : j ∈
N), by Theorem 2.4. Let b be the limit of this subsequence. The point b
is in K (by Lemma 1.17), since K is closed. Also f(b) = lim

j→+∞
f(xi(j)), by

Lemma 1.15. But lim
i→+∞

f(xi) = c. Hence f(b) = c. It follows from the

definition of c that f(x) ≤ f(b) for all x ∈ K. A similar argument shows
that there exists some point a of K such that f(x) ≥ f(a) for all x ∈ K.

Let D be a subset of Rn and let f :D → R be a real-valued function on
D. The function f is said to be uniformly continuous on D if and only if, for
all ε > 0 there exists some δ > 0 such that |f(x)− f(y)| < ε for all points x
and y in D which satisfy |x − y| < δ, where δ does not depend on either x
or y.

Example Let D be the set {t ∈ R : t > 0} of positive real numbers, and
let r:D → R be the reciprocal function, defined by r(t) = 1/t. Then r
is continuous on D (as is shown in the proof of Lemma 1.9). However r
is not uniformly continuous on D. For suppose that ε > 0 is given. If r
were uniformly continuous, then there would exist some δ > 0 such that
|r(s)−r(t)| < ε for all positive real numbers s and t which satisfy |s− t| < δ.
But for any such δ > 0 there exists some positive integer n with the property
that n > ε and 1/n < δ. Thus if we set s = 1/n and t = 1/2n then |s−t| < δ,
but |r(s)− r(t)| = |n− 2n| = n, so that |r(s)− r(t)| ≥ ε. This shows that r
is not uniformly continuous on D, even though r is continuous on D.

The next theorem shows that if a subset K of Rn is both bounded and
closed then every continuous function on K is also uniformly continuous on
K. The proof uses Theorem 2.4, which is the generalization of the Bolzano-
Weierstrass Theorem to sequences in n-dimensional Euclidean space. We
shall use this theorem later on in the course, when we discuss the properties
of the Riemann integral. It plays a crucial role in showing that all continuous
functions are Riemann-integrable.

Theorem 3.3 Let K be a closed bounded subset of Rn and let f :K → R be
a continuous real-valued function on K. Then f is uniformly continuous on
K.
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Proof We prove the theorem by showing that if f were not uniformly con-
tinuous on K then a contradiction would arise. Suppose therefore that f
were not uniformly continuous on K. Then there would exist some ε0 > 0
with the property that, for every strictly positive real number δ there would
exist points x and y of K for which |x − y| < δ but |f(x) − f(y)| ≥ ε0.
In particular suppose we apply this with δ = 1/i for all positive integers i.
We conclude that if f were not uniformly continuous then, for all positive
integers i, there would exist points xi and yi of K with the property that

|xi − yi| <
1

i

and
|f(x)− f(y)| ≥ ε0.

Now the sequence (xi : i ∈ N) is bounded, because K is a bounded subset
of Rn. We conclude from Theorem 2.4 that the sequence (xi : i ∈ N) has a
convergent subsequence (xi(j) : j ∈ N). Let a be the limit of this subsequence.
Now K is closed, therefore a belongs to K, by Lemma 1.17.

Now f is continuous on K, by hypothesis. In particular, f is continuous
at a. Thus, for every ε > 0 there exists δ > 0 such that |f(x) − f(a)| < ε
for all points x ∈ K which satisfy |x − a| < δ. In particular, let us choose
ε = 1

2
ε0. We conclude that there exists some δ > 0 such that

|f(x)− f(a)| < 1
2
ε0

for all points x ∈ K which satisfy |x − a| < δ. But a is the limit of the
sequence (xi(j) : j ∈ N) as j tends to +∞. Thus there exists some positive
integer J such that |xi(j) − a| < 1

2
δ for all j satisfying j ≥ J . Let us choose

j sufficiently large so that j ≥ J and i(j) > 2/δ. Then |xi(j) − a| < 1
2
δ and

|yi(j) − a| ≤ |yi(j) − xi(j)|+ |xi(j) − a|

<
1

i(j)
+ 1

2
δ < δ.

Therefore

|f(xi(j))− f(a)| < 1
2
ε0,

|f(yi(j))− f(a)| < 1
2
ε0.

We conclude from the triangle inequality that

|f(xi(j))− f(yi(j))| < ε0.
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But this is a contradiction, for xi(j) and yi(j) were chosen so that the inequal-
ity

|f(xi(j))− f(yi(j))| ≥ ε0

is satisfied. From this contradiction we conclude that f must be uniformly
continuous on K.

4 The Riemann Integral

Let a and b be real numbers satisfying a < b and let f : [a, b]→ R be a real-
valued function defined on [a, b] which is bounded above and below, so that
there exist real numbers m and M with the property that m ≤ f(t) ≤M for
all t ∈ [a, b].

We define a partition P of [a, b] to be a set {t0, t1, . . . , tn} of real numbers
satisfying

a = t0 < t1 < · · · < tn−1 < tn = b.

Given such a partition P of [a, b], we define the quantities L(P, f) and U(P, f)
by

L(P, f) =
n∑
i=1

mi(ti − ti−1),

U(P, f) =
n∑
i=1

Mi(ti − ti−1),

where
mi = inf{f(t) : ti−1 ≤ t ≤ ti},
Mi = sup{f(t) : ti−1 ≤ t ≤ ti}

(so that mi is the greatest lower bound on the values of f on the interval
[ti−1, ti] and Mi is the least upper bound on the values of f on this interval).
Clearly L(P, f) ≤ U(P, f).

Suppose that m ≤ f(t) ≤ M for all t ∈ [a, b]. Then mi ≥ m for all
integers i between 1 and n, hence

L(P, f) ≥ m
n∑
i=1

(ti − ti−1) = m(b− a),

Similarly U(P, f) ≤M(b− a). Thus

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a)

for all partitions P of [a, b].
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Definition Let a and b be real numbers satisfying a < b and let f : [a, b]→ R
be a real-valued function on [a, b] which is bounded above and below. Define
the upper Riemann integral

U
∫ b

a

f(t) dt

and the lower Riemann integral

L
∫ b

a

f(t) dt

of the function f on [a, b] by

U
∫ b

a

f(t) dt = inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(t) dt = sup {L(P, f) : P is a partition of [a, b]} .

If the upper Riemann integral of f on [a, b] is equal to the lower Riemann
integral of f on [a, b] then f is said to be Riemann-integrable on [a, b], and
the Riemann integral ∫ b

a

f(t) dt

of f on [a, b] is defined to be the common value of the upper and lower
Riemann integrals of f .

Observe that, for every bounded function f on [a, b], the upper and lower
Riemann integrals of the function f are well-defined. However such a function
need not be Riemann-integrable on [a, b].

Let f : [a, b] → R be a bounded real-valued function on [a, b]. We shall
prove that

L
∫ b

a

f(t) dt ≤ U
∫ b

a

f(t) dt.

In order to prove this fact, we introduce the notion of a refinement of a
partition, and we show that if a partition Q of [a, b] is a refinement of a
partition P , then L(Q, f) ≥ L(P, f) and U(Q, f) ≤ U(P, f).

Let P and Q be partitions of [a, b], given by P = {t0, t1, . . . , tn} and
Q = {s0, s1, . . . , sm}. We say that the partition Q is a refinement of P if the
set P is contained in the set Q, so that for every ti in P there exists some sj
in Q such that ti = sj.
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Lemma 4.1 Let a and b be real numbers satisfying a < b. Let f : [a, b]→ R
be a real-valued function on [a, b] which is bounded above and below on [a, b].
Let P be a partition of [a, b] and let R be a refinement of P . Then

L(R, f) ≥ L(P, f),

U(R, f) ≤ U(P, f).

Proof First we establish notation to be used in the proof. Let the parti-
tions P and R be given by

P = {t0, t1, . . . , tn−1, tn},

R = {s0, s1, . . . , sm−1, sm},
where

a = t0 < t1 < · · · < tn−1 < tn = b,

a = s0 < s1 < · · · < sm−1 < sm = b.

Now for each ti ∈ P there exists some sj ∈ R such that ti = sj. Given i
between 1 and n, let us define j(i) so that ti = sj(i). Note that j(0) = 0 and
j(n) = m. Let us define

mi[P, f ] = inf{f(t) : ti−1 ≤ t ≤ ti},
Mi[P, f ] = sup{f(t) : ti−1 ≤ t ≤ ti},
mj[R, f ] = inf{f(t) : sj−1 ≤ t ≤ sj},
Mj[R, f ] = sup{f(t) : sj−1 ≤ t ≤ sj},

so that

L(P, f) =
n∑
i=1

mi[P, f ](ti − ti−1),

U(P, f) =
n∑
i=1

Mi[P, f ](ti − ti−1),

L(R, f) =
m∑
j=1

mj[R, f ](sj − sj−1),

U(R, f) =
m∑
j=1

Mj[R, f ](sj − sj−1),

Note that

L(R, f) =
n∑
i=1

 j(i)∑
j=j(i−1)+1

mj[R, f ](sj − sj−1)

 .
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Now if j(i− 1) + 1 ≤ j ≤ j(i) then

ti−1 ≤ sj−1 < sj ≤ ti,

(because ti−1 = sj(i−1) and ti = sj(i)) and so mj[R, f ] ≥ mi[P, f ] (because
mi[R, f ] is the infimum of f on the closed interval [ti−1, ti] and mj[R, f ] is the
infimum of f on the closed interval [sj−1, sj], and this interval is contained
in the closed interval [ti−1, ti]). Therefore

j(i)∑
j=j(i−1)+1

mj[R, f ](sj − sj−1) ≥ mi[P, f ]

j(i)∑
j=j(i−1)+1

(sj − sj−1)

= mi[P, f ](sj(i) − sj(i−1))

= mi[P, f ](ti − ti−1).

Therefore

L(R, f) ≥
n∑
i=1

mi[P, f ](ti − ti−1) = L(P, f).

An analogous argument shows that U(R, f) ≤ U(P, f). For

U(R, f) =
n∑
i=1

 j(i)∑
j=j(i−1)+1

Mj[R, f ](sj − sj−1)

 .

But if j(i− 1) + 1 ≤ j ≤ j(i) then

ti−1 ≤ sj−1 < sj ≤ ti,

and so Mj[R, f ] ≤Mi[P, f ], and hence

j(i)∑
j=j(i−1)+1

Mj[R, f ](sj − sj−1) ≤ Mi[P, f ]

j(i)∑
j=j(i−1)+1

(sj − sj−1)

= Mi[P, f ](sj(i) − sj(i−1))

= Mi[P, f ](ti − ti−1).

Therefore

U(R, f) ≤
n∑
i=1

Mi[P, f ](ti − ti−1) = U(P, f).
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Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take R to
be the partition of [a, b] consisting of all of the elements of the union P ∪Q
of P and Q, ordered in increasing order. Such a partition is said to be a
common refinement of the partitions P and Q.

Let f : [a, b] → R be a real-valued function that is bounded above and
below on [a, b]. Let P and Q be partitions of [a, b]. Let R be a common
refinement of the partitions P and Q. On applying Lemma 4.1 we see that

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f),

We have therefore shown that L(P, f) ≤ U(Q, f) for all partitions P and Q
of [a, b]. We use this fact in the proof of the following lemma.

Lemma 4.2 Let f : [a, b]→ R be a real-valued function that is bounded above
and below on [a, b]. Then

L
∫ b

a

f(t) dt ≤ U
∫ b

a

f(t) dt.

Proof Let P and Q be partitions of [a, b]. Then

L(P, f) ≤ U(Q, f),

by Corollary 4.2. Taking the supremum of the left hand side of this inequality
as P ranges over all partitions of [a, b] we see that

L
∫ b

a

f(t) dt ≤ U(Q, f)

for all partitions Q of [a, b]. Taking the infimum of the right hand side of
this inequality as Q ranges over all partitions of [a, b] we see that

L
∫ b

a

f(t) dt ≤ U
∫ b

a

f(t) dt,

as required.

Remark Let us for the moment consider the consider when f is non-negative
and bounded. Let us consider the area of the region R in the Euclidean plane
defined by

R = {(x, y) ∈ R2 : a ≤ x ≤ b, 0 ≤ y ≤ f(x)},
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where a and b are real numbers satisfying a < b. Thus R is the region ‘under
the graph of the function’. We suppose that f is ‘regular enough’ to ensure
that this area is indeed well-defined. We now explain why

area of R =

∫ b

a

f(x) dx.

Let P be a partition of [a, b] given by P = {t0, t1, . . . , tn}, where

a = t0 < t1 < · · · < tn = b

Consider the regions R1 and R2 defined by

R1 =
n⋃
i=1

{(x, y) ∈ R2 : ti−1 ≤ x ≤ ti, 0 ≤ y ≤ mi},

R2 =
n⋃
i=1

{(x, y) ∈ R2 : ti−1 ≤ x ≤ ti, 0 ≤ y ≤Mi},

where

mi = inf{f(x) : ti−1 ≤ x ≤ ti},
Mi = sup{f(x) : ti−1 ≤ x ≤ ti}.

Note that R1 ⊂ R ⊂ R2. Also R1 and R2 are unions of rectangles. Let A(R),
A(R1) and A(R2) denote the areas of R, R1 and R2 respectively. Then

A(R1) =
n∑
i=1

mi(ti − ti−1) = L(P, f),

A(R2) =
n∑
i=1

Mi(ti − ti−1) = U(P, f),

Now if the area A(R) of R is well-defined then clearly A(R1) ≤ A(R) ≤
A(R2), since R1 ⊂ R ⊂ R2. Thus

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(P, f).

If we take the supremum of the left hand side of this inequality over all
partitions P of [a, b], and if we take the infimum of the right hand side of
this inequality over all partitions P of [a, b] we deduce that

L
∫ b

a

f(t) dt ≤ A(R) ≤ U
∫ b

a

f(t) dt.
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We conclude therefore that if f is bounded and non-negative on [a, b], if the
area A(R) of the region R defined above is well-defined and if f is Riemann-
integrable on [a, b] then

A(R) =

∫ b

a

f(t) dt.

Thus the integral of a function measures the area ‘under the graph of the
function’ if the function is bounded, non-negative and Riemann-integrable.
Similarly if the function is bounded, non-positive and Riemann-integrable on
[a, b] then

A(R′) = −
∫ b

a

f(x) dx,

where A(R′) is the area of the region R′ ‘over the graph of the function’
defined by

R′ = {(x, y) ∈ R2 : a ≤ x ≤ b, f(x) ≤ y ≤ 0}.

Theorem 4.3 Let f : [a, b] → R be a bounded real-valued function on [a, b].
Then f is Riemann-integrable on [a, b] if and only if, for every ε > 0 there
exists a partition P of [a, b] for which

U(P, f)− L(P, f) < ε.

Proof Suppose that f is Riemann-integrable on [a, b]. Let ε > 0 be any
positive real number. Then there exists a partition Q of [a, b] such that∫ b

a

f(t) dt− L(Q, f) < 1
2
ε,

since the Riemann integral of f on [a, b] is equal to the lower Riemann integral
on [a, b] and hence∫ b

a

f(t) dt = sup {L(Q, f) : Q is a partition of [a, b]} .

Similarly there exists a partition R of [a, b] such that

U(R, f)−
∫ b

a

f(t) dt < 1
2
ε,

since ∫ b

a

f(t) dt = inf {U(R, f) : R is a partition of [a, b]} .
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Then U(R, f) − L(Q, f) < ε. Let the partition P of [a, b] be a common
refinement of the partitions Q and R. Using Lemma 4.1 we see that

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f),

and hence U(P, f)−L(P, f) < ε. This shows that if f is Riemann-integrable
then, given any ε > 0, there exists a partition P of [a, b] such that U(P, f)−
L(P, f) < ε.

Conversely, let f : [a, b] → R be a bounded real-valued function on [a, b]
with the property that, given any ε > 0, there exists a partition P of [a, b]
such that U(P, f)−L(P, f) < ε. We must show that f is Riemann-integrable
on [a, b]. Now

L(P, f) ≤ L
∫ b

a

f(t) dt ≤ U
∫ b

a

f(t) dt ≤ U(P, f)

for all partitions P of [a, b]. Therefore we conclude that

U
∫ b

a

f(t) dt− L
∫ b

a

f(t) dt < ε

for all ε > 0. But this implies that

U
∫ b

a

f(t) dt− L
∫ b

a

f(t) dt ≤ 0.

But we have already shown that

U
∫ b

a

f(t) dt ≥ L
∫ b

a

f(t) dt.

Hence

U
∫ b

a

f(t) dt = L
∫ b

a

f(t) dt,

and thus f is Riemann-integrable on [a, b], as required.

Corollary 4.4 Let f : [a, b] → R be a bounded real-valued function on [a, b].
Suppose that f is Riemann-integrable on [a, b]. Then for every ε > 0 there
exists a partition P of [a, b], where P = {t0, t1, . . . , tn}, such that∣∣∣∣∣

∫ b

a

f dt−
n∑
i=1

f(xi)(ti − ti−1)

∣∣∣∣∣ < ε

for all collections {x1, x2, . . . , xn} of points which satisfy the inequalities
ti−1 ≤ xi ≤ ti.
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Proof Given any ε > 0 there exists a partition P of [a, b] such that U(P, f)−
L(P, f) < ε (by Theorem 4.3). But

L(P, f) =
n∑
i=1

mi(ti − ti−1),

U(P, f) =
n∑
i=1

Mi(ti − ti−1),

where
mi = inf{f(t) : ti−1 ≤ t ≤ ti},

Mi = sup{f(t) : ti−1 ≤ t ≤ ti}.

Thus if ti−1 ≤ xi ≤ ti then mi ≤ f(xi) ≤Mi, and hence

L(P, f) ≤
n∑
i=1

f(xi)(ti − ti−1) ≤ U(P, f).

But

L(P, f) ≤
∫ b

a

f(t) dt ≤ U(P, f)

and U(P, f) − L(P, f) < ε. The required result follows directly from these
inequalities.

Example Let f be the function defined by f(t) = ct+ d, where c and d are
constants. For simplicity, we restrict our attention to the case when c ≥ 0.
We shall show that f is Riemann-integrable on [0, 1] and evaluate∫ 1

0

f(t) dt

from first principles. In order to show that f is Riemann-integrable, it suffices
to show that, given any ε > 0, there exists some partition P of [0, 1] such
that U(P, f)−L(P, f) < ε. In order to accomplish this we shall consider the
partition Pn of [0, 1], where n is a positive integer and Pn is a partition of
[0, 1] into n subintervals of equal length. We shall show that

lim
n→+∞

(U(P, f)− L(P, f)) = 0,

so that, given any ε > 0, U(Pn, f)− L(Pn, f) < ε for all sufficiently large n.
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Now Pn = {t0, t1, . . . , tn}, where ti = i/n. Now f takes values between
(i− 1)c/n + d and ic/n + d on the interval [ti−1, ti]. We are considering the
case when c ≥ 0. Thus if

mi = inf{f(t) : ti−1 ≤ t ≤ ti},
Mi = sup{f(t) : ti−1 ≤ t ≤ ti},

then

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d,

hence

L(Pn, f) =
n∑
i=1

mi(ti − ti−1)

=
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n+ 1)

2n
+ d− c

n

=
c

2
+ d− c

2n
,

U(Pn, f) =
n∑
i=1

Mi(ti − ti−1)

=
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n+ 1)

2n
+ d

=
c

2
+ d+

c

2n
.

Thus U(Pn, f) − L(Pn, f) = c/n. We conclude that, given any ε > 0,
U(Pn, f)− L(Pn, f) < ε for all sufficiently large n. Therefore f is Riemann-
integrable on [0, 1]. Moreover

L(Pn, f) ≤
∫ 1

0

f(t) dt ≤ U(Pn, f)

for all positive integers n. Thus

c

2
+ d− c

2n
≤
∫ 1

0

f(t) dt ≤ c

2
+ d+

c

2n
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for all positive integers n. Therefore we must have∫ 1

0

f(t) dt =
c

2
+ d.

One can use a similar argument to prove this result also for the case when
c ≤ 0.

The above example illustrates a useful technique when one is attempting
to show that a function is Riemann-integrable and evaluate the integral from
first principles. In order to show from first principles that a function f is
Riemann-integrable on some interval [a,b], where f is bounded on [a, b], it
suffices to show that, given any ε > 0, there exists a partition P of [a, b] such
that U(P, f)−L(P, f) < ε, by Theorem 4.3. In order to find such a partition
it is often sufficient to consider partitions Pn for all positive integers n, where
Pn is a partition of the interval [a, b] into n intervals of length (b−a)/n. (Thus
Pn = {t0, t1, . . . , tn}, where ti = ((n− i)a+ ib)/n.) If one can show that

lim
n→+∞

(U(Pn, f)− L(Pn, f)) = 0

then one can deduce from this that the function f is Riemann-integrable on
[a, b]. Moreover one knows that

L(Pn, f) ≤
∫ b

a

f(t) dt ≤ U(Pn, f)

for all positive integers n, hence

lim
n→+∞

L(Pn, f) ≤
∫ b

a

f(t) dt ≤ lim
n→+∞

U(Pn, f).

This enables us to calculate the Riemann integral of f on [a, b] from first
principles.

We now prove that sums and scalar multiples of Riemann-integrable func-
tions are Riemann-integrable.

Theorem 4.5 Let a and b be real numbers satisfying a < b and let f : [a, b]→
R and g: [a, b]→ R be bounded Riemann-integrable functions on [a, b]. Let c
be a real number. Then the functions f + g and cf are Riemann-integrable
on [a, b], and ∫ b

a

(f(t) + g(t)) dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt,∫ b

a

(cf(t)) dt = c

∫ b

a

f(t) dt.
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Proof Let R be a partition {t0, t1, . . . , tn} of [a, b], where

a = t0 < t1 < · · · < tn−1 < tn = b.

Given any bounded real-valued function h on [a, b] we define

mi[R, h] = inf{h(t) : ti−1 ≤ t ≤ ti},
Mi[R, h] = sup{h(t) : ti−1 ≤ t ≤ ti},

so that

L(R, h) =
n∑
i=1

mi[R, h](ti − ti−1),

U(R, h) =
n∑
i=1

Mi[R, h](ti − ti−1).

for any bounded real-valued function h on [a, b].
If ti−1 ≤ t ≤ ti then f(t) ≥ mi[R, f ] and g(t) ≥ mi[R, g], hence

f(t) + g(t) ≥ mi[R, f ] +mi[R, g].

for all t ∈ [ti−1, ti]. It follows from the definition of mi[R, f + g] that

mi[R, f + g] ≥ mi[R, f ] +mi[R, g].

A similar argument shows that

Mi[R, f + g] ≤Mi[R, f ] +Mi[R, g].

We conclude from the definitions of L(R, f + g) and U(R, f + g) that

L(R, f + g) ≥ L(R, f) + L(R, g),

U(R, f + g) ≤ U(R, f) + U(R, g),

Let ε > 0 be given. Now it follows from the fact that f and g are
Riemann-integrable that there exist partitions P and Q of [a, b] such that

L(P, f) >

∫ b

a

f(t) dt− 1
2
ε,

L(Q, g) >

∫ b

a

g(t) dt− 1
2
ε.
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Now there exists a partition R of [a, b] which is a common refinement of P
and Q. Then L(R, f) ≥ L(P, f) and L(R, g) ≥ L(Q, g), by Lemma 4.1, hence

L(R, f + g) ≥ L(R, f) + L(R, g)

≥ L(P, f) + L(Q, g)

>

∫ b

a

f(t) dt+

∫ b

a

g(t) dt− ε.

But

L
∫ b

a

(f(t) + g(t)) dt ≥ L(R, f + g),

hence

L
∫ b

a

(f(t) + g(t)) dt >

∫ b

a

f(t) dt+

∫ b

a

g(t) dt− ε

for all ε > 0, hence

L
∫ b

a

(f(t) + g(t)) dt ≥
∫ b

a

f(t) dt+

∫ b

a

g(t) dt.

Similarly, given any ε > 0 we can find partitions P and Q of [a, b] such
that

U(P, f) <

∫ b

a

f(t) dt+ 1
2
ε,

U(Q, g) <

∫ b

a

g(t) dt+ 1
2
ε.

Let R be a partition of [a, b] which is a common refinement of P and Q.
Using Lemma 4.1 we see that

U
∫ b

a

(f(t) + g(t)) dt ≤ U(R, f + g)

≤ U(R, f) + U(R, g)

≤ U(P, f) + U(Q, g)

<

∫ b

a

f(t) dt+

∫ b

a

g(t) dt+ ε.

Since this inequality holds for all ε > 0, we conclude that

U
∫ b

a

(f(t) + g(t)) dt ≤
∫ b

a

f(t) dt+

∫ b

a

g(t) dt.
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But

L
∫ b

a

(f(t) + g(t)) dt ≤ U
∫ b

a

(f(t) + g(t)) dt,

hence

L
∫ b

a

(f(t) + g(t)) dt = U
∫ b

a

(f(t) + g(t)) dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt.

We conclude that f + g is Riemann-integrable and∫ b

a

(f(t) + g(t)) dt =

∫ b

a

f(t) dt+

∫ b

a

g(t) dt.

Finally we show that cf is Riemann-integrable on [a, b] for all real numbers
c, and ∫ b

a

cf(t) dt = c

∫ b

a

f(t) dt.

This follows immediately from the fact that if P is any partition of [a, b] then
L(P, cf) = cL(P, f) and U(P, cf) = cU(P, f) (by definition of L(P, cf) and
U(P, cf)), so that

L
∫ b

a

cf(t) dt = cL
∫ b

a

f(t) dt,

U
∫ b

a

cf(t) dt = cU
∫ b

a

f(t) dt.

Theorem 4.6 Let a, b and c be real numbers satisfying a < b < c. Let
f : [a, c] → R be a bounded real-valued function on [a, c]. Suppose that f is
Riemann-integrable on the intervals [a, b] and [b, c]. Then f is Riemann-
integrable on [a, c], and∫ c

a

f(t) dt =

∫ b

a

f(t) dt+

∫ c

b

f(t) dt.

Proof We now establish the notation to be used in the proof. Given real
numbers u and v satisfying u < v, where f is defined and bounded on [u, v],
and given a partition P of [u, v] with P = {t0, t1, . . . , tn}, where

u = t0 < t1 < · · · < tn−1 < tn = v,

we define

L(P, f, u, v) =
n∑
i=1

mi(ti − ti−1),
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U(P, f, u, v) =
n∑
i=1

Mi(ti − ti−1),

where
mi = inf{f(t) : ti−1 ≤ t ≤ ti},

Mi = sup{f(t) : ti−1 ≤ t ≤ ti}

(i.e., the quantities L(P, f, u, v) and U(P, f, u, v) are the quantities that we
denoted previously by L(P, f) and U(P, f) respectively, but they are de-
noted in this proof by L(P, f, u, v) and U(P, f, u, v) in order to emphasize
the dependence of these quantities on the endpoints of the chosen interval
[u, v].

Let ε > 0 be given. We show that there exists a partition P of [a, c] such
that U(P, f, a, c) − L(P, f, a, c) < ε. Given this fact, it then follows from
Theorem 4.3 that f is Riemann-integrable on [a, c].

Now f is Riemann-integrable on the intervals [a, b] and [b, c], hence there
exist partitions Q1 and Q2 of [a, b] and partitions R1 and R2 of [b, c] with the
property that

L(Q1, f, a, b) >

∫ b

a

f(t) dt− ε

4
,

U(Q2, f, a, b) <

∫ b

a

f(t) dt+
ε

4
,

L(R1, f, b, c) >

∫ c

b

f(t) dt− ε

4
,

U(R2, f, b, c) <

∫ c

b

f(t) dt+
ε

4
.

Let Q be a common refinement of the partitions Q1 and Q2 and let R be a
common refinement of the partitions R1 and R2. Then∫ b

a

f(t) dt− ε

4
< L(Q, f, a, b) < U(Q, f, a, b) <

∫ b

a

f(t) dt+
ε

4
,

∫ c

b

f(t) dt− ε

4
< L(R, f, b, c) < U(R, f, b, c) <

∫ c

b

f(t) dt+
ε

4
,

by Lemma 4.1. Let P be the partition of [a, c] consisting of all points of the
partitions Q and R. Thus if Q = {t0, t1, . . . , tn} and R = {s0, s1, . . . , sm},
where

a = t0 < t1 < · · · < tn = b, b = s0 < s1 < · · · < sm = c,
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then P = {u0, u1, . . . , un+m}, where

ui =

{
ti if 0 ≤ i ≤ n;
si−n if n ≤ i ≤ n+m.

Then

L(P, f, a, c) = L(Q, f, a, b) + L(Q, f, b, c),

U(P, f, a, c) = U(Q, f, a, b) + U(Q, f, b, c),

hence

L(P, f, a, c) >

∫ b

a

f(t) dt+

∫ c

b

f(t) dt− ε

2
,

U(P, f, a, c) <

∫ b

a

f(t) dt+

∫ c

b

f(t) dt+
ε

2
,

Thus U(P, f, a, c) − L(P, f, a, c) < ε. It follows from Theorem 4.3 that f is
Riemann-integrable on [a, c]. Moreover

L(P, f, a, c) ≤
∫ c

a

f(t) dt ≤ U(P, f, a, c),

hence ∣∣∣∣∫ c

a

f(t) dt−
∫ b

a

f(t) dt−
∫ c

b

f(t) dt

∣∣∣∣ < ε

2
.

But this inequality must hold for every ε > 0. Hence∫ c

a

f(t) dt =

∫ b

a

f(t) dt+

∫ c

b

f(t) dt.

We now show that continuous functions are Riemann-integrable.

Theorem 4.7 Let a and b be real numbers satisfying a < b and let f : [a, b]→
R be a continuous function on the interval [a, b]. Then f is Riemann-
integrable on [a, b].

Proof The closed interval [a, b] is a closed bounded set, and continuous func-
tions are bounded above and below on closed bounded sets, by Theorem 3.2.
Thus f is bounded above and below on [a, b]. We show that, given there
exists a partition P of [a, b] such that U(P, f) − L(P, f) < ε. It will then
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follow from Theorem 4.3 that f is Riemann-integrable on [a, b]. (As usual,
the quantities L(P, f) and U(P, f) are defined by

L(P, f) =
n∑
i=1

mi(ti − ti−1),

U(P, f) =
n∑
i=1

Mi(ti − ti−1),

where
mi = inf{f(t) : ti−1 ≤ t ≤ ti},

Mi = sup{f(t) : ti−1 ≤ t ≤ ti}.)

Now f is uniformly continuous on the closed bounded interval [a, b], by
Theorem 3.3. Thus, given ε > 0, there exists some δ > 0 such that

|f(x)− f(y)| < ε

2(b− a)

for all x, y ∈ [a, b] which satisfy |x − y| < δ. Now chose a partition P of
[a, b], where P = {t0, t1, . . . , tn}, such that |ti − ti−1| < δ for i = 1, 2, . . . , n
(e.g., let P be the partition of [a, b] into n intervals of length (a−b)/n, where
n > (a− b)/δ). Thus if x and t belong to the interval [ti−1, ti] then

|f(x)− f(t)| < ε

2(b− a)

so that
f(t) < f(x) +

ε

2(b− a)
.

Thus if ti−1 ≤ x ≤ ti then

f(x) +
ε

2(b− a)

is an upper bound for the set {f(t) : ti−1 ≤ t ≤ ti}, and hence

Mi ≤ f(x) +
ε

2(b− a)
,

where
Mi = sup{f(t) : ti−1 ≤ t ≤ ti}.)

But then
Mi −

ε

2(b− a)
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is a lower bound for the set {f(t) : ti−1 ≤ t ≤ ti}, and hence

Mi −
ε

2(b− a)
≤ mi,

where
mi = inf{f(t) : ti−1 ≤ t ≤ ti}.

Thus
Mi −mi ≤

ε

2(b− a)
(i = 1, 2, . . . , n).

Hence

U(P, f)− L(P, f) =
n∑
i=1

((Mi −mi)(ti − ti−1))

≤ ε

2(b− a)

n∑
i=1

(ti − ti−1) =
ε

2
< ε.

It follows from Theorem 4.3 that f is Riemann-integrable on [a, b], as re-
quired.

5 The Fundamental Theorem of Calculus

We have defined the Riemann integral for the class of bounded Riemann-
integrable functions on some closed bounded interval, and we have shown
that all continuous functions are Riemann-integrable. However the task of
calculating the Riemann integral of such a function directly from the defini-
tion of this integral is somewhat difficult in practice for all but the simplest
functions. We need some simpler way of finding integrals of continuous func-
tions. To do this one uses the Fundamental Theorem of Calculus, which
shows that the derivative of an indefinite integral of a function is the func-
tion itself.

Theorem 5.1 (The Fundamental Theorem of Calculus) Let f : [a, b]→ R be
a continuous real-valued function defined on the interval [a, b], where a and
b are real numbers satisfying a < b. Define a function F : [a, b]→ R by

F (x) =

∫ x

a

f(t) dt.

Then
dF

dx
= f(x)
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for all x satisfying a < x < b. Similarly

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (a)

h
= f(b).

Proof Let x be an real number satisfying x ≤ x ≤ b. Choose ε > 0. Because
f : [a, b]→ R is continuous there exists some δ > 0 such that |f(t)−f(x)| < 1

2
ε

for all t ∈ [a, b] satisfying |t− x| < δ.
Consider the case when a ≤ x < b. Suppose that 0 < h < δ and

[x, x+ h] ⊂ [a, b]. Then

f(x)− 1
2
ε ≤ f(t) ≤ f(x) + 1

2
ε

for all t ∈ [x, x + h]. If we integrate the terms occuring in these inequalities
over the interval [x, x+ h] (which is of length h) we deduce that

(f(x)− 1
2
ε)h ≤

∫ x+h

x

f(t) dt ≤ (f(x) + 1
2
ε)h.

But ∫ x+h

a

f(t) dt =

∫ x

a

f(t) dt+

∫ x+h

x

f(t) dt,

by Theorem 4.6, hence∫ x+h

x

f(t) dt = F (x+ h)− F (x).

Thus if 0 < h < δ and [x, x+ h] ⊂ [a, b] then

f(x)− 1
2
ε ≤ F (x+ h)− F (x)

h
≤ f(x) + 1

2
ε.

A similar argument shows that if a < x ≤ b, if 0 < k < δ and [x−k, x] ⊂ [a, b]
then

(f(x)− 1
2
ε)k ≤

∫ x

x−k
f(t) dt ≤ (f(x) + 1

2
ε)k,

so that

f(x)− 1
2
ε ≤ F (x)− F (x− k)

k
≤ f(x) + 1

2
ε.

Suppose that a < x < b. Given ε > 0, we choose δ > 0 such that
(x− δ, x+ δ) ⊂ [a, b] and

f(x)− 1
2
ε < f(t) < f(x) + 1

2
ε
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for all t ∈ [a, b] satisfying |t − x| < δ. (This is possible by the continuity
of f .) If we apply the above results (considering the cases 0 < h < δ and
−δ < h < 0 separately) we see that∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ ≤ 1
2
ε < ε.

for all h satisfying 0 < |h| < δ. It follows from the formal definition of limits
of functions that

dF (x)

dx
= lim

h→0

F (x+ h)− F (x)

h
= f(x).

Similarly

lim
h→0+

F (a+ h)− F (a)

h
= f(a), lim

h→0−

F (b+ h)− F (a)

h
= f(b).

We can use the Fundamental Theorem of Calculus to prove many very
familiar theorems used when calculating integrals of continuous functions.
To prove these results, we shall also make use of the following lemma.

Lemma 5.2 Let f : [a, b] → R and g: [a, b] → R be continuous real-valued
functions on a closed interval [a, b] (where a < b) that are differentiable on
the open interval (a, b). Suppose that f(a) = g(a) and that f ′(x) = g′(x) for
all x ∈ (a, b) (where f ′ and g′ are the derivatives of f and g respectively).
Then f(x) = g(x) for all x ∈ [a, b

Proof Consider the function h: [a, b] → R defined by h = f − g. Given x
satisfying a < x ≤ b we apply the Mean Value Theorem to the function h
on the interval [a, x] to conclude that h(x) − h(a) = h′(t)(x − a) for some t
satisfying a < t < x. But h′(t) = 0 for all t ∈ (a, b). Hence h(x)− h(a) = 0.
But h(a) = 0. Hence h = 0, and thus f = g on [a, b].

We now describe a number of familiar corollaries of the Fundamental
Theorem of Calculus.

Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] with derivative f ′: [a, b]→ R
if and only if the derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a+ h)− f(a)

h
,
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f ′(b) = lim
h→0−

f(b+ h)− f(b)

h
,

exist at the endpoints of [a, b], and the function mapping t to f ′(t) is con-
tinuous throughout [a, b] (and in particular is continuous at the endpoints of
this closed interval).

Corollary 5.3 Let f : [a, b]→ R be a continuously differentiable function on
the closed interval [a, b]. Then∫ b

a

f ′(t) dt = f(b)− f(a)

Proof Define g: [a, b]→ R by

g(x) = f(a) +

∫ x

a

f ′(t) dt.

Now g(a) = f(a). Also g is continuously differentiable on [a, b] and g′(x) =
f ′(x) for all x ∈ [a, b], by the Fundamental Theorem of Calculus. Hence
g = f on [a, b], by Lemma 5.2. In particular

f(b) = f(a) +

∫ b

a

f ′(t) dt,

as required.

Corollary 5.4 (Integration by Parts) Let f : [a, b] → R and g: [a, b] → R be
continuously differentiable functions on the closed interval [a, b]. Then∫ b

a

f(t)g′(t) dt+

∫ b

a

f ′(t)g(t) dt = f(b)g(b)− f(a)g(a).

Proof Apply Corollary 5.3 to the product function t 7→ f(t)g(t) and apply
the Product Rule, which states that if h is the function defined by h(t) =
f(t)g(t) then h′(t) = f(t)g′(t) + f ′(t)g(t).

Corollary 5.5 (Integration by Substitution) Let u: [a, b] → R be a con-
tinuously differentiable monotonically increasing real-valued function on the
closed interval [a, b]. Define c = u(a) and d = u(b). Let f : [c, d] → R be a
continuous function on the closed interval [c, d]. Then∫ d

c

f(t) dt =

∫ b

a

f(u(x))u′(x) dx.

54



Proof Define F : [a, b]→ R and G: [c, d]→ R by

F (x) =

∫ x

a

f(u(y))u′(y)dy,

G(s) =

∫ s

c

f(t)dt.

and let us define H: [a, b]→ R by H = G ◦u (so that H(x) = G(u(x)) for all
x ∈ [a, b]). It follows from the Chain Rule and the Fundamental Theorem of
Calculus that

H ′(x) = G′(u(x))u′(x)

= f(u(x))u′(x),

F ′(x) = f(u(x))u′(x) = H ′(x),

for all x ∈ [a, b]. Also F (a) = 0 = G(c) = H(a). We conclude from
Lemma 5.2 that H = F on [a, b]. In particular, H(b) = F (b), so that∫ d

c

f(t) dt =

∫ b

a

f(u(x))u′(x) dx.

6 Uniform Convergence, Limits and Integrals

Definition Let (fj : j ∈ N) be a sequence of real-valued functions defined
on some set X and let f be a real-valued function on X. The sequence (fj) is
said to converge uniformly on X to the function f as j → +∞ if and only if,
for every ε > 0, there exists some positive integer N (chosen independently
of the point x ∈ X), such that |fj(x)− f(x)| < ε for all x ∈ X and for all j
satisfying j ≥ N .

Theorem 6.1 Let (fj : j ∈ N) be a sequence of continuous real-valued func-
tions defined over some subset X of Rn. Suppose that the sequence (fj)
converges uniformly on X to some real-valued function f on X as j → +∞.
Then f is continuous.

Proof Let a be a point of X. We show that f is continuous at a. Let
ε > 0 be given. Then there exists some positive integer N (independent of
the choice of x ∈ X such that |fj(x) − f(x)| < 1

3
ε for all x ∈ X and for

all j ≥ N , since the sequence (fj) of real-valued functions on X converges
uniformly to f as j → +∞. Choose any integer j satisfying j ≥ N . Now
the function fj is continuous at a, hence there exists some δ > 0 such that
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|f(x) − f(a)| < 1
3
ε for all x ∈ X satisfying |x − a| < δ. Thus if j ≥ N and

|x− a| < δ then

|f(x)− fj(x)| < 1
3
ε,

|fj(x)− fj(a)| < 1
3
ε,

|f(a)− fj(a)| < 1
3
ε.

It follows from the Triangle Inequality that

|f(x)− f(a)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(a)|+ |fj(a)− f(a)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε.

We have therefore shown that, given any ε > 0, there exists some δ > 0 such
that |f(x) − f(a)| < ε whenever x ∈ X satisfies |x − a| < δ. Thus f is
continuous at a. This shows that f is continuous on X, as required.

Theorem 6.2 Let a and b be real numbers satisfying a < b and let (fj : j ∈
N) be a sequence of continuous real-valued functions on [a, b] which converges
uniformly to some continuous real-valued function f on [a, b]. Then

lim
j→+∞

∫ b

a

fj(t) dt =

∫ b

a

f(t) dt.

Proof Let ε > 0 be given. We must show that there exists some positive
integer N such that ∣∣∣∣∫ b

a

fj(t) dt−
∫ b

a

f(t) dt

∣∣∣∣ < ε

for all integers j satisfying j ≥ N .
Now fj(t)− f(j) ≤ |fj(t)− f(t)| and f(t)− fj(j) ≤ |fj(t)− f(t)| for all

t ∈ [a, b], hence∫ b

a

fj(t) dt−
∫ b

a

f(t) dt =

∫ b

a

(fj(t)− f(t)) dt ≤
∫ b

a

|fj(t)− f(t)| dt

and ∫ b

a

f(t) dt−
∫ b

a

fj(t) dt =

∫ b

a

(fj(t)− f(t)) dt ≤
∫ b

a

|fj(t)− f(t)| dt.

Hence ∣∣∣∣∫ b

a

fj(t) dt−
∫ b

a

f(t) dt

∣∣∣∣ ≤ ∫ b

a

|fj(t)− f(t)| dt.
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for all positive integers j.
Now the sequence (fj : j ∈ N) converges uniformly to f on [a, b]. Thus,

given any ε0 > 0, there exists some positive integer N such that |fj(t) −
f(t)| < ε0 for all t ∈ [a, b] and for all integers j satisfying j ≥ N . Let us
choose ε0 such that

0 < ε0 <
ε

b− a
.

We conclude that there exists a positive integer N such that

|fj(t)− f(t)| < ε0 <
ε

b− a
,

for all t ∈ [a, b] and for all integers j satisfying j ≥ N . Thus if j ≥ N then∣∣∣∣∫ b

a

fj(t) dt−
∫ b

a

f(t) dt

∣∣∣∣ ≤ ∫ b

a

|fj(t)− f(t)| dt

≤ ε0(b− a) < ε,

as required.

Example Let (fj : j ∈ N) be the sequence of continuous functions on the
interval [0, 1] defined by

fj(t) = j(tj − t2j).

Note that fj(0) = fj(1) = 0 for all j ∈ N. Suppose that 0 < t < 1.
We show that

lim
j→+∞

fj(t) = 0

for all t satisfying 0 ≤ t ≤ 1. Given t satisfying 0 < t < 1 let us choose u
such that t < u < 1. There exists some positive integer k such that

k + 1

k
<
u

t
.

Define sj = jtj. Then

sj+1

sj
=

(j + 1)t

j
≤ (k + 1)t

k
< u

for all integers j satisfying j ≥ k (where we have used the fact that

j + 1

j
≤ k + 1

k
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for all integers j satisfying j ≥ k). It follows by induction on j that if j > k
then sj/sk < uj−k, so that

0 < jtj < ktkuj−k.

Now |jt2j| ≤ |jtj|, hence |fj(t)| < 2ktkuj−k for all integers j satisfying j > k.
But

lim
j→+∞

2ktkuj−k = 0,

since 0 < u < 1. We conclude that

lim
j→+∞

fj(t) = 0

for all t satisfying 0 < t < 1. But this result also holds when t = 0 and t = 1,
since fj(0) = fj(1) = 0 for all j. Thus

lim
j→+∞

fj(t) = 0 (0 ≤ t ≤ 1).

We claim however that the sequence (fj : j ∈ N) of real-valued functions
on [a, b] does not converge uniformly on [0, 1] to the zero function. Let us
define

‖fj‖ = sup{|fj(t)| : 0 ≤ t ≤ 1}.

It is easy to show from the definition of uniform convergence that if the
sequence (fj : j ∈ N) were to converge uniformly to the zero function on
[0, 1], then we would have ‖fj‖ → 0 as j → +∞. (Indeed, if ε > 0 is given
and if fj → 0 uniformly on [0, 1] then there would exist a positive integer N
such that |fj(t)| < 1

2
ε for all t ∈ [0, 1] and for all j satisfying j ≥ N , so that

‖fj‖ ≤ 1
2
ε < ε for all j ≥ N , showing that ‖fj‖ → 0 as j → +∞.)

Let us evaluate ‖fj‖. Note that f(t) ≥ 0 for all t ∈ [0, 1]. Now

f ′j(t) = j2tj−1(1− 2tj).

We see that fj is non-negative on [0, 1], it is increasing on [0, xj] and it is
decreasing on [xj, 1], where xjj = 1

2
. Now fj(x

j) = j/4. We conclude that
‖fj‖ = j/4. Thus the sequence (fj : j ∈ N) does not converge uniformly to
the zero function on [0, 1].

Now ∫ 1

0

fj(t) dt =
j

j + 1
− j

2j + 1
,

hence

lim
j→+∞

∫ 1

0

fj(t) dt =
1

2
.
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This shows that

lim
j→+∞

∫ 1

0

fj(t) dt 6= 0,

even though fj(t) → 0 as j → +∞ for all t ∈ [0, 1]. Let this example be a
warning to you, demonstrating that it is not always possible to interchange
limits and integrals. Perhaps the most remarkable fact about the above
example is that the functions fj used are not weird ‘pathological’ functions,
but are merely simple polynomial functions.

Example Consider the continuous functions gj: [0, 1] → R on [0, 1] (for all
positive integers j) defined by

gj(t) =


0 if 0 ≤ t ≤ 1

4j
,

4j(4jt− 1) if 1
4j
≤ t ≤ 1

2j
,

4j(3− 4jt) if 1
2j
≤ t ≤ 3

4j
,

0 if 3
4j
≤ t ≤ 1.

Now a simple calculation shows that∫ 1

0

gj(t) dt = 1.

(Indeed this integral is the area of a triangle in the plane whose base is of
length 1/(2j) and whose height is 4j.) Thus∫ 1

0

gj(t) dt→ +∞

as j → +∞. But
lim

j→+∞
gj(t) = 0

for all t ∈ [0, 1]. Indeed gj(0) = 0 for all j, and if 0 < t ≤ 1 then gj(t) = 0
for all j ≥ 3/(4t). However it is readily seen that the sequence (gj : j ∈ N)
does not converge uniformly to the zero function on [0, 1].

6.1 Integrals over Unbounded Intervals

Definition Let f : [a,+∞) be a bounded real-valued function on the (un-
bounded) interval [a,+∞) which is Riemann-integrable over each closed
bounded subinterval of [a,+∞). We define∫ +∞

a

f(t) dt = lim
b→+∞

∫ b

a

f(t) dt,
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provided that this limit exists. Similarly if f : (−∞, b] is a bounded real-
valued function on the (unbounded) interval (−∞, b] which is Riemann-
integrable over each closed bounded subinterval of (−∞, b] then we define∫ b

−∞
f(t) dt = lim

a→−∞

∫ b

a

f(t) dt,

provided that this limit exists. If f :R→ R is a real-valued function defined
over the whole of R which is Riemann-integrable over each closed bounded
subinterval of R then we define∫ +∞

−∞
f(t) dt = lim

a→−∞,b→+∞

∫ b

a

f(t) dt,

provided that this limit exists.

Example Consider the functions hj:R→ R defined by

hj(t) =
j

t2 + j2

for all t ∈ R and for all j ∈ N. Note that∫ +∞

−∞
hj(t) dt =

∫ +∞

−∞

du

u2 + 1
= π.

Note also that hj(t) → 0 as j → +∞ for all t ∈ R. Indeed hj(t) ≤ 1/j for
all t ∈ R, hence the sequence (hj : j ∈ N) converges uniformly to the zero
function on R.

Remark We know from Theorem 6.2 that if (fj : j ∈ N) is a sequence
of continuous real-valued functions on a closed bounded interval [a, b] which
converges uniformly on [a, b] to a continuous function f then

lim
j→+∞

∫ b

a

fj(t) dt =

∫ b

a

f(t) dt.

The above example shows that the corresponding result does not hold for
integrals over unbounded intervals. (It is instructive to examine the proof of
Theorem 6.2 in order to see why the proof cannot be generalized to cover the
case where the integrals are taken over an unbounded interval.)
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6.2 Integrals of Unbounded Functions

Let f : [a, b] be a real-valued function on an interval [a, b] and let c satisfy
a < c < b. Suppose that f is unbounded around c but has the property that
f is bounded and Riemann-integrable on the intervals [a, u] and [v, b] for all
u, v satisfying a < u < c < v < b. Then we define∫ b

a

f(t) dt = lim
u→c−

∫ u

a

f(t) dt+ lim
v→c+

∫ b

v

f(t) dt,

provided that this limit exists. Similarly if f is unbounded around a but
has the property that f is bounded and Riemann-integrable on [v, b] for all
v satisfying a < v < b, then we define∫ b

a

f(t) dt = lim
v→a+

∫ b

v

f(t) dt,

provided that this limit exists, and if f is f is unbounded around b but has
the property that f is bounded and Riemann-integrable on [a, u] for all u
satisfying a < u < b, then we define∫ b

a

f(t) dt = lim
u→b−

∫ u

a

f(t) dt,

provided that this limit exists.

Example Let α satisfy 0 < α < 1. Then∫ 1

0

t−α dt = lim
v→0+

∫ 1

v

t−α dt

=
1

1− α
lim
v→0+

(1− v1−α)

=
1

1− α
.

7 Differentiation of Functions of Several Real

Variables

7.1 Linear Transformations

The space Rn consisting of all n-tuples (x1, x2, . . . , xn) of real numbers is a
vector space over the field R of real numbers, where addition and multipli-
cation by scalars are defined by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn)

61



for all (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Rn and λ ∈ R.

Definition A map T :Rn → Rm is said to be a linear transformation if

T (x + y) = Tx + Ty, T (λx) = λTx

for all x,y ∈ Rn and λ ∈ R.

Every linear transformation T :Rn → Rm is represented by an m × n
matrix (Tij). Indeed let e1, e2, . . . , en be the standard basis vectors of Rn

defined by

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Thus if x ∈ Rn is represented by the n-tuple (x1, x2, . . . , xn) then

x =
n∑
j=1

xjej.

Similarly let f1, f2, . . . , fm be the standard basis vectors of Rm defined by

f1 = (1, 0, . . . , 0), f2 = (0, 1, . . . , 0), . . . , fm = (0, 0, . . . , 1).

Thus if v ∈ Rm is represented by the n-tuple (v1, v2, . . . , vm) then

v =
m∑
i=1

vifi.

Let T :Rn → Rm be a linear transformation. Define Tij for all integers i
between 1 and m and for all integers j between 1 and n such that

Tej =
m∑
i=1

Tijfi.

Using the linearity of T , we see that if x = (x1, x2, . . . , xn) then

Tx = T

(
n∑
j=1

xjej

)
=

n∑
j=1

(xj Tej) =
m∑
i=1

(
n∑
j=1

Tijxj

)
fi.

Thus the ith component of Tx is

Ti1x1 + Ti2x2 + · · ·+ Tinxn.
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Writing out this identity in matrix notation, we see that if Tx = v, where

x =


x1

x2
...
xn

 , v =


v1

v2
...
vm

 ,

then 
v1

v2
...
vm

 =


T11 T12 . . . T1n

T21 T22 . . . T2n
...

...
...

Tm1 Tm2 . . . Tmn



x1

x2
...
xn

 .

Recall that the length (or norm) of an element x ∈ Rn is defined such
that

|x|2 = x2
1 + x2

2 + · · ·+ x2
n.

Lemma 7.1 Let T :Rn → Rm be a linear transformation from Rn to Rm.
Then T is uniformly continuous on Rn. Moreover

|Tx− Ty| ≤M |x− y|

for all x,y ∈ Rn, where

M2 =
m∑
i=1

n∑
j=1

T 2
ij

(where (Tij) is the m× n matrix which represents the linear transformation
T :Rn → Rm).

Proof Let v = Tx − Ty, where v ∈ Rm is represented by the m-tuple
(v1, v2, . . . , vm). Then

vi = Ti1(x1 − y1) + Ti2(x2 − y2) + · · ·+ Tin(xn − yn)

for all integers i between 1 and m. It follows from Schwarz’ Inequality
(Lemma 1.1) that

v2
i ≤

(
n∑
j=1

T 2
ij

)(
n∑
j=1

(xj − yj)2

)
=

(
n∑
j=1

T 2
ij

)
|x− y|2.

Hence

|v2| =
m∑
i=1

v2
i ≤

(
m∑
i=1

n∑
j=1

T 2
ij

)
|x− y|2 = M2|x− y|2.
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Thus |Tx − Ty| ≤ M |x − y|. It follows from this that T is uniformly
continuous. Indeed if we are given ε > 0 let us define δ > 0 by δ = ε/M .
If x and y are elements of Rn which satisfy the condition |x − y| < δ then
|Tx−Ty| < ε. This shows that T :Rn → Rm is uniformly continuous on Rn,
as required.

7.2 Differentiability for Functions of One Real Vari-
able

Let f : I → R be a real-valued function defined on some open interval I in R.
Let a be an element of I. Recall that the function f is differentiable at a if
and only if

lim
h→0

f(a+ h)− f(a)

h

exists, and the value of this limit (if it exists) is known as the derivative of
f at a (denoted by f ′(a)).

We wish to define the notion of differentiability for functions of more than
one variable. However we cannot immediately generalize the above definition
as it stands (because this would require us to divide one element in Rn by
another, which we cannot do since the operation of division is not defined on
Rn). We shall therefore reformulate the above definition of differentiability
for functions of one real variable, exhibiting a criterion which is equivalent
to the definition of differentiability given above and which can be easily
generalized to functions of more than one real variable. This criterion is
provided by the following lemma.

Lemma 7.2 Let f : I → R be a real-valued function defined on some open
interval I in R. Let a be an element of I. The function f is differentiable at
a with derivative f ′(a) (where f ′(a) is some real number) if and only if

lim
h→0

1

|h|
(f(a+ h)− f(a)− f ′(a)h) = 0.

Proof It follows directly from the definition of the limit of a function that

lim
h→0

f(a+ h)− f(a)

h
= f ′(a)

if and only if

lim
h→0

∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ = 0.
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But ∣∣∣∣f(a+ h)− f(a)

h
− f ′(a)

∣∣∣∣ =

∣∣∣∣ 1

|h|
(f(a+ h)− f(a)− f ′(a)h)

∣∣∣∣ .
It follows immediately from this that the function f is differentiable at a with
derivative f ′(a) if and only if

lim
h→0

1

|h|
(f(a+ h)− f(a)− f ′(a)h) = 0.

Now let us observe that, for any real number c, the map h 7→ ch defines a
linear transformation from R to R. Conversely, every linear transformation
from R to R is of the form h 7→ ch for some c ∈ R. Because of this, we may
regard the derivative f ′(a) of f at a as representing a linear transformation
h 7→ f ′(a)h, characterized by the property that the map

x 7→ f(a) + f ′(a)(x− a)

provides a ‘good’ approximation to f around a in the sense that

lim
h→0

e(a, h)

|h|
= 0,

where
e(a, h) = f(a+ h)− f(a)− f ′(a)h

(i.e., e(a,h) measures the difference between f(a + h) and the value f(a) +
f ′(a)h of the approximation at a+h, and thus provides a measure of the error
of this approximation). We shall generalize the notion of differentiability to
functions f from Rn to Rm by defining the derivative f ′(a) of f at a to be a
linear transformation from Rn to Rm characterized by the property that the
map

x 7→ f(a) + f ′(a)(x− a)

provides a ‘good’ approximation to f around a.

7.3 Differentiation of Functions of Several Variables

Definition Let D be an open subset of Rn and let f :D → Rm be a map from
D into Rm. Let a be a point of D. The function f is said to be differentiable
at a if and only if there exists a linear transformation f ′(a):Rn → Rm from
Rn to Rm with the property that

lim
h→0

1

|h|
(f(a + h)− f(a)− f ′(a)h) = 0.

If f is differentiable at a then the linear transformation f ′(a) is referred to
as the derivative of f at a.
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The derivative f ′(a) of f at a is sometimes referred to as the total deriva-
tive of f at a. If f is differentiable at every point of D then we say that f is
differentiable on D.

Observe that if f is differentiable at a with derivative f ′(a) then

f(a + h) = f(a) + f ′(a)h + e(a,h),

where

lim
h→0

e(a,h)

|h|
= 0.

Thus if f is differentiable at a then the map l:D → R defined by

l(x) = f(a) + f ′(a)(x− a)

provides a good approximation to the function around a. The difference
between f(x) and l(x) is equal to e(x − a), and this quantity tends to 0
faster than |x− a| as x tends to a.

Lemma 7.3 Let f :D → Rm be a function which maps an open subset D of
Rn into Rm which is differentiable at some point a of D. Then f is continuous
at a.

Proof If we define

e(a,h) = f(a + h)− f(a)− f ′(a)h

then

lim
h→0

e(a,h)

|h|
= 0

(because f is differentiable at a), and hence

lim
h→0

e(a,h) =
(

lim
h→0
|h|
)(

lim
h→0

e(a,h)

|h|

)
= 0.

But
lim
h→0

e(a,h) = lim
h→0

f(a + h)− f(a),

since
lim
h→0

f ′(a)h = f ′(a)
(

lim
h→0

h
)

= 0

(on account of the fact that every linear transformation from Rn to Rm is
continuous). We conclude therefore that

lim
h→0

f(a + h) = f(a),

showing that f is continuous at a.

66



Lemma 7.4 Let f :D → Rm be a function which maps an open subset D of
Rn into Rm which is differentiable at some point a of D. Let f ′(a):Rn → Rm

be the derivative of f at a. Let u be an element of Rn. Then

f ′(a)u = lim
λ→0

1

λ
(f(a + λu)− f(a)) .

Thus the derivative f ′(a) of f at a is uniquely determined by the map f .

Proof It follows from the differentiability of f at a that

lim
h→0

1

|h|
(f(a + h)− f(a)− f ′(a)h) = 0.

In particular, if we set h = λu, where λ > 0 then we deduce that

lim
λ→0+

1

λ
(f(a + λu)− f(a)− λf ′(a)u) = 0,

showing that

lim
λ→0+

1

λ
(f(a + λu)− f(a)) = f ′(a)u.

Similarly if we set h = λu, where λ < 0, when we deduce that

lim
λ→0−

−1

λ
(f(a + λu)− f(a)− λf ′(a)u) = 0,

showing that

lim
λ→0−

1

λ
(f(a + λu)− f(a)) = f ′(a)u.

We conclude therefore that

lim
λ→0

1

λ
(f(a + λu)− f(a)) = f ′(a)u,

as required.

Let (e1, e2, . . . , en) denote the standard basis of Rn, where

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let us denote by f i:D → R the ith component of the map f :D → Rm,
where D is an open subset of Rn. Thus

f(x) = (f1(x), f2(x), . . . , fm(x))
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for all x ∈ D. The jth partial derivative of fi at a ∈ D is then given by

∂fi
∂xj

∣∣∣∣
x=a

= lim
λ→0

fi(a + λej)− fi(a)

λ
.

We see therefore that if f is differentiable at a then

f ′(a)ej =

(
∂f1

∂xj
,
∂f2

∂xj
, . . . ,

∂fm
∂xj

)
.

Thus the linear transformation f ′(a):Rn → Rm is represented by the m× n
matrix 

∂f1

∂x1

∂f1

∂x2

. . .
∂f1

∂xn
∂f2

∂x1

∂f2

∂x2

. . .
∂f2

∂xn
...

...
...

∂fm
∂x1

∂fm
∂x2

. . .
∂fm
∂xn


This matrix is known as the Jacobian matrix of f at a.

Example Let f :R2 → R2 be the function defined by

f

((
x1

x2

))
=

(
x2

1 − x2
2

2x1x2

)
.

Let (a1, a2) be a point of R2. Now

f

((
a1 + h1

a2 + h2

))
=

(
a2

1 − a2
2 + 2a1h1 − 2a2h2 + h2

1 − h2
2

2a1a2 + 2a2h1 + 2a1h2 + 2h1h2

)
.

Thus
f(a + h) = f(a) + Th + e(a,h)

where

a =

(
a1

a2

)
, h =

(
h1

h2

)
,

Th =

(
2a1h1 − 2a2h2

2a2h1 + 2a1h2

)
=

(
2a1 −2a2

2a2 2a1

)(
h1

h2

)
,

and

e(a,h) =

(
h2

1 − h2
2

2h1h2

)
.
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Now |h|2 = h2
1 + h2

2, and

|e(a,h)|2 = (h2
1 − h2

2)2 + (2h1h2)2

= h4
1 + h4

2 − 2h2
1h

2
2 + 4h2

1h
2
2

= h4
1 + h4

2 + 2h2
1h

2
2

= (h2
1 + h2

2)2 = |h|4.

Thus ∣∣∣∣e(a,h)

|h|

∣∣∣∣ = |h|,

so that

lim
h→0

1

|h|
(f(a + h)− f(a)− Th) = lim

h→0

e(a,h)

|h|
= 0.

This proves that f is differentiable at a and that the derivative f ′(a) of f at
a is given by the linear transformation T :R2 → R2 and is thus represented
by the 2× 2 matrix

f ′(a) =

(
2a1 −2a2

2a2 2a1

)
.

Note that

2a1 =
∂(x2

1 − x2
2)

∂x1

∣∣∣∣
x=a

2a2 =
∂(2x1x2)

∂x1

∣∣∣∣
x=a

−2a2 =
∂(x2

1 − x2
2)

∂x2

∣∣∣∣
x=a

2a1 =
∂(2x1x2)

∂x2

∣∣∣∣
x=a

Thus the derivative f ′(a) of f at a is indeed represented by the value at a of
the Jacobian matrix  ∂(x2

1 − x2
2)

∂x1

∂(x2
1 − x2

2)

∂x2

∂(2x1x2)

∂x1

∂(2x1x2)

∂x2

 .

Example Consider the function f :R2 → R defined by

f

((
x
y

))
=


xy

(x2 + y2)2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).
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Note that this function is not continuous at (0, 0). (Indeed f(t, t) = 1/(4t2)
if t 6= 0 so that f(t, t) → +∞ as t → 0, yet f(x, 0) = f(0, y) = 0 for all
x, y ∈ R, thus showing that

lim
(x,y)→(0,0)

f(x, y)

cannot possibly exist.) Because f is not continuous at (0, 0) we conclude
from Lemma 7.3 that f cannot be differentiable at (0, 0). However it is easy
to show that the partial derivatives

∂f(x, y)

∂x
and

∂f(x, y)

∂y

exist everywhere on R2, even at (0, 0). Indeed

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= 0,
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= 0

on account of the fact that f(x, 0) = f(0, y) = 0 for all x, y ∈ R.

Remark This last example exhibits an important point. It shows that even
if all the partial derivatives of a function exist at some point, this does not
necessarily imply that the function is differentiable at that point. However the
next theorem shows that if the first order partial derivatives of the compo-
nents of a function exist and are continuous throughout some neighbourhood
of a given point then the function is differentiable at that point.

Theorem 7.5 Let D be an open subset of Rm and let Let f :D → R be a
function mapping D into R. Suppose that the first order partial derivatives of
the components of f exist and are continuous on D. Then f is differentiable
at each point of D.

Proof We denote by ∂jf :D → R the partial derivative of f with respect to
the jth coordinate. Thus

∂jf ≡
∂f

∂xj

Let a be a point of D. If f is differentiable at a then the derivative of
f at a would be represented by the Jacobian matrix, and would thus be the
linear transformation sending (h1, h2, . . . , hn) ∈ Rn to

n∑
j=1

(∂jf)(a)hj.
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Thus in order to show that f is differentiable at a we must prove that

lim
h→0

1

|h|

(
f(a + h)− f(a)−

n∑
j=1

(∂jf)(a)hj

)
= 0,

where h = (h1, h2, . . . , hn).
Let ε > 0 be given. Using the fact thatD is open, and using the continuity

of the functions ∂1f, ∂2f, . . . , ∂nf , we see that there exists some δ > 0 such
that the open ball B(a, δ) of radius δ about a is contained in D, where

D = {x ∈ Rn : |x− a| < δ},

and such that, for all x ∈ B(a, δ),

|(∂jf)(x)− (∂jf)(a)| < ε

n
(j = 1, 2, . . . , n).

Given h satisfying |x| < δ, let us define

cj = f(a1 + h1, . . . , aj + hj, aj+1, . . . , an) (j = 0, 1, . . . , n).

Thus
c0 = f(a), cn = f(a + h).

Also
cj − cj−1 = gj(aj + hj)− gj(aj) (j = 1, 2, . . . , n),

where
gj(t) = f(a1 + h1, . . . , aj−1 + hj−1, t, aj+1, . . . , an).

Now there exist θ1, θ2, . . . , θn ∈ (0, 1) with the property that

gj(aj + hj)− gj(aj) = hjg
′
j(aj + θjhj) (j = 1, 2, . . . , n),

by the Mean Value Theorem. Moreover

g′j(aj + θjhj) = (∂jf)(a1 + h1, . . . , aj−1 + hj−1, aj + θjhj, aj+1, . . . , an),

and hence ∣∣g′j(aj + θjhj)− (∂f)(a)
∣∣ < ε

n

(on account of the fact that the point

(a1 + h1, . . . , aj−1 + hj−1, aj + θjhj, aj+1, . . . , an)
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lies within the open ball B(a, δ) of radius δ about a). We see therefore that

|cj − cj−1 − (∂jf)(a)hj| <
|hj|ε
n

(j = 1, 2, . . . , n),

so that∣∣∣∣∣f(a + h)− f(a−
n∑
j=1

(∂jf)(a)hj

∣∣∣∣∣ =

∣∣∣∣∣cn − c0 −
n∑
j=1

(∂jf)(a)hj

∣∣∣∣∣
≤

n∑
j=1

|cj − cj−1 − (∂jf)(a)hj|

<
n∑
j=1

|hj|ε
n
≤ ε|h|.

Thus
1

|h|

∣∣∣∣∣f(a + h)− f(a)−
n∑
j=1

(∂jf)(a)hj

∣∣∣∣∣ < ε

whenever |h| < δ. This shows that

lim
h→0

1

|h|

(
f(a + h)− f(a)−

n∑
j=1

(∂jf)(a)hj

)
= 0,

thus proving that f is differentiable at a.

We can generalize this result immediately to functions u:D → Rm which
map some open subset D of Rn into Rm. Let ui denote the ith component of
u for i = 1, 2, . . . ,m. One sees easily from the definition of differentiability
that u is differentiable at a point of D if and only if each ui is differentiable
at that point. We can therefore deduce immediately the following corollary.

Corollary 7.6 Let D be an open subset of Rn and let u:D → Rm be a
function mapping D into Rm. Suppose that the Jacobian matrix

∂u1

∂x1

∂u1

∂x2

. . .
∂u1

∂xn
∂u2

∂x1

∂u2

∂x2

. . .
∂u2

∂xn
...

...
...

∂um
∂x1

∂um
∂x2

. . .
∂um
∂xn


exists at every point of D and that the entries of the Jacobian matrix are
continuous functions on D. Then f is differentiable at every point of D, and
the derivative of f at each point is represented by the Jacobian matrix.
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Lemma 7.7 Let T :Rn → Rm be a linear transformation from Rn into Rm.
Then T is differentiable at each point a of Rn, and T ′(a) = T .

Proof This follows immediately from the fact that T (a+h) = Ta+Th.

We now show that given two differentiable functions mapping D into
R, where D is an open set in Rn, the sum, difference and product of these
functions are also differentiable.

Theorem 7.8 Let D be an open set in Rn, and let f :D → R and g:D → R
be functions mapping D into R. Let a be a point of D. Suppose that f
and g are differentiable at a. Then the functions f + g, f − g and f.g are
differentiable at a, and

(f + g)′(a) = f ′(a) + g′(a),

(f − g)′(a) = f ′(a)− g′(a),

(fg)′(a) = g(a)f ′(a) + f(a)g′(a).

Proof We can write

f(a + h) = f(a) + f ′(a)h + e1(a,h),

g(a + h) = g(a) + g′(a)h + e2(a,h),

for all sufficiently small h, where

lim
h→0

e1(a,h)

|h|
= 0, lim

h→0

e2(a,h)

|h|
= 0,

on account of the fact that f and g are differentiable at a. Then

lim
h→0

1

|h|
|f(a + h) + g(a + h)− (f(a) + g(a))− (f ′(a) + g′(a)) h|

= lim
h→0

e1(a,h) + e2(a,h)

|h|
= 0,

lim
h→0

1

|h|
|f(a + h)− g(a + h)− (f(a)− g(a))− (f ′(a)− g′(a)) h|

= lim
h→0

e1(a,h)− e2(a,h)

|h|
= 0.

Thus f + g and f − g are differentiable at a. Also

f(a + h)g(a + h) = f(a)g(a) + g(a)f ′(a)h + f(a)g′(a)h + e(a,h),
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where

e(a,h) = (f(a) + f ′(a)h)e2(a,h) + (g(a) + g′(a)h)e1(a,h)

+ (f ′(a)h)(g′(a)h) + e1(a,h)e2(a,h).

It follows from Lemma 7.1 that there exist constants M1 and M2 such that

|f ′(a)h| ≤M1|h|, |g′(a)h| ≤M2|h|.

Therefore
|(f ′(a)h)(g′(a)h)| ≤M1M2|h|2,

so that

lim
h→0

1

|h|
(f ′(a)h)(g′(a)h) = 0.

Also

lim
h→0

1

|h|
((f(a) + f ′(a)h)e2(a,h)) = lim

h→0
(f(a) + f ′(a)h) lim

h→0

e2(a,h)

|h|
= 0,

lim
h→0

1

|h|
((g(a) + g′(a)h)e1(a,h)) = lim

h→0
(g(a) + g′(a)h) lim

h→0

e1(a,h)

|h|
= 0,

lim
h→0

1

|h|
(e1(a,h)e2(a,h)) = lim

h→0
e1(a,h) lim

h→0

e2(a,h)

|h|
= 0.

Therefore

lim
h→0

e(a,h)

|h|
= 0,

showing that the function f.g is differentiable at a and that

(fg)′(a) = g(a)f ′(a) + f(a)g′(a).

Let D be an open set in Rn, and let f :D → Rm be a function mapping
D into Rm. Let E be an open set in Rm which contains f(D), and let
g:E → Rp be a function mapping E into Rp. The Chain Rule states that if
f is differentiable at some point a of D and if g is differentiable at f(a) then
the composition g ◦ f is differentiable at a and

(g ◦ f)′(a) = g′(f(a)) ◦ f ′(a).

Thus a composition of differentiable functions is differentiable. Moreover
the derivative of a composition of two functions is the composition of the
derivatives of those functions. The following lemma will be used in the proof
of the Chain Rule.
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Lemma 7.9 Let D be an open set in Rn and let a be a point of D. Let
ϕ:D → Rm be a mapping from D to Rn and let λ:D → R be a real-valued
function on D. Suppose that

lim
x→a

ϕ(x) = 0

and that |λ(x)| ≤ K for all x ∈ D, where K is a suitable constant. Then

lim
x→a

λ(x)ϕ(x) = 0.

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |ϕ(x)| <
ε/K whenever x ∈ D satisfies |x−a| < δ, since ϕ(x)→ 0 as x→ a. But then
|λ(x)ϕ(x)| < ε whenever x ∈ D satisfies |x− a| < δ. Thus λ(x)ϕ(x)→ 0 as
x→ a.

We now state and prove the Chain Rule.

Theorem 7.10 (Chain Rule) Let D be an open set in Rn, and let f :D → Rm

be a function mapping D into Rm. Let E be an open set in Rm which contains
f(D), and let g:E → Rp be a function mapping E into Rp. Let a be a point
of D. Suppose that f is differentiable at a and that g is differentiable at
f(a). Then the composition g ◦ f (i.e., f followed by g) is differentiable at
a. Moreover

(g ◦ f)′(a) = g′(f(a)) ◦ f ′(a).

Proof We can write

f(a + h) = f(a) + f ′(a)h + e1(a,h)

for all sufficiently small h, where

lim
h→0

e1(a,h)

|h|
= 0,

on account of the fact that f is differentiable at a. Define b = f(a). We can
write

g(b + k) = g(b) + g′(b)k + e2(b,k)

for all sufficiently small h, where

lim
k→0

e2(b,k)

|k|
= 0,
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on account of the fact that g is differentiable at b. Thus

g(f(a + h)) = g(b + f ′(a)h + e1(a,h))

= g(b) + g′(b)(f ′(a)h + e1(a,h)) + e2(b, (f ′(a)h + e1(a,h)))

= g(f(a)) + g′(f(a))f ′(a)h + e(a,h),

where
e(a,h) = g′(b)e1(a,h) + e2(b, (f ′(a)h + e1(a,h))).

Thus in order to show that g◦f is differentiable at a with derivative g′(f(a))◦
f ′(a) we must show that

lim
h→0

e(a,h)

|h|
= 0.

Using the fact that g′(b) is a linear transformation from Rm to Rp, and is
thus continuous (by Lemma 7.1) we see that

lim
h→0

1

|h|
g′(b)e1(a,h) = lim

h→0
g′(b)

(
e1(a,h)

|h|

)
= g′(b)

(
lim
h→0

e1(a,h)

|h|

)
= g′(b)0 = 0.

Thus it only remains to show that

lim
h→0

1

|h|
e2(b, f ′(a)h + e1(a,h)) = 0.

Let ϕ(k) be defined by

ϕ(k) =

{
e2(b,k)

|k|
if k 6= 0 and b + k ∈ E;

0 if k = 0.

Then ϕ is continuous at 0, since

lim
k→0

e2(b,k)

|k|
= 0.

Now

1

|h|
e2(b, f ′(a)h + e1(a,h)) = ϕ(f ′(a)h + e1(a,h))

|f ′(a)h + e1(a,h)|
|h|

.
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Now it follows from Lemma 7.1 that there exists a constant M such that
|f ′(a)h| ≤ M |h| for all h. also e1(a,h) → 0 as h → 0. Thus there exists a
sufficiently small neighbourhood of 0 in Rn such that

|f ′(a)h + e1(a,h)| ≤ (M + 1)|h|.

for all h ∈ N . Now

lim
h→0

ϕ(f ′(a)h + e1(a,h)) = ϕ
(

lim
h→0

(f ′(a)h + e1(a,h))
)

= ϕ(0) = 0

and
|f ′(a)h + e1(a,h)|

|h|
≤M + 1

for all sufficiently small h. Therefore

lim
h→0

1

|h|
e2(b, f ′(a)h + e1(a,h)) = 0,

by Lemma 7.9. It follows therefore that

lim
h→0

e(a,h)

|h|
= 0,

so that g ◦ f is differentiable at a with derivative g′(f(a)) ◦ f ′(a), as re-
quired.

We can use Theorem 7.8 and Theorem 7.10 to produce many examples
of differentiable functions.

Example Consider the function f :R2 → R defined by

f(x, y) =

{
x2y3 sin

1

x
if x 6= 0;

0 if x = 0.

Now one can verify from the definition of differentiability that the function
h:R→ R defined by

h(t) =

{
t2 sin

1

t
if t 6= 0

0 if t = 0

is differentiable everywhere on R, though its derivative h′:R→ R is not con-
tinuous at 0. Also the functions (x, y) 7→ x and (x, y) 7→ y are differentiable
everywhere on R (by Lemma 7.7). Now f(x, y) = y2h(x). Using Theorem 7.8
and Theorem 7.10, we conclude that f is differentiable everywhere on R2.
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We now summarize the main conclusions of this section. They are as
follows.

(i) A function f :D → Rm defined on an open subset D of Rn is said to
be differentiable at a point a of D if and only if there exists a linear
transformation f ′(a):Rn → Rm with the property that

lim
h→0

1

|h|
(f(a + h)− f(a)− f ′(a)h) = 0.

The linear transformation f ′(a) (if it exists) is unique and is known as
the derivative (or total derivative) of f at a.

(ii) If the function f :D → Rm is differentiable at a point a of D then the
derivative f ′(a) of f at a is represented by the Jacobian matrix of the
function f at a whose entries are the first order partial derivatives of
the components of f .

(iii) There exist functions f :D → Rm whose first order partial derivatives
are well-defined at a particular point of D but which are not differen-
tiable at that point. Indeed there exist such functions whose first order
partial derivatives are well-defined which are not continuous. Thus in
order to show that a function is differentiable at a particular point, it
is not sufficient to show that the first order partial derivatives of the
function exist at that point.

(iv) However if the first order partial derivatives of the components of a
function f :D → Rm exist and are continuous throughout some neigh-
bourhood of a given point then the function is differentiable at that
point. (However the converse does not hold: there exist functions
which are differentiable whose first order partial derivatives are not
continuous.)

(v) Linear transformations are everywhere differentiable.

(vi) A function f :D → Rm is differentiable if and only if its components
are differentiable functions on D (where D is an open set in Rn).

(vii) Given two differentiable functions from D to R, where D is an open
set in Rn, the sum, difference and product of these functions are also
differentiable.

(viii) (The Chain Rule). The composition of two differentiable functions is
differentiable, and the derivative of the composition of the functions at
any point is the composition of the derivatives of the functions.
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8 Second Order Partial Derivatives

Let D be an open subset of Rn and let f :D → R be a real-valued function on
D. We consider the second order partial derivatives of the function f defined
by

∂2f

∂xi∂xj
≡ ∂

∂xi

(
∂f

∂xj

)
.

We shall show that if the partial derivatives

∂f

∂xi
,

∂f

∂xj
,

∂2f

∂xi∂xj
and

∂2f

∂xj∂xi

all exist and are continuous then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
.

First though we give a counterexample which demonstrates that there exist
functions f for which

∂2f

∂xi∂xj
6= ∂2f

∂xj∂xi
.

Example Let f :R2 → R be the function defined by

f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) 6= (0, 0);

0 if (x, y) = (0, 0).

For convenience of notation, let us write

fx(x, y) ≡ ∂f(x,y)
∂x

,

fy(x, y) ≡ ∂f(x,y)
∂y

,

fxy(x, y) ≡ ∂2f(x,y)
∂x∂y

,

fyx(x, y) ≡ ∂2f(x,y)
∂y∂x

.

If (x, y) 6= (0, 0) then

fx =
yx2 − y3 + 2x2y

x2 + y2
− 2x2y(x2 − y2)

(x2 + y2)2

=
3x2y(x2 + y2)− y3(x2 + y2)− 2x4y + 2x2y3

(x2 + y2)2

=
x4y + 4x2y3 − y5

(x2 + y2)2
.
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Similarly

fy = −y
4x+ 4y2x3 − x5

(y2 + x2)2
.

Thus if (x, y) 6= (0, 0) then

fxy = fyx =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

Note that

lim
(x,y)→(0,0)

fx(x, y) = 0, lim
(x,y)→(0,0)

fy(x, y) = 0.

Indeed if (x, y) 6= (0, 0) then

|fx| ≤
6r5

r4
= 6r,

where r =
√
x2 + y2, and similarly |fy| ≤ 6r. However

lim
(x,y)→(0,0)

fxy(x, y)

does not exist. Indeed

lim
x→0

fxy(x, 0) = lim
x→0

fyx(x, 0) = lim
x→0

x6

x6
= 1,

lim
y→0

fxy(0, y) = lim
y→0

fyx(0, y) = lim
y→0

−y6

y6
= −1.

Next we show that fx, fy, fxy and fyx all exist at (0, 0), and thus exist
everywhere on R2. Now f(x, 0) = 0 for all x, hence fx(0, 0) = 0. Also
f(0, y) = 0 for all y, hence fy(0, 0) = 0. Thus

fy(x, 0) = x, fx(0, y) = −y

for all x, y ∈ R. We conclude that

fxy(0, 0) =
d(fy(x, 0))

dx
= 1,

fyx(0, 0) =
d(fx(0, y))

dy
= −1,

Thus
∂2f

∂x∂y
6= ∂2f

∂y∂x
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at (0, 0).
Observe that in this example the functions fxy and fyx are continuous

throughout R2 \ {(0, 0} and are equal to one another there. Although the
functions fxy and fyx are well-defined at (0, 0), they are not continuous at
(0, 0) and fxy(0, 0) 6= fyx(0, 0).

We now prove that the continuity of the first and second order partial
derivatives of a function f of two variables x and y is sufficient to ensure that

∂2f

∂x∂y
.

Theorem 8.1 Let D be an open set in R2 and let f :D → R be a real-valued
function on D. Suppose that the partial derivatives

∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
, and

∂2f

∂y∂x

exist and are continuous on D. Then

∂2f

∂x∂y
=

∂2f

∂y∂x
.

Proof For convenience, we shall denote the values of

∂f

∂x
,

∂f

∂y
,

∂2f

∂x∂y
, and

∂2f

∂y∂x

at a point (x, y) of D by fx(x, y), fy(x, y), fxy(x, y) and fyx(x, y) respectively.
Let (a, b) be a point of D. Then there exists some R > 0 with the property

that the open ball of radius R about (a, b) is contained in D, because D is
open. Let h and k be real numbers satisfying h2 + k2 < R2.

Let us define a differentiable function u by

u(t) = f(t, b+ k)− f(t, b)

We apply the Mean Value Theorem to the function u on the closed interval
[a, a+ h] to conclude that there exists θ1, where 0 < θ1 < 1, such that

u(a+ h)− u(a) = hu′(a+ θ1h).

But

u(a+ h)− u(a) = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)
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and
u′(a+ θ1h) = fx(a+ θ1h, b+ k)− fx(a+ θ1h, b).

Moreover, on applying the Mean Value Theorem to the function y 7→ fx(a+
θ1h, y) on the interval [b, b+k], we see that there exists θ2, where 0 < θ2 < 1,
such that

fx(a+ θ1h, b+ k)− fx(a+ θ1h, b) = kfyx(a+ θ1h, b+ θ2k)

Thus

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

= hkfyx(a+ θ1h, b+ θ2k) = hk
∂2f

∂y∂x

∣∣∣∣
(x,y)=(a+θ1h,b+θ2k)

.

Now let ε > 0 be given. Then there exists some δ1 > 0 (where δ1 ≤ R)
such that

|fyx(x, y)− fyx(a, b)| < 1
2
ε

whenever (x−a)2 +(y−b)2 < δ2
1, by the continuity of the function fyx. Thus

if h2 + k2 < δ2
1 then

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fyx(a, b)| < 1

2
ε.

We can repeat the above argument with the roles of the variables x and
y interchanged. Thus on applying the Mean Value Theorem to the function
v defined by

v(t) = f(a+ h, t)− f(a, t)

we see that, given sufficiently small h and k, there exists ϕ2, where 0 < ϕ2 < 1
such that

v(b+ k)− v(b) = kv′(b+ ϕ2k),

so that

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

= k (fy(a+ h, b+ ϕ2k)− fy(a, b+ ϕ2k)) .

Applying the Mean Value Theorem to the function x 7→ fy(x, b+ϕ2k) on the
interval [a, a + h] we conclude that there exists some ϕ1, where 0 < ϕ1 < 1
such that

f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b) = hk fxy(a+ϕ1h, b+ϕ2k).
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Using the continuity of fxy, we conclude that there exists some δ2 > 0 such
that

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fxy(a, b)| < 1

2
ε.

whenever h2 + k2 < δ2
2.

Take δ to be the minimum of δ1 and δ2. If h2 + k2 < δ2
2 then

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fyx(a, b)| < 1

2
ε,

|f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

hk
− fxy(a, b)| < 1

2
ε.

Using the triangle inequality we conclude that

|fyx(a, b)− fxy(a, b)| < ε.

But this inequality has to hold for all ε > 0. Therefore we must have

fyx(a, b) = fxy(a, b).

We conclude therefore that

∂2f

∂x∂y
=

∂2f

∂y∂x

at each point (a, b) of D, as required.

Remark It is actually possible to prove a somewhat stronger theorem which
states that, if f :D → R is a real-valued function defined on a open subset
D of R2 and if the partial derivatives

∂f

∂x
,

∂f

∂y
, and

∂2f

∂x∂y

exist and are continuous at some point (a, b) of D then

∂2f

∂y∂x

exists at (a, b) and
∂2f

∂y∂x

∣∣∣∣
(a,b)

=
∂2f

∂x∂y

∣∣∣∣
(a,b)

.
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Corollary 8.2 Let D be an open set in Rn and let f :D → R be a real-valued
function on D. Suppose that the partial derivatives

∂f

∂xi
and

∂2f

∂xi∂xj

exist and are continuous on D for all integers i and j between 1 and n. Then

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi

for all integers i and j between 1 and n.

8.1 Taylor’s Theorem for Functions of Several Vari-
ables

Let f :D → R be a smooth real-valued function defined on an open subset
D of Rn. The function f is said to be Ck if and only the partial derivatives

∂rf

∂xi1∂xi2 · · · ∂xir

of order r exist and are continuous for all r ≤ k. The function f is said to
be smooth if and only if it is Ck for all positive integers k.

Let f :D → R be a Ck+1 function defined on an open subset D of Rn.
Let a be a point of D. There exists some R > 0 such that the open ball of
radius R about a is contained in D on account of the fact that D is open.
Let h be an element of Rn satisfying |h| < R. Then the line segment joining
the points a and a + h is contained in D.

Consider the function g: [0, 1] → R defined by g(t) = f(a + th). On
applying Taylor’s Theorem to g, we see that, given any t ∈ [0, 1] and given
any non-negative integer k, there exists some θ satisfying 0 ≤ θ < 1 such
that

g(t) =
k∑
j=0

tj

j!
g(j)(0) +

tk+1

(k + 1)!
g(k+1)(θt).

In particular, if we set t = 1 we see that

f(a + h) =
k∑
j=0

g(j)(0)

j!
+
g(k+1)(θ)

(k + 1)!
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for some θ satisfying 0 < θ < 1. Now

g(t) = f(a + th),

g′(t) =
d

dt
f(a + th)

=
n∑
i=1

hi
∂f

∂xi

∣∣∣∣
x=a+th

,

g′′(t) =
n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=a+th

,

...

g(k)(t) =
n∑

i1=1

n∑
i2=1

· · ·
n∑

ik=1

hi1hi2 . . . hik
∂kf

∂xi1∂xi2 · · · ∂xik

∣∣∣∣
x=a+th

,

where h = (h1, h2, . . . , hn). Thus

f(a + h)

= f(a) +
n∑
i=1

hi
∂f

∂xi

∣∣∣∣
x=a

+
1

2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=a

+ · · ·+ 1

k!

n∑
i1=1

n∑
i2=1

· · ·
n∑

ik=1

hi1hi2 . . . hik
∂kf

∂xi1∂xi2 · · · ∂xik

∣∣∣∣
x=a

+
1

(k + 1)!

n∑
i1=1

n∑
i2=1

· · ·
n∑

i(k+1)=1

hi1hi2 . . . hi(k+1)

∂(k+1)f

∂xi1∂xi2 · · · ∂xi(k+1)

∣∣∣∣
x=a+θh

for some θ satisfying 0 < θ < 1. This is the form of Taylor’s Theorem
applicable to functions defined over open subsets of Rn.

In particular, if f :D → R is a C2 function then

f(a + h) = f(a) +
n∑
i=1

hi
∂f

∂xi

∣∣∣∣
x=a

+
1

2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=a+θh

for some θ satisfying 0 < θ < 1.

8.2 Maxima and Minima

Let f :D → R be a C2 real-valued function defined over some open subset
D of Rn. Suppose that f has a local minimum at some point a of D, where
a = (a1, a2, . . . , an). Now for each integer i between 1 and n the map

t 7→ f(a1, . . . , ai−1, t, ai+1, . . . , an)
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has a local minimum at t = ai, hence the derivative of this map vanishes
there. Thus if f has a local minimum at a then

∂f

∂xi

∣∣∣∣
x=a

= 0.

Let R > 0 be chosen such that the open ball of radius R about a is contained
in D. It follows from Taylor’s theorem that if |h| < R then

f(a + h) = f(a) +
1

2

n∑
i=1

n∑
j=1

hihj
∂2f

∂xi∂xj

∣∣∣∣
x=a+θh

for some θ satisfying 0 < θ < 1. Let us denote by (Hij(a)) the Hessian
matrix at the point a, defined by

Hij(a) =
∂2f

∂xi∂xj

∣∣∣∣
x=a

.

If f is C2 then the second order partial derivatives of f are continuous, hence
Hij(a) = Hji(a) for all i and j, by Corollary 8.2. Thus the Hessian matrix
is symmetric.

We now recall some facts concerning symmetric matrices.
Let (cij) be a symmetric n× n matrix.

The matrix (cij) is said to be positive semi-definite if
n∑
i=1

n∑
j=1

cijhihj ≥ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (cij) is said to be positive definite if
n∑
i=1

n∑
j=1

cijhihj > 0 for all

non-zero (h1, h2, . . . , hn) ∈ Rn.

The matrix (cij) is said to be negative semi-definite if
n∑
i=1

n∑
j=1

cijhihj ≤ 0

for all (h1, h2, . . . , hn) ∈ Rn.

The matrix (cij) is said to be negative definite if
n∑
i=1

n∑
j=1

cijhihj < 0 for

all non-zero (h1, h2, . . . , hn) ∈ Rn.
The matrix (cij) is said to be indefinite if it is neither positive semi-definite

nor negative semi-definite.

Lemma 8.3 Let (cij) be a positive definite symmetric n × n matrix. Then
there exists some ε > 0 with the following property: if all of the components
of a symmetric n × n matrix (bij) satisfy the inequality |bij − cij| < ε then
the matrix (bij) is positive definite.
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Proof Let Sn−1 be the unit n− 1-sphere in Rn defined by

Sn−1 = {(h1, h2, . . . , hn) ∈ Rn : h2
1 + h2

2 + · · ·+ h2
n = 1}.

Observe that a symmetric n×n matrix (bij) is positive definite if and only if

n∑
i=1

n∑
j=1

bijhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Now the matrix (cij) is positive definite, by
assumption. Therefore

n∑
i=1

n∑
j=1

cijhihj > 0

for all (h1, h2, . . . , hn) ∈ Sn−1. But Sn−1 is a closed bounded set in Rn, it
therefore follows from Theorem 3.2 that there exists some (k1, k2, . . . , kn) ∈
Sn−1 with the property that

n∑
i=1

n∑
j=1

cijhihj ≥
n∑
i=1

n∑
j=1

cijkikj

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus there exists a strictly positive constant
A > 0 with the property that

n∑
i=1

n∑
j=1

cijhihj ≥ A

for all (h1, h2, . . . , hn) ∈ Sn−1. Set ε = A/n2. If (bij) is a symmetric n × n
matrix all of whose components satisfy |bij − cij| < ε then∣∣∣∣∣

n∑
i=1

n∑
j=1

(bij − cij)hihj

∣∣∣∣∣ < εn2 = A,

for all (h1, h2, . . . , hn) ∈ Sn−1, hence

n∑
i=1

n∑
j=1

bijhihj >

n∑
i=1

n∑
j=1

cijhihj − A ≥ 0

for all (h1, h2, . . . , hn) ∈ Sn−1. Thus the matrix (bij) is positive-definite, as
required.
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Using the fact that a symmetric n × n matrix (cij) is negative definite
if and only if the matrix (−cij) is positive-definite, we see that if (cij) is
a negative-definite matrix then there exists some ε > 0 with the following
property: if all of the components of a symmetric n× n matrix (bij) satisfy
the inequality |bij − cij| < ε then the matrix (bij) is negative definite.

Let f :D → R be a C2 function defined on an open subset D of Rn. Let
a be a point of D. We have already observed that if the function f has a
local maximum or a local minimum at a then

∂f

∂xi

∣∣∣∣
x=a

= 0 (i = 1, 2, . . . , n).

We now apply Taylor’s theorem to study the behaviour of the function f
around a point a at which the first order partial derivatives vanish. We
consider the Hessian matrix (Hij(a) defined by

Hij(a) =
∂2f

∂xi∂xj

∣∣∣∣
x=a

.

Lemma 8.4 Let f :D → R be a C2 function defined on an open subset D of
Rn. Let a be a point of D at which

∂f

∂xi

∣∣∣∣
x=a

= 0 (i = 1, 2, . . . , n).

If f has a local minimum at a point a of D then the Hessian matrix (Hij(a))
at a is positive semi-definite.

Proof The first order partial derivatives of f vanish at a. It therefore follows
from Taylor’s Theorem that, for any h ∈ Rn which is sufficiently close to 0,
there exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(a + h) = f(a) +
1

2

n∑
i=1

n∑
j=1

hihjHij(a + θh),

where

Hij(a + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=a+θh

.

Suppose that the Hessian matrix Hij(a) is not positive semi-definite. Then
there exists some k ∈ Rn, where |k| = 1 with the property that

n∑
i=1

n∑
j=1

kikjHij(a) < 0.
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It follows from the continuity of the second order partial derivatives of f that
there exists some δ > 0 such that

n∑
i=1

n∑
j=1

kikjHij(x) < 0

for all x ∈ D satisfying |x− a| < δ. Choose any λ such that 0 < λ < δ and
set h = λk. Then

n∑
i=1

n∑
j=1

hihjHij(a + θh) < 0

for all θ ∈ (0, 1). We conclude from Taylor’s theorem that f(a + λk) < f(a)
for all λ satisfying 0 < λ < δ. We have thus shown that if the Hessian matrix
at a is not positive semi-definite then a is not a local minimum. Thus the
Hessian matrix of f is positive semi-definite at every local minimum of f , as
required.

Let f :D → R be as C2 function defined on an open set D in Rn and
let a be a point at which the first order partial derivatives of f vanish. The
above lemma shows that if the function f has a local minimum at h then the
Hessian matrix of f is positive semi-definite at a. However the fact that the
Hessian matrix of f is positive semi-definite at a is noit sufficient to ensure
that f is has a local minimum at a, as the following example shows.

Example Consider the function f :R2 → R defined by f(x, y) = x2 − y3.
Then the first order partial derivatives of f vanish at (0, 0). The Hessian
matrix of f at (0, 0) is the matrix(

2 0
0 0

)
,

and this matrix is positive semi-definite. However (0, 0) is not a local mini-
mum of f since f(0, y) < f(0, 0) for all y > 0.

The following theorem shows that if the Hessian of the function f is
positive definite at a point at which the first order partial derivatives of f
vanish then f has a local minimum at that point.

Theorem 8.5 Let f :D → R be a C2 function defined on an open subset D
of Rn. Let a be a point of D at which

∂f

∂xi

∣∣∣∣
x=a

= 0 (i = 1, 2, . . . , n).

Suppose that the Hessian matrix Hij(a) at a is positive definite. Then f has
a local minimum at a.
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Proof The first order partial derivatives of f vanish at a. It therefore follows
from Taylor’s Theorem that, for any h ∈ Rn which is sufficiently close to 0,
there exists some θ satisfying 0 < θ < 1 (where θ depends on h) such that

f(a + h) = f(a) +
1

2

n∑
i=1

n∑
j=1

hihjHij(a + θh),

where

Hij(a + θh) =
∂2f

∂xi∂xj

∣∣∣∣
x=a+θh

.

Suppose that the Hessian matrix (Hij(a)) is positive definite. It follows from
Lemma 8.3 that there exists some ε > 0 such that if |Hij(x) − Hij(a)| < ε
for all i and j then (Hij(x)) is positive definite. But it follows from the
continuity of the second order partial derivatives of f that there exists some
δ > 0 such that |Hij(x)−Hij(a)| < ε whenever |x− a| < δ. Thus if |h| < δ
then (Hij(a+θh)) is positive definite for all θ ∈ (0, 1) so that f(a+h) > f(a).
Thus a is a local minimum of f .

A symmetric n × n matrix C is positive definite if and only if all its
eigenvalues are strictly positive. In particular if n = 2 and if λ1 and λ2 are
the eigenvalues a symmetric 2× 2 matrix C, then

λ1 + λ2 = traceC, λ1λ2 = detC.

Thus a symmetric 2× 2 matrix C is positive definite if and only if its trace
and determinant are both positive.

Example Consider the function f :R2 → R defined by

f(x, y) = 4x2 + 3y2 − 2xy − x3 − x2y − y3.

Now

∂f(x, y)

∂x

∣∣∣∣
(x,y)=(0,0)

= (0, 0),
∂f(x, y)

∂y

∣∣∣∣
(x,y)=(0,0)

= (0, 0).

The Hessian matrix of f at (0, 0) is(
8 −2
−2 6

)
.

The trace and determinant of this matrix are 14 and 44 respectively. Hence
this matrix is positive definite. We conclude from Theorem 8.5 that the
function f has a local minimum at (0, 0).
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9 Differential Forms on Euclidean Space

9.1 Permutations

We recall some basic facts concerning permutations. Let A be a finite set. A
permutation π of A is a bijection π:A → A which maps A onto itself. The
collection of all permutations of the set A forms a group under the operation
of composition. We denote this group by SA.

A permutation π:A→ A of a finite set A is said to be a transposition if
there exist elements ai and aj of A such that

π(a) =


aj if a = ai;
ai if a = aj;
a if a ∈ A \ {ai, aj}.

Every permutation of a finite set A can be expressed as a composition of
transpositions (i.e., the group SA is generated by the set of all transpositions).

Let π be a permutation of the finite set A. Suppose that π can be ex-
pressed as the product of r transpositions and also as a product of s transpo-
sitions, where r and s are non-negative integers. A basic result in the theory
of permutations then states that r−s is an even integer, so that either r and
s are both even or else r and s are both odd. We say that the permutation π
of A is even if π can be expressed as the composition of an even number of
transpositions. Similarly a permutation π of A is said to be odd if π can
be expressed as the composition of an odd number of transpositions. Every
permutation of a finite set A is either even or odd, and no permutation can
be both even and odd.

Given a permutation π of a finite set A, let us define the parity επ of π
by

επ =
{

+1 if π is even;
−1 if π is odd.

Observe that if π can be expressed as the composition of p transpositions
then επ = (−1)p.

If π and σ are permutations of A then επ◦σ = επεσ. Thus if we regard
{1,−1} as a group under the operation of multiplication then the function
sending π ∈ SA to επ ∈ {1,−1} is a homomorphism from the group SA of
permutations of A to the group {1,−1}.

Let A and B be finite sets with A ∩ B = ∅. Let σ be a permutation
of A and let τ be a permutation of B. Then these permutations induce a
permutation π of A ∪B, where

π(x) =

{
σ(x) if x ∈ A;
τ(x) if x ∈ B.
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It follows directly from the definition of even and odd permutations that
επ = εσετ , for if σ can be expressed as a product of s transpositions of the
set A and τ can be expressed as a product of t transpositions of the set B
then clearly π can be expressed as a product of s + t transpositions of the
set A ∪B, so that

επ = (−1)s+t = (−1)s(−1)t = εσετ .

9.2 Differential Forms on n-dimensional Euclidean Space

Definition Let D be an open subset of Rn. Let (x1, x2, . . . , xn) denote the
standard coordinate system on Rn. Let p be a positive integer. We define a
differential form of degree p to be a sum of expressions of the form

f(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where i1, i2, . . . , ip are integers between 1 and n, where f :D → R is a real-
valued function on D and where these expressions are subject to the following
rules:

Rule I:

f(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip = 0

unless i1, i2, . . . , ip are all distinct integers between 1 and n.

Rule II: if jm = π(im) for m = 1, 2, . . . , p, where π is a permutation of the
set {i1, i2, . . . , ip} then

f(x) dxj1 ∧ dxj2 ∧ · · · ∧ dxjp = επf(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where επ is the parity of the permutation π, defined by

επ =

{
+1 if π is an even permutation;
−1 if π is an odd permutation.

Two differential forms of degree p are regarded as being equivalent if and only
if the expressions representing these differential forms can be transformed
into each other by repeated applications of Rule I and Rule II.

By convention, we define a differential form of degree 0 on D to be a
real-valued function from D to R.
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The sum ω + η two differential forms ω and η of degree p is well-defined
and is a differential form of degree p. Also if ω is a p-form on D and f is a
real-valued function on D then we can multiply the p-form ω by the function
f to get a p-form fω on D.

If ω is a differential form of degree p for some non-negative integer p then
we say that ω is a p-form.

Example (Differential forms on R). Let I be an open interval in R. A
0-form on I is a real-valued function on I, and a 1-form on I is an expression
of the form f(x) dx, where f is a real-valued function on I. There are no
non-zero p-forms on I for p > 1 on account of Rule I (since Rule I implies
that dx ∧ dx = 0, dx ∧ dx ∧ dx = 0 etc.).

Example (Differential forms on R2). Let D be an open set in R2. Let (x, y)
denote the standard coordinate system on R2. A 0-form on D is a real-valued
function on D. A 1-form on D is an expression of the form

f(x, y) dx+ g(x, y) dy,

where f and g are real-valued functions on D. A 2-form on D can be ex-
pressed in the form h(x, y) dx ∧ dy, where h is a real-valued function on D.
Rule II tells us that

h(x, y) dy ∧ dx = −h(x, y) dx ∧ dy.

There are no non-zero p-forms on D for p > 2 on account of Rule I (since
Rule I implies that dx ∧ dx ∧ dx = 0, dx ∧ dx ∧ dy = 0 etc.).

Example (Differential forms on R3). Let D be an open set in R3. Let
(x, y, z) denote the standard coordinate system on R3. A 0-form on D is a
real-valued function on D. A 1-form on D is an expression of the form

f(x, y, z) dx+ g(x, y, z) dy + h(x, y, z) dz,

where f , g and h are real-valued functions on D. A 2-form on D can be
expressed in the form

f(x, y, z) dy ∧ dz + g(x, y, z) dx ∧ dz + h(x, y, z) dx ∧ dy,

where f , g and h are real-valued functions on D. Note that

dx ∧ dy = −dy ∧ dx. dy ∧ dz = −dz ∧ dy. dz ∧ dx = −dx ∧ dz.
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A 3-form on D can be expressed in the form h(x, y, z) dx ∧ dy ∧ dz, where h
is a real-valued function on D. Rule II tells us that

dx ∧ dy ∧ dz = dy ∧ dz ∧ dx = dz ∧ dx ∧ dy
= −dz ∧ dy ∧ dx = −dx ∧ dz ∧ dy = −dy ∧ dx ∧ dz.

There are no non-zero p-forms on D for p > 3 on account of Rule I.

Example (Differential forms on R4). Let D be an open set in R4. Let
(x, y, z, t) denote the standard coordinate system on R4. A 0-form on D is a
real-valued function on D. A 1-form on D is an expression of the form

f dx+ g dy + h dz + k dt,

where f , g h and k are real-valued functions on D. A 2-form on D can be
expressed in the form

f dy ∧ dz + g dx ∧ dz + h dx ∧ dy + k dx ∧ dt+ l dy ∧ dt+mdz ∧ dt,
where f , g, h, k, l and m are real-valued functions on D. Note that

dx ∧ dy = −dy ∧ dx. dy ∧ dz = −dz ∧ dy. dz ∧ dx = −dx ∧ dz.
dt ∧ dx = −dx ∧ dt. dt ∧ dy = −dy ∧ dt. dt ∧ dz = −dz ∧ dt.

A 3-form on D can be expressed in the form

f dy ∧ dz ∧ dt+ g dx ∧ dz ∧ dt+ h dx ∧ dy ∧ dt+ k dx ∧ dy ∧ dz,
where f , g h and k are real-valued functions on D. A 4-form on D can be
expressed in the form h dx ∧ dy ∧ dz ∧ dt, where h is a real-valued function
on D. There are no non-zero p-forms on D for p > 4 on account of Rule I.

The following two results follow immediately on applying Rules I and II
given above.

Lemma 9.1 Let D be an open subset of Rn. Then there are no non-zero
p-forms on D for p > n. Every n-form on D is of the form

f(x1, x2, . . . , xn) dx1 ∧ dx2 ∧ · · · ∧ dxn,
where (x1, x2, . . . , xn) is the standard coordinate system on Rn.

Lemma 9.2 Let D be an open subset of Rn and let p be an integer between
1 and n. Let (x1, x2, . . . , xn) denote the standard coordinate system on Rn.
Then every p-form on D can be expressed uniquely in the form∑

1≤i1<i2<···<ip≤n

fi1i2...ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where fi1i2...ip is a real-valued function on D for each p-tuple (i1, i2, . . . , ip) of
integers between 1 and n which satisfy 1 ≤ i1 < i2 < · · · < ip ≤ n.
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9.3 The Wedge Product

We shall define the wedge product (or exterior product) of two differential
forms on Rn. Let (x1, x2, . . . xn) denote the standard coordinate system on
Rn. Let ω be a p-form and let η be a q-form on some open set D in Rn,
where p > 0 and q > 0. Then ω and η can be expressed as finite sums of the
form

ω =
∑

(i1,i2,...,ip)∈I

fi1i2...ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

η =
∑

(j1,j2,...,jq)∈J

gj1j2...jq dxj1 ∧ dxi2 ∧ · · · ∧ dxjq ,

where each fi1i2...ip and gj1j2...jq is a real valued function on D. (Here the p-
tuple (i1, i2, . . . , ip) and the q-tuple (j1, j2, . . . , jq) of integers between 1 and
n range over suitable indexing sets I and J respectively.) The wedge product
ω ∧ η of ω and η is defined by

ω∧η =
∑

(i1,i2,...,ip)∈I

∑
(j1,j2,...,jq)∈J

fi1i2...ipgj1j2...jq dxi1∧· · ·∧dxip∧dxj1∧· · ·∧dxjq .

This defines the wedge product ω ∧ η of a p-form ω and a q-form η in the
case when p > 0 and q > 0. If f and g are real-valued functions on D then
we define f ∧ g to be the product f.g of f and g. This defines the wedge
product of two 0-forms on D. (Recall that the 0-forms on D are by definition
the real-valued functions on D.) Similarly if f is a real-valued function on
D and if ω is a p-form for some p > 0 then we define

f ∧ ω = ω ∧ f = fω.

However, in order to check that the wedge product of two differential forms is
indeed well-defined, we must verify that the definition of the wedge product
that we have given is consistent with Rule I and Rule II in the definition of
differential forms.

Let i1, i2, . . . , ip and j1, j2, . . . , jq be integers between 1 and n. It follows
from Rule I in the definition of differential forms given above that

dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq = 0

unless i1, i2, . . . , ip and j1, j2, . . . , jq are all distinct. Thus the definition of the
wedge product of differential forms is consistent with Rule I. Now suppose
that the integers i1, i2, . . . , ip and j1, j2, . . . , jq are all distinct. Let σ be a
permutation of the set

{i1, i2, . . . , ip}
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and let τ be a permutation of the set

{j1, j2, . . . , jq}.

Define k1, k2, . . . , kp and l1, l2, . . . , lq by

kr = σ(ir), (r = 1, 2, . . . , p),

lr = τ(jr), (r = 1, 2, . . . , q),

Then
dxk1 ∧ · · · ∧ dxkp = εσ dxi1 ∧ · · · ∧ dxip ,

dxl1 ∧ · · · ∧ dxlq = ετ dxj1 ∧ · · · ∧ dxjq ,

where εσ and ετ are the parities of the permutations σ and τ . Consider the
permutation π of the set

{i1, i2, . . . , ip, j1, . . . , jq}

defined by

π(m) =

{
σ(m) if m ∈ {i1, i2, . . . , ip};
τ(m) if m ∈ {j1, j2, . . . , jq}.

The parity επ of this permutation is given by επ = εσετ . Therefore

dxk1 ∧ · · · ∧ dxkp ∧ dxl1 ∧ · · · ∧ dxlq = εσετ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq .

This shows that the definition of the wedge product is consistent with Rule
II. Thus the wedge product of two differential forms is indeed well-defined.

Example Let ω and η be 1-forms on an open subset D of R2. Let (x, y)
denote the standard coordinate system on R2. We can write

ω = f1(x, y) dx+ f2(x, y) dy, η = g1(x, y) dx+ g2(x, y) dy,

where f1, f2, g1 and g2 are real-valued functions on D. Then

ω ∧ η = (f1(x, y) dx+ f2(x, y) dy) ∧ (g1(x, y) dx+ g2(x, y) dy)

= f1(x, y)g1(x, y) dx ∧ dx+ f1(x, y)g2(x, y) dx ∧ dy
+f2(x, y)g1(x, y) dy ∧ dx+ f2(x, y)g2(x, y) dy ∧ dy.

We simplify these expressions using Rule I and Rule II in the definition of
differential forms. Note that

dx ∧ dx = 0, dy ∧ dy = 0,
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by Rule I, and
dy ∧ dx = −dx ∧ dy

by Rule II. Therefore

ω ∧ η = (f1(x, y)g2(x, y)− f2(x, y)g1(x, y)) dx ∧ dy.

Note that ω ∧ ω = 0.

Example Let ω be a 1-form and let σ be a 2-form on an open subset D of
R3. Let (x, y, z) denote the standard coordinate system on R2. We can write

ω = f1(x, y, z) dx+ f2(x, y, z) dy + f3(x, y, z) dz

σ = g1(x, y, z) dy ∧ dz + g2(x, y, z) dz ∧ dx+ g3(x, y, z) dx ∧ dy,

where f1, f2, f3, g1, g2 and g3 are real-valued functions on D. Then

ω ∧ σ = f1.g1 dx ∧ dy ∧ dz + f1.g2 dx ∧ dz ∧ dx+ f1.g3 dx ∧ dx ∧ dy
+ f2.g1 dy ∧ dy ∧ dz + f2.g2 dy ∧ dz ∧ dx+ f2.g3 dy ∧ dx ∧ dy
+ f3.g1 dz ∧ dy ∧ dz + f3.g2 dz ∧ dz ∧ dx+ f3.g3 dz ∧ dx ∧ dy.

We simplify this expression using Rule I and Rule II in the definition of
differential forms. Now

dx ∧ dy ∧ dz = dy ∧ dz ∧ dx = dz ∧ dx ∧ dy,

by Rule II. Thus

ω ∧ σ = (f1.g1 + f2.g2 + f3.g3) dx ∧ dy ∧ dz.

Similarly one can show that σ ∧ ω = 0.

Lemma 9.3 Let D be an open set in Rn. Then

(i) (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η for all p-forms ω1 and ω2 and q-forms
η on D,

(ii) ω ∧ (η1 + η2) = ω ∧ η1 +ω ∧ η2 for all p-forms ω and q-forms η1 and η2

on D,

(iii) (fω) ∧ η = f.(ω ∧ η) = ω ∧ (fη) for all differential forms ω and η and
real-valued functions f on D,

(iv) (ω ∧ η) ∧ σ = ω ∧ (η ∧ σ) for all differential forms ω, η and σ on D,
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(v) ω ∧ η = (−1)pqη ∧ ω for all p-forms ω and q-forms η on D,

(vi) if p is odd then ω ∧ ω = 0 for all p-forms ω on D.

Proof Properties (i), (ii), (iii) and (iv) follow directly from the definition of
the wedge product. To prove (v) we show that

dxj1 ∧ · · · ∧dxjq ∧dxi1 ∧ · · · ∧dxip = (−1)pqdxi1 ∧ · · · ∧dxip ∧dxj1 ∧ · · · ∧dxjq .

Property (v) then follows directly from this identity and the definition of the
wedge product.

Now

dxj1 ∧ · · · ∧ dxjq ∧ dxim = (−1)qdxim ∧ dxj1 ∧ · · · ∧ dxjq

for each im, since we can interchange dxim with dxj1 ∧ · · · ∧ dxjq by making q
transpositions. We have to perform this operation p times in order to swap
each of dxi1 , dx12 , . . . , dxip past

dxj1 ∧ · · · ∧ dxjq .

Therefore

dxj1 ∧ · · · ∧dxjq ∧dxi1 ∧ · · · ∧dxip = (−1)pqdxi1 ∧ · · · ∧dxip ∧dxj1 ∧ · · · ∧dxjq .

Property (v) follows directly from this.
It follows immediately from (v) that ω ∧ ω = −ω ∧ ω if the degree p of ω

is odd. Thus if the degree of ω is odd then ω ∧ ω = 0. This proves (vi).

9.4 The Exterior Derivative

Let ω be a p-form on an open subset D of Rn. We say that ω is differentiable
if and only if ω can be expressed as a sum of expressions of the form

f(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where the function f is differentiable on D. Similarly we say that ω is Ck or
is smooth if and only if ω can be expressed as a sum of expressions of this
form where the function f is Ck or is smooth. (Recall that a function f is
said to be Ck on D if and only if all its partial derivatives of all orders less
than or equal to k exist and are continuous on D. A function is said to be
smooth if and only if it is Ck for all non-negative integers k.)
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Definition Let f :D → R be a smooth real-valued function on D. The
differential df of f is defined to be the 1-form on D defined by

df =
n∑
i=1

∂f

∂xi
dxi.

Observe that if f and g are differentiable real-valued functions on D then

d(f + g) = df + dg, d(f.g) = g df + f dg

(where we have used the Product Rule for differentiation in deriving the
second of these identities).

Definition Let ω be a differentiable p-form for some p > 0, where ω is
specified by a sum of the form

ω =
∑

(i1,i2,...,ip)∈I

fi1i2...ip dxi1 ∧ dxi2 ∧ · · · ∧ dxip

where fi1i2...in is a differentiable function for each p-tuple (i1, i2, . . . , ip) be-
longing to I. The exterior derivative dω of ω is defined to be the (p+1)-form
on D defined by

dω =
∑

(i1,i2,...,ip)∈I

dfi1i2...ip ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where dfi1i2...ip is the differential of the function fi1i2...ip . Thus

dω =
∑

(i1,i2,...,ip)∈I

n∑
j=1

∂fi1i2...ip
∂xj

dxj ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip .

If f is a differentiable 0-form onD (i.e. a differentiable real-valued function on
D) then the exterior derivative df of f is simply defined to be the differential
of f .

Example Let us consider differential forms on R3. Let (x, y, z) denote the
standard coordinate system on R3. If f :R3 → R is a differentiable function
on R3 then

df ≡ ∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

Now any differentiable 1-form on ω on R3 can be expressed as a sum of the
form

ω = P dx+Qdy +Rdz.
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Then

dω =
∂P

∂x
dx ∧ dx+

∂P

∂y
dy ∧ dx+

∂P

∂z
dz ∧ dx

+
∂Q

∂x
dx ∧ dy +

∂Q

∂y
dy ∧ dy +

∂Q

∂z
dz ∧ dy

+
∂R

∂x
dx ∧ dz +

∂R

∂y
dy ∧ dz +

∂R

∂z
dz ∧ dz.

We now use the identities

dx ∧ dx = dy ∧ dy = dz ∧ dz = 0,

dx ∧ dy = −dy ∧ dx, dy ∧ dz = −dz ∧ dy, dz ∧ dx = −dx ∧ dz

to simplify the expression for dω. We conclude that

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx∧ dy+

(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz+

(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx.

Now let η be a differentiable 2-form on R3. We can write

η = U dy ∧ dz + V dz ∧ dx+W dx ∧ dy.

where U , V and W are differentiable functions on R3. Then

dη =
∂U

∂x
dx ∧ dy ∧ dz +

∂U

∂y
dy ∧ dy ∧ dz +

∂U

∂z
dz ∧ dy ∧ dz

+
∂V

∂x
dx ∧ dz ∧ dx+

∂V

∂y
dy ∧ dz ∧ dx+

∂V

∂z
dz ∧ dz ∧ dx

+
∂W

∂x
dx ∧ dx ∧ dy +

∂W

∂y
dy ∧ dx ∧ dy +

∂W

∂z
dz ∧ dx ∧ dy.

=

(
∂U

∂x
+
∂V

∂y
+
∂W

∂z

)
dx ∧ dy ∧ dz.

Here we have used the fact that

dx ∧ dy ∧ dz = dy ∧ dz ∧ dx = dz ∧ dx ∧ dy.

If σ is a differentiable 3-form on R3 then dσ is a 4-form on R3. But there are
no non-zero 4-forms on R3 (Lemma 9.1). Therefore dσ = 0.
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Remark Let E be a differentiable vector field on R3. We can write E =
(E1, E2, E3), where E1, E2 and E3 are the components of E. Then

curl E =

(
∂E3

∂y
− ∂E2

∂z
,
∂E1

∂z
− ∂E3

∂x
,
∂E2

∂x
− ∂E1

∂y

)
,

div E = ∂E1

∂x
+ ∂E2

∂y
+ ∂E3

∂z
.

Thus if ω is the 1-form on R3 defined by

ω = E1 dx+ E2 dy + E3 dz

then

dω = (curl E)1 dy ∧ dz + (curl E)2 dz ∧ dx+ (curl E)3 dx ∧ dy,

where (curl E)i denotes the ith component of curl E for i = 1, 2, 3. Also, if η
is the 2-form on R3 defined by

η = E1 dy ∧ dz + E2 dz ∧ dx+ E3 dx ∧ dy

then
dη = (div E) dx ∧ dy ∧ dz.

Example Let ω be the 2-form on R2 defined by

ω = cosx cos y dx− sinx sin y dy.

where (x, y) is the standard coordinate system on R2. Then

dω =
∂

∂y
(cosx cos y) dy ∧ dx− ∂

∂x
(sinx sin y) dx ∧ dy

= − cosx sin y dy ∧ dx− cosx sin y dx ∧ dy
= + cosx sin y dx ∧ dy − cosx sin y dx ∧ dy
= 0.

Note that ω = df , where f(x, y) = sin x cos y.

Lemma 9.4 Let D be an open subset of Rn, ω, ω1 and ω2 be differentiable p-
forms on D, let η be a differentiable q-form on M , and let f be a differentiable
real-valued function on M . Then

(i) d(ω1 + ω2) = dω1 + dω2

(ii) d(fω) = f dω + df ∧ ω,
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(iii) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη, where p is the degree of ω.

Proof Property (i) is immediate from the definition of the exterior deriva-
tive. In order to verify (ii), it suffices to check that this identity holds in the
particular case when ω is of the form

ω = g dxi1 ∧ · · · ∧ dxip

where g is a differentiable real-valued function on D (since any differentiable
p-form on D is a sum of expressions of this form). But then

d(fω) = d(f.g) dxi1 ∧ · · · ∧ dxip
= (f dg + g df) ∧ dxi1 ∧ · · · ∧ dxip
= f dω + df ∧ ω,

as required.
In order to verify (iii), it suffices to check that this identity holds in the

particular case when ω and η are of the form

ω = g dxi1 ∧ · · · ∧ dxip ,
η = h dxj1 ∧ · · · ∧ dxjq .

In this case we see that

ω ∧ η = g.h dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq ,

so that

d(ω ∧ η) = (h dg + g dh) ∧ dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq .

But
dh ∧ dxi1 ∧ · · · ∧ dxip = (−1)pdxi1 ∧ · · · ∧ dxip ∧ dh,

hence

d(ω ∧ η) = (dg ∧ dxi1 ∧ · · · ∧ dxip) ∧ (h dxj1 ∧ · · · ∧ dxjq)
+ (−1)p(g dxi1 ∧ · · · ∧ dxip) ∧ (dh ∧ dxj1 ∧ · · · ∧ dxjq)

= dω ∧ η + (−1)pω ∧ dη,

as required. This proves (iii).

Lemma 9.5 Let ω be a C2 differential form defined over some open subset D
of Rn. Then d(dω) = 0.
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Proof First let us suppose f :D → R is a C2 function. Then

df =
n∑
i=1

∂f

∂xi
dxi,

hence

d(df) =
n∑
i=1

d

(
∂f

∂xi

)
∧ dxi

=
n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi.

But
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj

for all i and j by Corollary 8.2 (since f :D → R is a C2 function). Also
dxj ∧ dxi = −dxj ∧ dxi for all i and j. We deduce from these facts that

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi = 0.

Indeed we see that

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi =

n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
dxj ∧ dxi

= −
n∑
i=1

n∑
j=1

∂2f

∂xi∂xj
dxi ∧ dxj

= −
n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi

(where the last of these equalities is obtained by interchanging the roles of
the indices i and j). We conclude therefore that

n∑
i=1

n∑
j=1

∂2f

∂xj∂xi
dxj ∧ dxi = 0,

and hence d(df) = 0.
Now suppose that ω is a p-form given by by an expression of the form

ω = f dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,
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where f :D → R is a C2 function on D. Then

dω = df ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

so that

d(dω) = d(df) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip − df ∧ d
(
dxi1 ∧ dxi2 ∧ · · · ∧ dxip

)
,

(by Lemma 9.4). But we have shown that d(df) = 0. Also

d
(
dxi1 ∧ dxi2 ∧ · · · ∧ dxip

)
= 0.

Therefore d(dω) = 0. The required result then follows directly from the fact
that any p-form which is C2 is a sum of expressions of the form

f dxi1 ∧ dxi2 ∧ · · · ∧ dxip ,

where f :D → R is a C2 function on D.

Lemma 9.6 Let D be an open subset of Rn and let d̃ be a differential op-
erator mapping differentiable p-forms on D to (p+ 1)-forms on D. Suppose
that the operator d̃ satisfies the following four conditions:

(i) d̃(ω1 + ω2) = d̃ω1 + d̃ω2 for all differentiable p-forms ω1 and ω2 on D,

(ii) d̃(ω ∧ η) = d̃ω ∧ η + (−1)pω ∧ d̃η for all differentiable p-forms ω and
q-forms η on D,

(iii) d̃(d̃ω) = 0 for all C2 differential forms ω on D,

(iv) d̃f = df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 + · · · + ∂f

∂xn
dxn for all differentiable

functions f :D → R on D.

Then d̃ω = dω for all differential forms ω on D that are differentiable on
D. Thus these four conditions completely characterize the exterior derivative
operator sending differentiable p-forms on D to (p+ 1)-forms on D.

Proof Let x̃i:D → R denote the function sending a point (x1, x2, . . . , xn) of
D to the ith coordinate xi of that point. Then d̃x̃i = dxi, by (iv). Therefore

d̃(dxi) = d̃(d̃x̃i) = 0

by (iii). Thus if we apply (ii) then it follows by induction on p that

d̃(dxi1 ∧ dxi2 ∧ · · · ∧ dxip) = 0
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for all i1, i2, . . . , ip. Thus if the p-form ω is defined by

ω = f (dxi1 ∧ dxi2 ∧ · · · ∧ dxip

for some differentiable function f :D → R then

d̃ω = d̃f ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip + f d̃(dxi1 ∧ dxi2 ∧ · · · ∧ dxip)
= df ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip
= dω,

by (ii) and (iv). But any differentiable p-form on D can be expressed as a
sum of p-forms which are of the form

f dxi1 ∧ dxi2 ∧ · · · ∧ dxip

for some differentiable function f on D. The required result therefore follows
from (i).

9.5 Pullbacks of Differentiable Forms along Smooth
Maps

Let D be an open set in Rn, let E be an open set in Rm, and let ϕ:D:E
be a smooth map. Let us denote by (x1, x2, . . . , xn) and (y1, y2, . . . , ym) be
the standard coordinate systems on Rn and Rm respectively. Let ϕj:D → R
denote the jth component of the map ϕ, for j = 1, 2, . . . ,m, so that

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕm(x))

for all x ∈ D.
Let ω be a p-form on E for some positive integer p. Then ω can be

expressed as a sum of the form

ω =
∑

(j1,j2,...,jp)∈I

fj1j2...jp dyj1 ∧ dyj2 ∧ · · · ∧ dyjp

where each fj1j2...jn is a real-valued function on E. We define the p-form ϕ∗ω
on D by

ϕ∗ω =
∑

(j1,j2,...,jp)∈I

(fj1j2...jp ◦ ϕ) dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp .

If f is a real-valued function on E (i.e., a 0-form on E) then we define
ϕ∗f ≡ f ◦ ϕ (i.e., ϕ∗f is the composition of ϕ and f). The p-form ϕ∗ω is
referred to as the pullback of ω under the map ϕ.
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One must check that the pullback ϕ∗ω is well-defined. Note that

dϕj ∧ dϕj = 0, dϕj ∧ dϕk = −dϕk ∧ dϕj

for all integers j and k between 1 and m, by Lemma 9.3. It follows from this
that

dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp = 0

unless the integers j1, j2, . . . , jp are distinct. If these integers are distinct, if π
is a permutation of the set {j1, j2, . . . , jp}, and if kr = π(jr) for r = 1, 2, . . . , p,
then

dϕk1 ∧ dϕk2 ∧ · · · ∧ dϕkp = επ dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp ,
where επ is +1 if the permutation π is even and −1 if the permutation π
is odd. (For any permutation of an indexed set can be accomplished by
successively transposing adjacent elements of that set. The permutation is
evan if it is obtained by an even number of such transpositions, and it is odd
if it is obtained by an odd number of transpositions. Hence the result stated
above follows from the fact that dϕj ∧ dϕk = −dϕk ∧ dϕj for all j and k.)
We conclude therefore that ϕ∗ω is indeed well-defined (i.e., the formula given
above is consistent with Rule I and Rule II in the definition of differential
forms).

Example Let (x, y) denote the standard coordinate system on R2 and let t
denote the standard coordinate on R. Consider the smooth curve γ:R→ R2

in R2 defined by
γ(t) = (t2, t3)

Therefore

γ∗(dx) = d(t2) = 2t dt,

γ∗(dy) = d(t3) = 3t2 dt.

Therefore
γ∗(2x dy − 3y dx) = 2t2(3t2 dt)− 3t3(2t dt) = 0.

Example Let (u, v) denote the standard coordinate system on R2 and let
(x, y, z) denote the standard coordinate system on R3. Let ϕ:R2 → R3 be
the smooth map defined by

ϕ(u, v) = (sinu cos v, sinu sin v, cosu)

Let ω be the 1-form on R3 defined by

ω = x dx+ y dy + z dz.

106



Now

ϕ∗dx = d(sinu cos v)

=
∂(sinu cos v)

∂u
du+

∂(sinu cos v)

∂v
dv

= cosu cos v du− sinu sin v dv,

ϕ∗dy = d(sinu sin v)

=
∂(sinu sin v)

∂u
du+

∂(sinu sin v)

∂v
dv

= cosu sin v du+ sinu cos v dv,

ϕ∗dz = d(cosu)

=
∂(cosu)

∂u
du+

∂(cosu)

∂v
dv

= − sinu du.

Therefore

ϕ∗ω = sinu cos v (cosu cos v du− sinu sin v dv)

+ sinu sin v (cosu sin v du+ sinu cos v dv)

+ cosu (− sinu du)

= (sinu cosu cos2 v + sinu cosu sin2 v − sinu cosu) du

+ (− sin2 u sin v cos v + sin2 u sin v cos v) dv

= 0.

If η is the 2-form on R3 defined by

η = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy

then

ϕ∗η

= sinu sin v(− sinu du) ∧ (cosu cos v du− sinu sin v dv)

+ cosu (cosu cos v du− sinu sin v dv) ∧ (cosu sin v du+ sinu cos v dv)

+ sinu cos v(cosu sin v du+ sinu cos v dv) ∧ (− sinu du)

= sin3 u sin2 v du ∧ dv + cos2 u sinu cos2 v du ∧ dv
− cos2 u sinu sin2 v dv ∧ du− sin3 u cos2 v dv ∧ du

=
(
sin3 u (sin2 v + cos2 v) + cos2 u sinu(cos2 v + sin2 v)

)
du ∧ dv

= sinu (sin2 u+ cos2 u) du ∧ dv
= sinu du ∧ dv.
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Lemma 9.7 Let D be an open set in Rn, let E be an open set in Rm, and
let ϕ:D:E be a smooth map. Let ω, ω1 and η be p-forms on E and let η be
a q form on E for some non-negative integers p and q. Then

(i) ϕ∗(ω1 + ω2) = ϕ∗ω1 + ϕ∗ω2 for all p-forms ω1 and ω2 on E,

(ii) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η for all differential forms ω and η on E.

(iii) ϕ∗(dω) = d(ϕ∗ω) for all differential forms ω on E that are differentiable
on E.

Proof Properties (i) and (ii) follow directly from the definition of the pull-
back of a differential form under the smooth map ϕ:D → E. In order to
verify (iii) we first verify that (iii) holds for all real-valued functions (i.e.,
0-forms) on E. Let f be a real-valued function on E. Then

df =
m∑
j=1

∂f

∂yj
dyj,

where (y1, y2, . . . , ym) denotes the standard coordinate system on Rm. There-
fore

ϕ∗df =
m∑
j=1

∂f

∂yj
◦ ϕdϕj

=
m∑
j=1

n∑
i=1

(
∂f

∂yj
◦ ϕ
)
∂ϕj
∂xi

dxi.

But it follows from the Chain Rule for differentiation (Theorem 7.10) that

∂(f ◦ ϕ)

∂xi
=

m∑
j=1

(
∂f

∂yj
◦ ϕ
)
∂ϕj
∂xi

.

(For the Chain Rule tells us that (f ◦ ϕ)′(x) = f ′(ϕ(x)) ◦ ϕ′(x). This means
that the Jacobian matrix for f ◦ ϕ at a point x of D is the product of the
Jacobian matrices of f at ϕ(x) and of ϕ at x.) We conclude that

ϕ∗df =
n∑
i=1

∂(f ◦ ϕ)

∂xi
dxi = d(f ◦ ϕ).

Now let ω be a p-form on E which is of the form

ω = f dyj1 ∧ dyj2 ∧ · · · ∧ dyjp
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for some differentiable function f :E → R. Then

dω = df ∧ dyj1 ∧ dyj2 ∧ · · · ∧ dyjp ,

so that

ϕ∗(dω) = ϕ∗(df) ∧ ϕ∗(dyj1) ∧ ϕ∗(dyj2) ∧ · · · ∧ ϕ∗(dyjp),

by (ii). But ϕ∗(df) = d(f ◦ ϕ) and ϕ∗(dyjr) = dϕjr for all r. Therefore

ϕ∗(dω) = d(f ◦ ϕ) ∧ dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp .

But d(dϕj) = 0 for all j by Lemma 9.5, hence

d(ϕ∗ω) = d
(
(f ◦ ϕ) dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp

)
= d(f ◦ ϕ) ∧ dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp

(where we have applied property (iii) of Lemma 9.4 to derive this identity).
Therefore

ϕ∗(dω) = d(ϕ∗ω).

Property (iii) now follows from this result, together with the fact that any
differentiable p-form on E can be expressed as a sum of expressions of the
form

f dyj1 ∧ dyj2 ∧ · · · ∧ dyjp ,

where f is a differentiable function from E to R.

10 The Poincaré Lemma

Let D be an open subset of Rn and let a be a point of D. We say that D is
star-shaped with respect to the point a if and only if the point (1− t)x + ta
is in D for all x ∈ D and t ∈ [0, 1]. Thus D is star-shaped with respect to
the point a if and only if, for all x ∈ D, the line segment joining a to x is
contained in D.

Let ω be a smooth p-form on an open subset D of Rn. We say that ω is
closed if and only if dω = 0. We say that ω is exact if and only if there exists
a (p− 1)-form η on D with the property that ω = dη. Note that every exact
differential form on D is closed, since d(dη) = 0 for all η.

Lemma 10.1 (The Poincaré Lemma) Let D be a star-shaped open set in
Rn. Let ω be a smooth p-form on D, where p ≥ 1. Suppose that dω = 0.
Then there exists a (p− 1)-form η on D such that ω = dη.
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In order to prove the Poincaré Lemma, we consider differential forms on
[0, 1] × D, where D is an open set in Rn. Let (x1, x2, . . . , xn) denote the
standard Cartesian coordinates on D. We denote coordinates on [0, 1] × D
by (t, x1, x2, . . . , xn), where t ∈ [0, 1] and (x1, x2, . . . , xn) ∈ D. For each
τ ∈ [0, 1], let βτ :D → [0, 1] ×D be the map which sends (x1, x2, . . . , xn) to
(τ, x1, x2, . . . , xn). Observe that

β∗τ (dt) = 0, β∗τ (dxi) = dxi (i = 1, 2, . . . , n) (1)

for all τ ∈ [0, 1].
We define an operator I which takes (continuous) p-forms on [0, 1] × D

to (p − 1)-forms on D. This operator I is characterized uniquely by the
following four properties:

(i) I(f) = 0 for all continuous functions f : [0, 1]×D → R,

(ii) I(g dt)(x) =

∫ 1

0

g(t,x) dt for all continuous functions g: [0, 1]×D → R,

(iii) I(η ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip) = I(η) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxip for all
continuous differential forms η on [0, 1]×D,

(iv) If η = η1 + η2, where η1 and η2 are continuous p-forms on [0, 1] × D
then I(η) = I(η1) + I(η2).

Note that the operator I is defined such that

I(f dxi1 ∧ · · · ∧ dxip) = 0, (2)

I(g dt ∧ dxi1 ∧ · · · ∧ dxip) =

(∫ 1

0

g(t,x) dt

)
∧ dxi1 ∧ · · · ∧ dxip , (3)

where f and g are continuous real-valued functions on [0, 1]×D.
We claim that if p ≥ 1 then

dI(η) + I(dη) = β∗1η − β∗0η (4)

for all smooth p-forms η on [0, 1]×D (where βτ (x) = (τ,x) for all τ ∈ [0, 1]
and x ∈ D). We now show how the Poincaré Lemma can be derived from
this result.

Proof of the Poincaré Lemma, assuming (4). Suppose that the open
set D in Rn is star-shaped with respect to the point a of D. Define a smooth
map H: [0, 1]×D → D by

H(t,x) = tx + (1− t)a (t ∈ [0, 1], x ∈ D).
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Note that H ◦ β1 is the identity map of D and that H ◦ β0 maps the whole
of D to a single point a of D. It follows from this that (H ◦β0)∗(dxi) = 0 for
i = 1, 2, . . . , n. Thus

(H ◦ β1)∗ω = ω, (H ◦ β0)∗ω = 0

for all p-forms ω on D, where p ≥ 1. Suppose that ω satisfies dω = 0. We
apply Equation (4) to the pullback H∗ω of ω under the map H to deduce
that

d(I(H∗ω))+I(d(H∗ω)) = β∗1(H∗ω)−β∗0(H∗ω) = (H ◦β1)∗ω−(H ◦β0)∗ω = ω

by Equation (4). Thus if dω = 0 then d(H∗ω) = H∗(dω) by Lemma 9.7, so
that ω = dη, where η = I(H∗ω). This proves the Poincaré Lemma, given
Equation (4).

In order to complete the proof of the Poincaré Lemma we must prove
Equation (4). Let f : [0, 1]×D → R be smooth. Then

df =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dxi.

On applying the four properties listed above which characterize the opera-
tion I, we see that

I(df)(x) =

∫ 1

0

∂f(t,x)

∂t
dt = f(1,x)− f(0,x),

so that
I(df) = f ◦ β1 − f ◦ β0 (5)

We now show that (4) holds for all smooth 1-forms η on [0, 1] ×D. We
can express η as a sum of the form

η = g dt+
n∑
i=1

fi dxi

where g, f1, . . . , fn are smooth real-valued functions on [0, 1]×D. Then

I(η)(x) =

∫ 1

0

g(t,x) dt,
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so that

dI(η) =
n∑
i=1

∂I(η)

∂xi
dxi =

n∑
i=1

∂

∂xi

(∫ 1

0

g dt

)
dxi

=
n∑
i=1

(∫ 1

0

∂g

∂xi
dt

)
dxi =

n∑
i=1

I

(
∂g

∂xi
dt

)
dxi

= I

(
n∑
i=1

∂g

∂xi
dt ∧ dxi

)
= −I

(
n∑
i=1

∂g

∂xi
dxi ∧ dt

)
= −I(dg ∧ dt).

Thus

I(dη) + dI(η) = I(dg ∧ dt) +
n∑
i=1

I(dfi ∧ dxi) + dI(η) =
n∑
i=1

I(dfi) ∧ dxi

=
n∑
i=1

(fi ◦ β1 − fi ◦ β0) dxi = (β∗1η)− (β∗0η).

(where we have used Equation (5)). This verifies (4) in the particular case
when η is a smooth 1-form on [0, 1]×D.

In order to prove (4) when p > 1, we simply use the fact that every
smooth p-form on [0, 1]×D can be expressed as a sum of p-forms of the form

σ ∧ dxi1 ∧ · · · ∧ dxip−1

where σ is a smooth 1-form on [0, 1]×D. (This follows from the fact that in
any non-zero wedge product of terms of the form dt or dxi, at most one of
the factors of the wedge product will be dt, and we may suppose that this is
the first factor of the wedge product.) If η = σ ∧ dxI , where σ is a smooth
1-form and dxI is of the form

dxI = dxi1 ∧ · · · ∧ dxip−1

then
dη = dσ ∧ dxI , I(η) = I(σ) ∧ dxI ,

so that

dI(η) + I(dη) = (dI(σ) + I(dσ)) ∧ dxI = (β∗1σ − β∗0σ) ∧ dxI
= β∗1η − β∗0η,

as required. We have therefore verified (4). This completes the proof of the
Poincaré Lemma.
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Remark One can generalize the Poincaré Lemma to apply to smooth forms
on ‘smoothly contractible’ domains. An open set D in Rn is said to be
smoothly contractible if and only if there exists a point a of D and a smooth
map H: [0, 1] × D → D mapping [0, 1] × D from [0, 1] × D to D with the
property that H(0,x) = a and H(1,x) = x for all x ∈ D. Note that star-
shaped domains are smoothly contractible. The proof of the Poincaré Lemma
applies can obviously be generalized to contractible open sets.

Remark Consider the open set D in R2 defined by D = R2 \ {(0, 0)}. Let
(x, y) denote the standard Cartesian coordinates on D and let ω be the 1-form
on D defined by

ω =
x

x2 + y2
dy − y

x2 + y2
dx.

A simple calculation shows that dω = 0 everywhere on D. However it can
be shown that there does not exist any real-valued function f defined over
the whole of D with the property that df = ω. Note that the open set D is
not star shaped.

One can deduce certain useful results concerning vector fields in R3 from
the Poincaré Lemma. Let D be an open set in R3 which is star-shaped with
respect to some point of D, and let V:D → R3 be a smooth vector field on
D. Let V1, V2 and V3 be the three components of V . If we apply the Poincaré
Lemma to the 1-form

V1 dx+ V2 dy + V3 dz

we see that if curl V = 0 then there exists some function f on D such that
V = grad f . Such a function f is referred to as a scalar potential for the
vector field V.

Similarly if we apply the Poincaré Lemma to the 2-form

V1 dy ∧ dz + V2 dz ∧ dx+ V3 dx ∧ dy

we see that if div V = 0 then there exists some vector field A on D such that
V = curl A. Such a vector field A is referred to as a vector potential for the
vector field V.

11 The Riemann Integral in n Dimensions

Definition We define a (closed) n-rectangle in Rn to be a set of the form

{x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},
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where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers such that ai ≤ bi for
all i. The interior of the above n-rectangle is defined to be the open set

{x ∈ Rn : ai < xi < bi for i = 1, 2, . . . , n}.

The volume (or n-volume) of the above n-rectangle is defined to be the
product

(b1 − a1)(b2 − a2) . . . (bn − an)

of the quantities bi − ai for i = 1, 2, . . . , n. We denote the volume of an
n-rectangle S by vol(S).

We define the the notion of Riemann-integrability for a bounded function
defined on a (closed) n-rectangle in Rn. First we must discuss partitions of
n-rectangles.

Definition Let C be the n-rectangle in Rn given by

C = {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

where a1, a2, . . . , an and b1, b2, . . . , bn are real numbers satisfying ai ≤ bi for
i = 1, 2, . . . , n. Suppose that, for each i, we have a partition Pi of the closed
interval [ai, bi] given by Pi = {ti,0, ti,1, . . . , ti,s(i)}, where

ai = ti,0 < ti,1 < . . . < ti,s(i) = bi.

Then these partitions of the closed intervals [a1, b1], [a2, b2], . . . , [an, bn] deter-
mine a partition of the n-rectangle C into subrectangles, these subrectangles
being of the form

{x ∈ Rn : ti,r(i)−1 ≤ xi ≤ ti,r(i)},
for some choice of r(1), r(2), . . . , r(n) (where each r(i) is an integer between 1
and s(i)). If P denotes the partition of the n-rectangle C into subrectangles
determined by the partitions Pi of [ai, bi] for i = 1, 2, . . . , n, then we write
P = P1 × P2 × · · · × Pn.

Given a partition P of the n-rectangle C, let us denote by R(P ) the
collection consisting of all the subrectangles of C arising from the partition P
of C. Thus if

C = {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

and if P = P1 × P2 × · · · × Pn, where Pi = {ti,0, ti,1, . . . , ti,s(i)}, then R(P )
consists of all n-rectangles of the form

{x ∈ Rn : ti,r(i)−1 ≤ xi ≤ ti,r(i)},
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for all choices of r(1), r(2), . . . , r(n) (where each r(i) is an integer between
1 and s(i)). Given a bounded real-valued function f defined on an n-
rectangle C and given a partition P of C, we now define the lower sum L(P, f)
and the upper sum U(P, f) of f with respect to this partition. These quan-
tities are the analogues (in n-dimensions) of the corresponding quantities in
the one-dimensional case.

Definition Let f :C → R be a real-valued function on an n-rectangle C
which is bounded above and below on C. We define

L(P, f) =
∑

S∈R(P )

mS(f) vol(S), U(P, f) =
∑

S∈R(P )

MS(f) vol(S),

where

mS(f) = inf{f(x) : x ∈ S}, MS(f) = sup{f(x) : x ∈ S}.

Remark Suppose that the partition P of the n-rectangle C subdivides C
into the subrectangles S1, S2, . . . , Sp (i.e., R(P ) = {S1, S2, . . . , Sp}). Then

vol(C) =

p∑
j=1

vol(Sj),

L(P, f) =

p∑
j=1

mSj(f) vol(Sj),

U(P, f) =

p∑
j=1

MSj(f) vol(Sj),

where mSj(f) is the infimum of the values of the function f on Sj and MSj(f)
is the supremum of the values of f on Sj.

Observe that if α ≤ f(x) ≤ β for all x ∈ C, where α and β are suitable
constants, then

α vol(C) ≤ L(P, f) ≤ U(P, f) ≤ β vol(C).

Definition Let C be an n-rectangle in Rn and let P and R be partitions of
C. The partition R is said to be a refinement of the partition P if and only if
each of the subrectangle of C arising from the partition R of C is contained
within some subrectangle arising from the partition P of C.
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Suppose that the n-rectangle C is given by

C = {x ∈ Rn : ai ≤ xi ≤ bi for i = 1, 2, . . . , n},

and that the partitions P and R of C are given by

P = P1 × P2 × · · · × Pn, R = R1 ×R2 × · · · ×Rn,

where Pi and Ri are partitions of the closed interval [ai, bi] for each integer i
between 1 and n. One can easily verify that the partition R of C is a
refinement of the partition P if and only if Ri is a refinement of Pi for each i.

Let P be a partition of the n-rectangle C and let R be a refinement of P .
Let S be a subrectangle of C which arises from the partition P of C. Then
those subrectangles of C arising from the partition R which are contained
wholly within S constitute a partition of S.

Let P and Q be partitions of the n-rectangle C. Then there exists a
partition R of C which is a refinement of both P and Q. Indeed if

P = P1 × P2 × · · · × Pn, Q = Q1 ×Q2 × · · · ×Qn

then we choose a partition Ri of [ai, bi] for each i such that Ri is a common
refinement of Pi and Qi. We say that the partition R of C is a common
refinement of the partitions P and Q.

Lemma 11.1 Let C be an n-rectangle in Rn. Let f :C → R be a bounded
real-valued function defined on C. Let P be a partition of C and let R be a
refinement of P . Then

L(R, f) ≥ L(P, f), U(R, f) ≤ U(P, f).

Proof Let S1, S2, . . . , Sp be an enumeration of the subrectangles of C which
arise from the partition P . Let Sj be any one of these subrectangles. Let
Tj,1, Tj,2, . . . , Tj,rj be an enumeration of those subrectangles of C arising from
the partition R which are contained wholly within Sj. Now those subrect-
angles arising from the partition R which are contained wholly within the
n-rectangle Sj constitute a partition of Sj, since the partition R of C is a
refinement of the partition P . Thus, for each integer j between 1 and p,
Sj = Tj,1 ∪ Tj,2 ∪ . . . ∪ Tj,rj and

vol(Sj) =

rj∑
k=1

vol(Tj,k).
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Now

L(P, f) =

p∑
j=1

mSj(f) vol(Sj), U(P, f) =

p∑
j=1

MSj(f) vol(Sj),

and

L(R, f) =

p∑
j=1

rj∑
k=1

mTj,k(f) vol(Tj,k), U(R, f) =

p∑
j=1

rj∑
k=1

MTj,k(f) vol(Tj,k),

where

mSj(f) = inf{f(x) : x ∈ Sj}, MSj(f) = sup{f(x) : x ∈ Sj},

mTj,k(f) = inf{f(x) : x ∈ Tj,k}, MTj,k(f) = sup{f(x) : x ∈ Tj,k}.

But mTj,k(f) ≥ mSj(f) and MTj,k(f) ≤MSj(f), hence

L(R, f) ≥
p∑
j=1

mSj(f)

rj∑
k=1

vol(Tj,k) =

p∑
j=1

mSj(f) vol(Sj) = L(P, f),

U(R, f) ≤
p∑
j=1

MSj(f)

rj∑
k=1

vol(Tj,k) =

p∑
j=1

MSj(f) vol(Sj) = L(P, f),

as required.

Definition Let f be a bounded real-valued function defined over an n-
rectangle C in Rn. We define the lower Riemann integral

L
∫
C

f(x) dx1 dx2 . . . dxn

of f on C to be the supremum (or least upper bound) of the quantities L(P, f)
as P ranges over all possible partitions of the n-rectangle C. Similarly we
define the upper Riemann integral

U
∫
C

f(x) dx1 dx2 . . . dxn

of f on C to be the infimum (or greatest lower bound) of the quanti-
ties U(Q, f) as Q ranges over all possible partitions of the n-rectangle C.
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Now if P andQ are partitions of the n-rectangle C then L(P, f) ≤ L(Q, f)
for all bounded real-valued functions f on C. Indeed if R is a common
refinement of the partitions P and Q then

L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(Q, f)

by Lemma 11.1. Therefore

L
∫
C

f(x) dx1 dx2 . . . dxn ≤ U
∫
C

f(x) dx1 dx2 . . . dxn

for all bounded real-valued functions f on C.

Definition Let f : C → R be a real-valued function defined on an n-
rectangle C in Rn. Suppose that f is bounded above and below on C. The
function f is said to be Riemann integrable on C if and only if

L
∫
C

f(x) dx1 dx2 . . . dxn = U
∫
C

f(x) dx1 dx2 . . . dxn.

If f is Riemann-integrable on C then we define the Riemann integral∫
C

f(x) dx1 dx2 . . . dxn

of f on C to be the common value of the lower and upper Riemann integrals
of f on C.

The following result is the analogue for multiple integrals of Theorem 4.3.

Theorem 11.2 Let f :C → R be a bounded real-valued function defined on
an n-rectangle C. Then f is Riemann-integrable on C if and only if, for
every ε > 0 there exists a partition P of C for which

U(P, f)− L(P, f) < ε.

Proof Suppose that f is Riemann-integrable on C. Let ε > 0 be any positive
real number. We must show that there exists a partition P of C such that
U(P, f) − L(P, f) < ε. Now if f is Riemann-integrable then there exists a
partition Q of C such that∫

C

f(x) dx1 dx2 . . . dxn − L(Q, f) < 1
2
ε.
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Similarly there exists a partition R of C such that

U(R, f)−
∫
C

f(x) dx1 dx2 . . . dxn <
1
2
ε.

Then U(R, f)− L(Q, f) < ε. Let the partition P of C be a common refine-
ment of the partitions Q and R. Using Lemma 11.1 we see that

L(Q, f) ≤ L(P, f) ≤ U(P, f) ≤ U(R, f),

and hence U(P, f)−L(P, f) < ε. This shows that if f is Riemann-integrable
then, given any ε > 0, there exists a partition P of C such that U(P, f) −
L(P, f) < ε.

Conversely, let f :C → R be a bounded real-valued function on C with
the property that, given any ε > 0, there exists a partition P of C such that
U(P, f) − L(P, f) < ε. We must show that f is Riemann-integrable on C.
Now

L(P, f) ≤ L
∫
C

f(x) dx1 dx2 . . . dxn ≤ U
∫
C

f(x) dx1 dx2 . . . dxn ≤ U(P, f)

for all partitions P of C. Therefore we conclude that

U
∫
C

f(x) dx1 dx2 . . . dxn − L
∫
C

f(x) dx1 dx2 . . . dxn < ε

for all ε > 0. But

U
∫
C

f(x) dx1 dx2 . . . dxn ≥ L
∫
C

f(x) dx1 dx2 . . . dxn.

We conclude therefore that

U
∫
C

f(x) dx1 dx2 . . . dxn = L
∫
C

f(x) dx1 dx2 . . . dxn.

Thus f is Riemann-integrable on C.

The following theorem is the analogue for multiple integrals of Theo-
rem 4.5.

Theorem 11.3 Let C be an n-rectangle in Rn and let f and g be be bounded
Riemann-integrable functions on C. Let α be a real number. Then the func-
tions f + g and αf are Riemann-integrable on C, and∫

C

(f(x) + g(x)) dx1 dx2 . . . dxn =

∫
C

f(x) dx1 dx2 . . . dxn

+

∫
C

g(x) dx1 dx2 . . . dxn,∫
C

αf(x) dx1 dx2 . . . dxn = α

∫
C

f(x) dx1 dx2 . . . dxn.
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Proof Note that

mS(f) +mS(g) ≤ mS(f + g) ≤MS(f + g) ≤MS(f) +MS(g)

for all n-rectangles S in Rn, where mS(f), mS(g) and mS(f + g) are the
infima of the functions f , g and f + g on S, and where MS(f), MS(g) and
MS(f + g) are the suprema of the functions f , g and f + g on S. It follows
from this that

L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g)

for every partition P of the n-rectangle C.
Given ε > 0 choose partitions Q and R of C such that

L(Q, f) >

∫
C

f(x) dx1 dx2 . . . dxn −
1

4
ε,

L(R, g) >

∫
C

g(x) dx1 dx2 . . . dxn −
1

4
ε,

U(Q, f) <

∫
C

f(x) dx1 dx2 . . . dxn +
1

4
ε,

U(R, g) <

∫
C

g(x) dx1 dx2 . . . dxn +
1

4
ε.

Let P be a common refinement of Q and R. Then

L(P, f + g) >

∫
C

f(x) dx1 dx2 . . . dxn +

∫
C

g(x) dx1 dx2 . . . dxn −
1

2
ε,

U(P, f + g) <

∫
C

f(x) dx1 dx2 . . . dxn +

∫
C

g(x) dx1 dx2 . . . dxn +
1

2
ε.

Hence U(P, f + g) − L(P, f + g) < ε. This shows that f + g is Riemann-
integrable and that∫

C

(f(x) + g(x)) dx1 dx2 . . . dxn =

∫
C

f(x) dx1 dx2 . . . dxn

+

∫
C

g(x) dx1 dx2 . . . dxn.

It is easily verified that αf is Riemann-integrable and that∫
C

αf(x) dx1 dx2 . . . dxn = α

∫
C

f(x) dx1 dx2 . . . dxn.
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Let S be an n-rectangle in Rn, given by

S = {x ∈ Rn : ui ≤ xi ≤ vi},

where u1, u2, . . . , un and v1, v2, . . . , vn are real numbers which satisfy ui ≤ vi
for each i. Given any continuous real-valued function f on S, let us denote
by IS(f) the repeated integral of f over the n-rectangle S which is given by

IS(f) =

∫ vn

xn=un

(
· · ·
∫ v2

x2=u2

(∫ v1

x1=u1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn

(i.e., IS(f) is obtained by integrating the function f first over the coordinate
x1, then over the coordinate x2, and so on). Observe that if α ≤ f(x) ≤ β
on S for some constants α and β then

α vol(S) ≤ IS(f) ≤ β vol(S).

We shall use this fact to show that if f is a continuous function on some
n-rectangle C in Rn then

IC(f) =

∫
C

f(x) dx1 dx2 . . . dxn

(i.e., IC(f) is equal to the Riemann integral of f over C).

Theorem 11.4 Let f be a continuous real-valued function defined on some
n-rectangle C in Rn, where

C = {x ∈ Rn : ai ≤ xi ≤ bi}.

Then f is Riemann-integrable on C, and moreover the Riemann integral∫
C

f(x) dx1 dx2 . . . dxn

of f over C is equal to the repeated integral∫ bn

xn=an

(
· · ·
∫ b2

x2=a2

(∫ b1

x1=a1

f(x1, x2, . . . , xn) dx1

)
dx2 . . .

)
dxn.

Proof Given a partition P of the n-rectangle C, we denote by L(P, f) and
U(P, f) the quantities defined by

L(P, f) =
∑

S∈R(P )

mS(f) vol(S), U(P, f) =
∑

S∈R(P )

MS(f) vol(S)
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whereR(P ) denotes the collection consisting of the subrectangles of C arising
from the partition P of C, and where

mS(f) = inf{f(x) : x ∈ S}, MS(f) = sup{f(x) : x ∈ S}.

First we show that f is Riemann-integrable on C. We do this by showing
that, for any ε > 0, there exists a partition P of C for which U(P, f) −
L(P, f) < ε.

Now the n-rectangle C is a closed bounded set. Thus the continuous
function f is bounded on C (by Theorem 3.1) and is uniformly continuous
on C (by Theorem 3.3). Let ε > 0 be given. Then there exists some δ > 0
such that

|f(x)− f(y)| < ε

2 vol(C)

whenever x,y ∈ C satisfy |x − y| < δ. Choose a partition P of C which
has the property that if S is any one of the subrectangles arising from the
partition P of C then |x − y| < δ for all points x and y of S. (This can
be done by ensuring that the length of the sides of the subrectangles arising
from the partition P do not exceed δ/

√
n.) Note that

MS(f)−mS(f) ≤ ε

2 vol(C)
.

for every S ∈ R(P ). But

U(P, f)− L(P, f) =
∑

S∈R(P )

(MS(f)−mS(f)) vol(S),

hence
U(P, f)− L(P, f) ≤ ε

2 vol(C)

∑
S∈R(P )

vol(S) = 1
2
ε.

Thus, given any ε > 0, there exists a partition P of the n-rectangle C such
that U(P, f)−L(P, f) < ε. It follows from Theorem 11.1 that f is Riemann-
integrable on C.

We now show that the Riemann integral of f over the n-rectangle C is
equal to the repeated integral given above. Let P be a partition of C. Let S
be any of the subrectangles of C arising from this partition. Then

mS(f) vol(S) ≤ IS(f) ≤MS(f) vol(S),

where

mS(f) = inf{f(x) : x ∈ S}, MS(f) = sup{f(x) : x ∈ S}.

122



Now
IC(f) =

∑
S∈R(P )

IS(f),

where R(P ) is the collection consisting of all the subrectangles arising from
the partition P of C. Thus if L(P, f) and U(P, f) are defined by

L(P, f) =
∑

S∈R(P )

mS(f) vol(S), U(P, f) =
∑

S∈R(P )

MS(f) vol(S)

then
L(P, f) ≤ IC(f) ≤ U(P, f).

The Riemann integral of f is equal to the supremum of the quantities L(P, f)
as P ranges over all partitions of the n-rectangle C, hence∫

C

f(x) dx1 dx2 . . . dxn ≤ IC(f).

Similarly the Riemann integral of f is equal to the infimum of the quanti-
ties U(P, f) as P ranges over all partitions of the n-rectangle C, hence

IC(f) ≤
∫
C

f(x) dx1 dx2 . . . dxn.

Hence

IC(f) =

∫
C

f(x) dx1 dx2 . . . dxn,

as required.

Note that the order in which the integrations are performed in the re-
peated integral plays no role in the above proof. We may therefore deduce
the following important corollary.

Corollary 11.5 Let f be a continuous real-valued function defined over some
closed rectangle C in R2, where

C = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then ∫ b

a

(∫ d

c

f(x, y) dy

)
dx =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.
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Proof It follows directly from Theorem 11.4 that the repeated integrals∫ b

a

(∫ d

c

f(x, y) dy

)
dx and

∫ d

c

(∫ b

a

f(x, y) dx

)
dy

are both equal to the Riemann integral of the function f over the rectangle C.
Therefore these repeated integrals must be equal.

The material in the remainder of this section of the course is NON-
EXAMINABLE. It is included for the sake of completeness. How-
ever proofs of the results described below are not presented here.
In this section we have discussed integrals defined over n-rectangles in n-

dimensional Euclidean space Rn. However it is often necessary to integrate
functions over regions (such as balls, tetrahedra, ellipsoids etc.) which are
not n-rectangles. However if one is to make sense of the concept of the
Riemann integral of a bounded function over such a set, it is neccessary to
impose certain conditions on the set. We consider sets V which are closed and
bounded. However the boundary of the set V must be ‘sufficiently regular’
in order to allow us to define the Riemann integral of a real-valued function
over V . We give some definitions which will be applied when we discuss the
nature of the conditions to be imposed on the set V .

Definition Let D be a subset of Rn. The closure D of D is defined to be
the smallest closed set containing D. Thus D is closed, and D ⊂ A for every
closed set A containing D. Similarly the interior int(D) of D is defined to
be the largest open set contained in D. Thus int(D) is an open set, and
U ⊂ int(D) for every open set U contained in D. The frontier (or boundary)
of D is defined to be the set D \ int(D) (i.e., the frontier of D consists of all
points of the closure D of D which do not belong to the interior int(D) of D.

Let F be the frontier of the set D. A point x of Rn is contained in the
complement Rn \F of F if and only if either there exists an open neighbour-
hood of x which is a subset of D or else there exists an open neighbourhood
of x which is a subset of the complement Rn \D of D.

Definition Let A be a subset of Rn. Then the set A is said to have (n-
dimensional) content 0 if and only if, for every ε > 0, there exists a finite
collection S1, S2, . . . , Sk of n-rectangles in Rn such that

(i) each point of the set A is contained in the interior of one of these
n-rectangles,
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(ii)
k∑
j=1

vol(Sj) < ε.

Definition A closed bounded subset V of Rn is said to be Jordan-measurable
if and only if the frontier (or boundary) of the set V has content 0.

Let V be a subset of Rn. The characteristic function χV of the set V is
defined by

χV (x) =

{
1 if x ∈ V ;
0 if x 6∈ V .

Theorem 11.6 Let V be a closed bounded subset of Rn and let C be an n-
rectangle in Rn which contains the set V . Then the characteristic function χV
of V is Riemann-integrable over C if and only if V is Jordan-measurable.

A proof of this result is to be found in Calculus on manifolds by M. Spivak
(Theorem 3-9 on page 55).

In view of Theorem 11.6 we shall restrict our attention to defining the
integral of real-valued functions over Jordan-measurable closed bounded sets.
It is an ‘obvious fact’ that sets such as spheres, wedges etc. that one meets
frequently in applied mathematics when evaluating multiple integrals are all
Jordan-measurable.

Definition Let V be a closed bounded Jordan-measurable set in Rn. Let
f :V → R be a bounded real-valued function defined on V and let f̃ :Rn → R
be the extension of f to the whole of Rn defined by

f̃(x) =

{
f(x) if x ∈ V ;
0 if x 6∈ V .

The function f is said to be Riemann-integrable over the set V if and only if
f̃ is Riemann integrable over any n-rectangle which contains the set V . If f
is Riemann-integrable over V then we define the Riemann integral∫

V

f(x) dx1 dx2 . . . dxn

of f over V to be equal to the Riemann integral of the function f̃ over any
n-rectangle which contains V .

It can be shown that if V is a closed bounded Jordan-measurable set and
if f :V → R is a continuous real-valued function on V then f is Riemann-
integrable on V .

Finally we state a version of the change-of variables formula for multiple
integrals. Let D and E be subsets of Rn.
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Theorem 11.7 (Change of Variables Formula) Let D be an open subset of
Rn and let ϕ:D → Rn be a smooth map. Let V be a closed bounded Jordan-
measurable subset of D and let f be a real-valued function defined over ϕ(D)
which is Riemann-integrable on ϕ(D). Then∫

ϕ(V )

f(y) dy1 dy2 . . . dyn =

∫
V

f(ϕ(x))| detϕ′(x)| dx1 dx2 . . . dxn.

Here detϕ′(x) denotes the determinant of the Jacobian matrix ϕ′(x) of
the smooth map ϕ at the point x of V .

The proof of this result is somewhat involved. A rigorous proof requires
a number of results (such as the Inverse Function Theorem) which go well
beyond the scope of this course. A proof of the change of variables formula
can be found in Calculus on manifolds by M. Spivak (pages 66–72).

12 Curvilinear Coordinate Systems

In this section we shall discuss curvilinear coordinate systems defined over
open sets in Rn. We shall then discuss the representation of differential forms
with respect to curvilinear coordinate systems.

Let D and E be subsets of Rn and let ϕ:D → E be a map from D into E.
The map ϕ:D → E is said to be a diffeomorphism from D to E if and only
if

(i) the function ϕ is a bijection from D to E (so that the inverse map
ϕ−1:E → D is well-defined),

(ii) ϕ:D → E and ϕ−1:E → D are both smooth.

(Recall that a map ϕ:D → E is said to be smooth if and only if the partial
derivatives

∂k1+k2+···+knϕj

∂xk11 ∂xk22 . . . ∂xknn

of the components ϕ1, ϕ2, . . . , ϕm of the map ϕ exist and are continuous for
all choices of the non-negative integers k1, k2, . . . , kn.)

Lemma 12.1 Let D and E be open sets in Rn, and let ϕ:D → E be a
diffeomorphism from D to E. Then the determinant detϕ′(x) of the Jacobian
matrix ϕ′(x) of ϕ is non-zero at each point x of D.
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Proof Let ψ:E → D be the inverse ϕ−1 of the map ϕ. Then ψ ◦ ϕ is the
identity mapping of D, so that the Jacobian matrix (ψ ◦ ϕ)′(x) of ψ ◦ ϕ at
any point x of D is the identity matrix. But we see from the Chain Rule
(Theorem 7.10) that (ψ ◦ ϕ)′(x) = ψ′(ϕ(x))ϕ′(x) for all x ∈ D. Therefore

detψ′(ϕ(x)) detϕ′(x) = det (ψ′(ϕ(x))ϕ′(x)) = 1

for all x ∈ D, and hence detϕ′(x) 6= 0 for all x ∈ D, as required.

Definition Let D and E be open sets in Rn and let ϕ:D → E be a dif-
feomorphism from D to E. If detϕ′(x) > 0 for all x ∈ D (where ϕ′(x)
denotes the Jacobian matrix of ϕ at x) then the diffeomorphism ϕ is said to
be orientation-preserving. If detϕ′(x) < 0 for all x ∈ D then ϕ is said to be
orientation-reversing.

We now discuss the notion of path-connectedness.

Definition A subset S of Rn is said to be path-connected if and only if, given
any two points u and v of S there exists a continuous map γ: [0, 1]→ S from
the closed interval [0, 1] into S such that γ(0) = u and γ(1) = v (i.e., the
set S is path-connected if and only any two points of S can be joined by a
continuous curve whose image is contained wholly within S).

Lemma 12.2 Let S be a path-connected subset of Rn and let f :S → R be a
continuous real-valued function defined on S. Suppose that f(x) 6= 0 for all
x ∈ S. Then either f(x) > 0 for all x ∈ S or else f(x) < 0 for all x ∈ S
(i.e., the function f has the same sign throughout S).

Proof Let u be a point of S. Suppose that f(u) > 0. Let x be a point of S.
Then there exists a continuous map γ: [0, 1] → S such that γ(0) = u and
γ(1) = x. But then f ◦ γ is a continuous real-valued function defined on the
closed interval [0, 1] which is non-zero everywhere in [0, 1]. We deduce from
this that f(x) > 0 (since if it were the case that f(x) < 0 then it would follow
from the Intermediate Value Theorem that f(γ(t)) = 0 for some t ∈ [0, 1],
contradicting the fact that the function f is non-zero everywhere on S).
Similarly if f(u) < 0 then f(x) < 0 for all x ∈ S.

We conclude immediately from Lemma 12.1 and Lemma 12.2 that if D
and E are open sets in Rn, if ϕ:D → E is a diffeomorphism, and if D is
path-connected then either ϕ is orientation-preserving or else ϕ is orientation-
reversing.

127



Definition Let U be an open set in Rn and let ϕ1, ϕ2, . . . , ϕn be smooth
functions on U . We say that these functions define a smooth curvilinear
coordinate system on U if and only if the map sending x ∈ U to

(ϕ1(x), ϕ2(x), . . . , ϕn(x))

defines a diffeomorphism from U onto some open set in Rn.

Example Let H be the half plane in R3 defined by

H = {(x, y, z) : x ≤ 0, y = 0}

and let U be the complement Rn \H of H in Rn. Then the spherical polar
coordinates (r, θ, ϕ) form a smooth curvilinear coordinate system on U , where
the values of θ and ϕ are chosen such that 0 < θ < π and −π < ϕ < π. A
point (x, y, z) of U is given in spherical polar coordinates by

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

(We have excluded the half plane H from the domain U of our spherical polar
coordinate system in order to ensure that the angles θ and ϕ are unambigu-
ously defined and vary smoothly over the open set U .)

Similarly the cylindrical polar coordinates (ρ, ϕ, z) form a smooth curvi-
linear coordinate system on U , where −π < ϕ < π. A point (x, y, z) is given
in cylindrical polar coordinates (ρ, ϕ, z) by

x = ρ cosϕ, y = ρ sinϕ.

Example Let u and v be the smooth real-valued functions on R2 defined by

u = x, v = y − x2.

Then (u, v) is a smooth curvilinear coordinate system on R2. Note that x
and y are given in terms of the curvilinear coordinates u and v by

x = y, y = v + u2.

Let (ϕ1, ϕ2, . . . , ϕn) be a smooth curvilinear coordinate system defined on
an open subset U of Rn. Let ϕ:U → Rn be the smooth map defined by

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) .
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Then ϕ maps U diffeomorphically onto some open subset ϕ(U) of Rn. It
follows immediately from Lemma 12.1 that detϕ′(x) 6= 0 for all x ∈ U ,
where ϕ′(x) is represented by the Jacobian matrix of ϕ at x, given by

ϕ′(x) =



∂ϕ1

∂x1

∂ϕ1

∂x2

. . .
∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2

. . .
∂ϕ2

∂xn
...

...
. . .

...
∂ϕn
∂x1

∂ϕn
∂x2

. . .
∂ϕn
∂xn


,

where the partial derivatives occurring in the matrix are evaluated at the
point x of U .

Definition Let U be an open set in Rn and let (ϕ1, ϕ2, . . . , ϕn) be a smooth
curvilinear coordinate system defined on U . We say that this curvilinear
coordinate system is positively oriented if and only if detϕ′(x) > 0 for all
x ∈ U (where ϕ(x) ≡ (ϕ1(x), ϕ2(x), . . . , ϕn(x)) for all x ∈ U). Similarly we
say that this curvilinear coordinate system is negatively oriented if and only
if detϕ′(x) < 0 for all x ∈ U .

Observe that the smooth curvilinear coordinate system (ϕ1, ϕ2, . . . , ϕn) is
positively oriented if and only if the map ϕ with components ϕ1, ϕ2, . . . , ϕn
is an orientation-preserving diffeomorphism mapping U onto an open sub-
set ϕ(U) of Rn. Similarly this curvilinear coordinate system is negatively
oriented if and only if the map ϕ is an orientation-reversing diffeomorphism
mapping U onto an open subset ϕ(U) of Rn.

If U is a path-connected open set in Rn then every curvilinear coordinate
system defined over U is either positively-oriented or negatively-oriented,
since any diffeomorphism from D to some open set in Rn is either orientation-
preserving or else is orientation-reversing.

The orientation of a curvilinear coordinate system depends on the order
in which the curvilinear coordinates are specified, as the following lemma
shows.

Lemma 12.3 Let (ϕ1, ϕ2, . . . , ϕn) be a positively oriented smooth curvilinear
coordinate system defined on an open set U in Rn. Let π be a permutation of
{1, 2, . . . , n} and let j1, j2, . . . , jn be defined by ji = π(i) for each i. If π is an
even permutation then the curvilinear coordinate system (ϕj1 , ϕj2 , . . . , ϕjn) is
positively oriented. If π is an odd permutation then the curvilinear coordinate
system (ϕj1 , ϕj2 , . . . , ϕjn) is negatively oriented.
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Proof The permutation π determines a corresponding permutation of the
rows of the Jacobian matrix ϕ′ of the transformation ϕ:U → Rn represented
by ϕ1, ϕ2, . . . , ϕn. If the permutation is even then it leaves the determinant of
the Jacobian matrix unchanged. If the permutation is odd then it multiplies
the determinant of the Jacobian matrix by −1.The required result follows
immediately.

Example Let H be the half plane in R3 defined by

H = {(x, y, z) : x ≤ 0, y = 0}

and let U be the complement Rn \H of H in Rn. Then the spherical polar
coordinates (r, θ, ϕ) form a positively oriented curvilinear coordinate system
on U . To prove this we must show that the determinant of the Jacobian
matrix J 

∂r

∂x

∂r

∂y

∂r

∂z
∂θ

∂x

∂θ

∂y

∂θ

∂z
∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z

 ,

is everywhere positive on U . We could do this by expressing the Cartesian
coordinates (x, y, z) in terms of (r, θ, ϕ) and then calculating the components
of the Jacobian matrix above directly. However it is more convenient to
proceed by observing that the inverse J−1 of J is the Jacobian matrix of the
transformation specifying the Cartesian coordinates (x, y, z) in terms of the
spherical polar coordinates (r, θ, ϕ), so that

J−1 =



∂x

∂r

∂x

∂θ

∂x

∂ϕ
∂y

∂r

∂y

∂θ

∂y

∂ϕ
∂z

∂r

∂z

∂θ

∂z

∂ϕ

 .

Now
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ.

A straightforward calculation shows that det J−1 = r2 sin θ. Hence

det J =
1

r2 sin θ
,

where 0 < θ < π. We conclude that det J > 0 everywhere on U . Thus
the spherical polar coordinates (r, θ, ϕ) (when taken in this order) form a
positively oriented curvilinear coordinate system on U .
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12.1 Representation of Differential Forms in Curvilin-
ear Coordinate Systems

Lemma 12.4 Let (ϕ1, ϕ2, . . . , ϕn) be a smooth curvilinear coordinate system
defined over an open set D in Rn. Define E = ϕ(D), where ϕ:D → Rn is
defined by

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) .

Then every smooth p-form on D can be expressed as a sum of terms of the
form

F (ϕ1, ϕ2, . . . , ϕn) dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip ,

where F :E → R is a smooth function on E and where i1, i2, . . . , ip are inte-
gers between 1 and n.

Proof It follows from the definition of the differential of a function that

dϕi =
n∑
j=1

∂ϕi
∂xj

dxj

for i = 1, 2, . . . , n. But the Jacobian matrix

∂ϕ1

∂x1

∂ϕ1

∂x2

. . .
∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2

. . .
∂ϕ2

∂xn
...

...
. . .

...
∂ϕn
∂x1

∂ϕn
∂x2

. . .
∂ϕn
∂xn


of ϕ is invertible at every point of D (since ϕ maps D diffeomorphically
onto E). Let its inverse matrix be given by

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann


where aji:D → R is a smooth function on D for each pair (j, i) of integers
between 1 and n. Then

n∑
i=1

aji
∂ϕi
∂xk

=

{
1 if j = k,
0 if j 6= k,
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hence
n∑
i=1

ajidϕi =
n∑
i=1

n∑
k=1

aji
∂ϕi
∂xk

dxk = dxj

for j = 1, 2, . . . , n.
Now each smooth p-form on D can be expressed as a sum of terms of the

form
f(x1, x2, . . . , xn) dxj1 ∧ dxj2 ∧ · · · ∧ dxjp ,

where f is a smooth real-valued function on D and where j1, j2, . . . , jp are
integers between 1 and n. However we have shown that

dxj =
n∑
i=1

ajidϕi

for each j. If we express each dxj in terms of dϕ1, dϕ2, . . . , dϕn in this fashion
we conclude that each smooth p-from onD can be expressed as a sum of terms
of the form

g(x1, x2, . . . , xn) dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjp ,

where g is a smooth real-valued function on E. However

g(x1, x2, . . . , xn) = F (ϕ1, ϕ2, . . . , ϕn),

where F :E → R is defined by F = g ◦ϕ−1. Thus every smooth p-form on D
can be expressed as a sum of terms of the form

F (ϕ1, ϕ2, . . . , ϕn) dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip ,

as required.

Let f :D → R be a smooth real-valued function defined over some open
setD in Rn and let (ϕ1, ϕ2, . . . , ϕn) be a smooth curvilinear coordinate system
on D. Define E = ϕ(D), where ϕ:D → Rn is defined by

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)) .

Suppose that
f = F (ϕ1, ϕ2, . . . , ϕn),

where F is a smooth function on E. It follows from the Chain Rule that

∂f

∂xi
=

n∑
j=1

∂F (ϕ1, ϕ2, . . . , ϕn)

∂ϕj

∂ϕj
∂xi

.
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But

df =
n∑
i=1

∂f

∂xi
dxi, dϕj =

n∑
i=1

∂ϕj
∂xi

dxi.

It follows that

df =
n∑
j=1

∂F (ϕ1, ϕ2, . . . , ϕn)

∂ϕj
dϕj.

Lemma 12.5 Let (ϕ1, ϕ2, . . . , ϕn) be a smooth curvilinear coordinate system
defined over an open set D in Rn. Let ω be the smooth p-form on D given
by

ω = F (ϕ1, ϕ2, . . . , ϕn) dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip ,
(where F is a smooth function of its arguments). Then

dω =
n∑
j=1

∂F (ϕ1, ϕ2, . . . , ϕn)

∂ϕj
dϕj dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip .

Proof Recall that if η1 and η2 are differential forms on D then

d(η1 ∧ η2) = dη1 ∧ η2 + (−1)tη1 ∧ dη2,

where t is the degree of the differential form η1 (see Lemma 9.4). Now
d(dϕi) = 0 for all i (see Lemma 9.5). Using these facts one can show (e.g.,
by induction on p) that

d
(
dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip

)
= 0.

Thus

dω = d (F (ϕ1, ϕ2, . . . , ϕn)) ∧ dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip

=
n∑
j=1

∂F (ϕ1, ϕ2, . . . , ϕn)

∂ϕj
dϕj ∧ dϕi1 ∧ dϕi2 ∧ · · · ∧ dϕip ,

as required.

Example Let H be the half plane in R3 defined by

H = {(x, y, z) : x ≤ 0, y = 0}

and let U be the complement Rn \H of H in Rn. Let (r, θ, ϕ) be spherical
polar coordinates on U , so that

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ,
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where (x, y, z) denote the standard Cartesian coordinates of the point with
polar coordinates (r, θ, ϕ). Using Lemma 12.5 we see that

dx = sin θ cosϕdr + r cos θ cosϕdθ − r sin θ sinϕdϕ,

dy = sin θ sinϕdr + r cos θ sinϕdθ + r sin θ cosϕdϕ,

dz = cos θ dr − r sin θ dθ.

Suppose that we define 1-forms ω1, ω2 and ω3 by

ω1 = dr, ω2 = r dθ, ω3 = r sin θ dϕ.

Then

ω1 ∧ ω2 = r dr ∧ dθ, ω2 ∧ ω3 = r2 sin θ dθ ∧ dϕ, ω3 ∧ ω1 = r sin θ dϕ ∧ dr,

ω1 ∧ ω2 ∧ ω3 = r2 sin θ dr ∧ dθ ∧ dϕ,
and

dω1 = 0,

dω2 = dr ∧ dθ =
1

r
ω1 ∧ ω2,

dω3 = sin θ dr ∧ dϕ+ r cos θ dθ ∧ dϕ =
cot θ

r
ω2 ∧ ω3 −

1

r
ω3 ∧ ω1.

Lemma 12.6 Let D and E be open sets in Rn and let ϕ:D → E be a
diffeomorphism from D to E. Let ϕ1, ϕ2, . . . , ϕn be the components of the
map ϕ. Then

dϕ1 ∧ dϕ2 ∧ · · · ∧ dϕn = (detϕ′) dx1 ∧ dx2 ∧ · · · ∧ dxn,

where ϕ′(x) denotes the Jacobian matrix of the diffeomorphism ϕ at the
point x.

We do not present the proof of this result here in full generality. Instead
we shall show that this formula is valid in the cases when n = 1, n = 2 and
n = 3.

Proof of Lemma 12.6 in the case when n = 1. In this case D and E
are open sets in the set R of real numbers, and

detϕ′(x) =
dϕ(x)

dx

for all x ∈ D. But it follows from the definition of the differential of a
function that

dϕ =
dϕ

dx
dx.

Thus Lemma 12.6 is valid when n = 1.
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Proof of Lemma 12.6 in the case when n = 2. The differentials dϕ1

and dϕ2 of ϕ1 and ϕ2 are given in this case by

dϕ1 =
∂ϕ1

∂x1

dx1 +
∂ϕ1

∂x2

dx2, dϕ2 =
∂ϕ2

∂x1

dx1 +
∂ϕ2

∂x2

dx2.

Now dx1 ∧ dx1 = 0, dx2 ∧ dx2 = 0 and dx2 ∧ dx1 = −dx1 ∧ dx2. Therefore

dϕ1 ∧ dϕ2 =

(
∂ϕ1

∂x1

∂ϕ2

∂x2

− ∂ϕ1

∂x2

∂ϕ2

∂x1

)
dx1 ∧ dx2

=

∣∣∣∣∣∣∣
∂ϕ1

∂x1

∂ϕ1

∂x2
∂ϕ2

∂x1

∂ϕ2

∂x2

∣∣∣∣∣∣∣ dx1 ∧ dx2,

as required.

Proof of Lemma 12.6 in the case when n = 3. In this case

dϕ1 =
∂ϕ1

∂x1

dx1 +
∂ϕ1

∂x2

dx2 +
∂ϕ1

∂x3

dx3,

dϕ2 =
∂ϕ2

∂x1

dx1 +
∂ϕ2

∂x2

dx2 +
∂ϕ2

∂x3

dx3,

dϕ3 =
∂ϕ3

∂x1

dx1 +
∂ϕ3

∂x2

dx2 +
∂ϕ3

∂x3

dx3.

Thus

dϕ1 ∧ dϕ2 ∧ dϕ3 =
∂ϕ1

∂x1

∂ϕ2

∂x2

∂ϕ3

∂x3

dx1 ∧ dx2 ∧ dx3

+
∂ϕ1

∂x2

∂ϕ2

∂x3

∂ϕ3

∂x1

dx2 ∧ dx3 ∧ dx1

+
∂ϕ1

∂x3

∂ϕ2

∂x1

∂ϕ3

∂x2

dx3 ∧ dx1 ∧ dx2

+
∂ϕ1

∂x3

∂ϕ2

∂x2

∂ϕ3

∂x1

dx3 ∧ dx2 ∧ dx1

+
∂ϕ1

∂x1

∂ϕ2

∂x3

∂ϕ3

∂x2

dx1 ∧ dx3 ∧ dx2

+
∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ3

∂x3

dx2 ∧ dx1 ∧ dx3

=
(∂ϕ1

∂x1

∂ϕ2

∂x2

∂ϕ3

∂x3

+
∂ϕ1

∂x2

∂ϕ2

∂x3

∂ϕ3

∂x1

+
∂ϕ1

∂x3

∂ϕ2

∂x1

∂ϕ3

∂x2

− ∂ϕ1

∂x3

∂ϕ2

∂x2

∂ϕ3

∂x1

135



− ∂ϕ1

∂x1

∂ϕ2

∂x3

∂ϕ3

∂x2

− ∂ϕ1

∂x2

∂ϕ2

∂x1

∂ϕ3

∂x3

)
dx1 ∧ dx2 ∧ dx3

=

∣∣∣∣∣∣∣∣∣∣∣

∂ϕ1

∂x1

∂ϕ1

∂x2

∂ϕ1

∂x3
∂ϕ2

∂x1

∂ϕ2

∂x2

∂ϕ2

∂x3
∂ϕ3

∂x1

∂ϕ3

∂x2

∂ϕ3

∂x3

∣∣∣∣∣∣∣∣∣∣∣
dx1 ∧ dx2 ∧ dx3,

as required.

Remark One can derive Lemma 12.6 immediately from a theorem proved
in Course 211. This theorem states that if u1, u2, . . . , ur and v1, v2, . . . vr are
elements of some vector space V and if

uj =
r∑
i=1

aijvj

for i = 1, 2, . . . , r then

u1 ∧ u2 ∧ · · · ∧ ur = (detA) v1 ∧ v2 ∧ · · · ∧ vr,

where A is the r × r matrix of scalar coefficients given by

A =


a1

1 a1
2 . . . a1

r

a2
1 a2

2 . . . a2
r

...
...

. . . . . .
a3

1 a3
2 . . . a3

r

 .

Remark We conclude immediately from Lemma 12.6 that if (ϕ1, ϕ2, . . . , ϕn)
is a smooth curvilinear coordinate system defined over some open set D in
Rn then

dϕ1 ∧ dϕ2 ∧ · · · ∧ dϕn = (detϕ′) dx1 ∧ dx2 ∧ · · · ∧ dxn,

where ϕ′ is the Jacobian matrix defined by

ϕ′ =



∂ϕ1

∂x1

∂ϕ1

∂x2

. . .
∂ϕ1

∂xn
∂ϕ2

∂x1

∂ϕ2

∂x2

. . .
∂ϕ2

∂xn
...

...
. . .

...
∂ϕn
∂x1

∂ϕn
∂x2

. . .
∂ϕn
∂xn


.
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13 Integration of Differential Forms

Let ω be a continuous n-form defined over an open set D in Rn, and let V
be a closed bounded Jordan-measurable subset of D. We can write

ω = f(x1, x2, . . . , xn) dx1 ∧ dx2 ∧ · · · ∧ dxn,

where f :D → R is a continuous function on D. We recall that the Riemann
integral of continuous function over a closed bounded Jordan-measurable set
in Rn is well-defined. Thus let us define∫

V

ω ≡
∫
V

f(x1, x2, . . . , xn) dx1dx2 . . . dxn.

Lemma 13.1 Let ω be a continuous n-form on some open set D in Rn.
Let (x1, x2, . . . , xn) be the standard Cartesian coordinates on Rn. Let π be
a permutation of the set {1, 2, . . . , n}, and let ji = π(i) for i = 1, 2, . . . , n.
Suppose that

ω = f(x) dxj1 ∧ dxj2 ∧ · · · ∧ dxjn .

Then ∫
V

ω = επ

∫
V

f(x) dx1dx2 . . . dxn

for all closed bounded Jordan-measurable subsets V of Rn, where

επ =

{
+1 if the permutation π is even;
−1 if the permutation π is odd.

Proof This follows directly from the definition of the integral of ω, using
the fact that

dxj1 ∧ dxj2 ∧ · · · ∧ dxjn = επdx1 ∧ dx2 ∧ · · · ∧ dxn.

Example Let ω be a 3-form on R3 which has the form

ω = f(x, y, z) dz ∧ dy ∧ dx.

Then ∫
V

ω = −
∫
V

f(x, y, z) dx dy dz

for all closed bounded Jordan-measurable subsets V of R3.

Using the Change of Variables Formula for multiple integrals (Theorem
11.7 we can deduce the following result.
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Theorem 13.2 Let D and E be open sets in Rn and let ϕ:D → E be a
diffeomorphism from D to E. Let ω be a continuous n-form on E, and
let V be a closed bounded Jordan-measurable subset of D. If ϕ:D → E is
orientation-preserving then ∫

ϕ(V )

ω =

∫
V

ϕ∗ω,

(where ϕ∗ω is the pullback of ω under the map ϕ. Similarly if ϕ:D → E is
orientation-reversing then ∫

ϕ(V )

ω = −
∫
V

ϕ∗ω.

Proof We can write

ω = f(x1, x2, . . . , xn) dx1 ∧ dx2 ∧ · · · ∧ dxn,

where f :E → R is continuous. If we apply the change of variables formula
(Theorem 11.7) we see that∫

ϕ(V )

ω =

∫
ϕ(V )

f(x) dx1dx2 . . . dxn.

=

∫
V

f(ϕ(x))| detϕ′(x)| dx1dx2 . . . dxn.

On the other hand

ϕ∗ω = (f ◦ ϕ) dϕ1 ∧ dϕ2 ∧ · · · ∧ dϕn
= (f ◦ ϕ)(detϕ′) dx1 ∧ dx2 ∧ · · · ∧ dxn.

by Lemma 12.6. If ϕ:D → E is orientation-preserving then detϕ′(x) > 0 for
all x ∈ D, and hence ∫

ϕ(V )

ω =

∫
V

ϕ∗ω.

Similarly if ϕ:D → E is orientation-reversing then detϕ′(x) < 0 for all
x ∈ D, and hence ∫

ϕ(V )

ω = −
∫
V

ϕ∗ω.

Corollary 13.3 Let ω be a continuous n-form defined over some open sub-
set D of Rn. Let (ϕ1, ϕ2, . . . , ϕn) be a smooth positively-oriented curvilinear
coordinate system on D. Suppose that

ω = F (ϕ1, ϕ2, . . . , ϕn) dϕ1 ∧ dϕ2 ∧ · · · ∧ dϕn,
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Let V be a closed bounded Jordan-measurable subset of D. Then∫
V

ω =

∫
ϕ(V )

F (u1, u2, . . . , un) du1 du2 . . . dun.

Proof Let E = ϕ(D), where

ϕ(x) = (ϕ1(x), ϕ2(x), . . . , ϕn(x)).

The diffeomorphism ϕD → E is orientation-preserving (since the coordinate
system (ϕ1, ϕ2, . . . , ϕn) is positively oriented. Moreover ω = ϕ∗η, where η is
the n-form on E defined by

η = F dx1 ∧ dx2 ∧ · · · ∧ dxn.

It follows that∫
V

ω =

∫
V

ϕ∗η =

∫
ϕ(V )

η

=

∫
ϕ(V )

F (u1, u2, . . . , un) du1 du2 . . . dun,

as required.

We may deduce from this the following result.

Corollary 13.4 Let ω be a continuous n-form defined over some open sub-
set D of Rn. Let (ϕ1, ϕ2, . . . , ϕn) be a smooth positively-oriented curvilinear
coordinate system on D. Let π be a permutation of the set {1, 2, . . . , n}.
Suppose that

ω = F (ϕ1, ϕ2, . . . , ϕn) dϕj1 ∧ dϕj2 ∧ · · · ∧ dϕjn ,

where ji = π(i) for each i. Let V be a closed bounded Jordan-measurable
subset of D. Then∫

V

ω = επ

∫
ϕ(V )

F (u1, u2, . . . , un) du1 du2 . . . dun.

where

επ =

{
1 if π is even;
−1 if π is odd.
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Example Let (u, v) be the smooth curvilinear coordinate system on R2 de-
fined by

u = x, v = y − x2.

Then ∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣ = 1,

hence the coordinate system (u, v) is positively oriented. Let Q be the region
in R2 defined by

Q = {(x, y) ∈ R2 : −1 ≤ x ≤ 1, x2 ≤ y ≤ x2 + 1},

and let ω be the 2-form defined by ω = (y2 − 2yx2 + x4)dx ∧ dy. Now

du = dx, dv = dy − 2x dx,

hence du ∧ dv = dx ∧ dy. It follows that ω = v2du ∧ dv and hence∫
Q

ω =

∫ 1

v=0

∫ 1

u=−1

v2 du dv =
2

3
.

Example Let (r, θ, ϕ) be spherical polar coordinates on R3. Let ω be the
3-form on R3 defined by ω = r2 sin θ dr ∧ dθ ∧ dϕ. Let V be the closed set in
R3 defined by

B = {(x, y, z) ∈ R3 : x ≥ 0, 3z2 ≤ x2 + y2, 1 ≤ x2 + y2 + z2 ≤ 4}.

Note that the set B is the set of all points in R for which 1 ≤ r ≤ 2,
−π/2 ≤ ϕ ≤ π/2 and π/3 ≤ θ ≤ 2π/3. Therefore∫

B

ω =

∫ π
2

ϕ=−π
2

∫ 2π
3

θ=π
3

∫ 2

r=1

r2 sin θ dr dθ dϕ =
7π

3

∫ 2π
3

pi
3

sin θ dθ

=
14π

3
cos

π

3
=

7π

3
.

Example Let (r, θ) be polar coordinates on R2. The coordinate system (r, θ)
is positively oriented. Consider the 2-form η defined by η = r3dθ ∧ dr. Let
D be the closed unit disk in R2 defined by

D{(x, y) ∈ R2 : x2 + y2 ≤ 1}.
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Then ∫
D

η = −
∫ 2π

θ=0

∫ 1

r=0

r3 dr dθ = −π
2
.

(Note the minus sign in this formula: this occurs because the coordinate
system (r, θ) is positively oriented, whereas the coordinate system (θ, r) is
negatively oriented. Thus if f is any function on D then∫

D

f dθ ∧ dr = −
∫
D

f dr dθ,

by Corollary 13.4.)

13.1 Line Integrals

We define a parameterized smooth curve in Rn to be a smooth map γ: [a, b]→
Rn which maps some interval [a, b] into Rn.

Definition Let η be a continuous 1-form on some open set D in Rn, given
by

η = f1 dx1 + f2 dx2 + · · ·+ fn dxn

for some continuous real-valued functions f1, f2, . . . fn on D. Let γ: [a, b] →
Rn be a parameterized smooth curve in D. let γ1, γ2, . . . , γn be the compo-
nents of the map γ (so that

γ(t) = (γ1(t), γ2(t), . . . γn(t))

for all t ∈ [a, b]). We define the line integral of η along the curve γ by∫
γ

η =
n∑
i=1

∫ b

a

fi(γ(t))
dγi(t)

dt
dt.

Observe that ∫
γ

η =

∫
[a,b]

γ∗η

for all 1-forms η defined over some open set containing the image of the
curve γ.

An important property of line integrals is their invariance under smooth
reparameterizations of the curves along which the line integral is taken. Sup-
pose that α: [a, b] → Rn and β: [c, d] → Rn are smooth curves in R. We
say that the curve β is a smooth reparameterization of the curve α if and
only if β = α ◦ ρ for some smooth increasing function ρ: [c, d]→ [a, b], where
ρ(c) = a, ρ(d) = b.
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Lemma 13.5 Let η a continuous 1-form defined on some open set D in Rn

and let α: [a, b]→ D and β: [c, d]→ D be smooth curves in D. Suppose that
β is a smooth reparameterization of the curve α. Then∫

β

η =

∫
α

η.

Proof Let η be given by

η = f1 dx1 + f2 dx2 + · · ·+ fn dxn

for some continuous real-valued functions f1, f2, . . . fn onD. Now β = α◦ρ for
some smooth increasing function ρ: [c, d] → [a, b], where ρ(c) = a, ρ(d) = b.
Thus ∫

β

η =
n∑
i=1

∫ d

c

fi(β(t))β′i(t) dt

=
n∑
i=1

∫ d

c

fi(α(ρ(t))α′i(ρ(t))ρ′(t) dt

=
n∑
i=1

∫ b

a

fi(α(u)α′i(u) du

=

∫
α

η

(where we have used the Chain Rule for functions of one variable, together
with the rule for integration by substitution) .

The sign of the line integral of a 1-form η along a curve γ depends on the
direction in which the curve γ is traversed. Indeed suppose that α: [a, b]→ Rn

and β: [c, d]→ Rn are parameterized smooth curves in Rn, where β = α◦ρ for
some smooth decreasing function ρ: [c, d]→ [a, b] with ρ(c) = b and ρ(d) = a.
Then ∫

β

η = −
∫
α

η.

Thus if we change the direction in which the curve is traversed then this
changes the sign of the line integral of any 1-form along that curve.

Example Let η be the smooth 1-form on R2 \ {(0, 0)} defined by

η =
x

x2 + y2
dy − y

x2 + y2
dx.
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We integrate η around the unit circle in R2 traversed in the anticlockwise
direction. Thus let the parameterization of the unit circle be given by
γ: [0, 2π]→ R2, where

γ(t) = (cos t, sin t).

Then ∫
γ

η =

∫ 2π

0

cos t
d(sin t)

dt
dt−

∫ 2π

0

sin t
d(cos t)

dt
dt

=

∫ 2π

0

(cos2 t+ sin2 t) dt = 2π.

Example Let η be the 1-form on R3 defined by

η = x2 dy + xy dx− x dz.

Let γ: [0, 1] → R3 be the parameterized smooth curve defined by γ(t) =
(t, t2, t3). Then ∫

γ

η =

∫ 1

0

(
t2
d(t2)

dt
+ t3

dt

dt
− td(t3)

dt

)
dt = 0.

Lemma 13.6 Let D be an open set in Rn and let γ: [a, b]→ D be a smooth
curve in D. Let f :D → R be a continuously differentiable real-valued func-
tion on D. Then ∫

γ

df = f(v)− f(u),

where u and v are the endpoints of the curve γ, given by u = γ(a) and
v = γ(b).

Proof The 1-form df if defined by

df =
n∑
i=1

∂f

∂xi
dxi.

Thus if we write γ(t) = (γ1(t), γ2(t), . . . , γn(t)) for all t ∈ [a, b] then∫
γ

df =
n∑
i=1

∫ b

a

∂f(x)

∂xi

∣∣∣∣
x=γ(t)

dγi(t)

dt
dt

=

∫ b

a

df(γ(t))

dt
dt

= f(γ(b)− f(γ(a)),

by the Chain Rule, as required.
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Let D be an open set in Rn. A curve γ: [a, b]→ D is said to be closed if
and only if γ(b) = γ(a). We conclude immediately from Lemma 13.6 that if
f :D → R is continuously differentiable then∫

γ

df = 0

for all smooth closed curves γ in D.

Example Let D be the open set in R2 defined by D = R2 \ {0, 0} (i.e., D is
obtained from R2 by removing the origin). Let η be the 1-form on D defined
by

η =
x

x2 + y2
dy − y

x2 + y2
dx.

Then

dη =
∂

∂x

(
x

x2 + y2

)
dx ∧ dy +

∂

∂y

(
y

x2 + y2

)
dx ∧ dy

=

(
y2 − x2

x2 + y2
+
x2 − y2

x2 + y2

)
dx ∧ dy

= 0.

However if γ: [0, 2π]→ D is the closed curve in D given by γ(t) = (cos t, sin t)
(so that the curve γ winds once around to origin in the anticlockwise direc-
tion) then ∫

γ

η = 2π.

We conclude that there cannot exist a smooth function f :D → R on D with
the property that df = η, since the integral of η around the smooth closed
curve γ is non-zero. Thus the conclusions of the Poincaré Lemma do not
apply on the domain D defined above (i.e., there exists a differential form η
on D which satisfies dη = 0 but which is not of the form df for any smooth
function f defined over the whole of the domain D). Note that the domain D
is not star-shaped.

We can also integrate 1-forms along piecewise-smooth curves in Rn. A
continuous curve γ: [a, b] → Rn is said to be piecewise-smooth if and only if
there exists a partition {t0, t1, . . . , tr} of the interval [a, b], where

a = t0 < t1 < · · · < tr−1 < tr = b,
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such that γ is smooth on [tj−1, tj] for j = 1, 2, . . . , r. If η is a continuous
1-form defined along the piecewise-smooth curve γ then we define∫

γ

η =
r∑
j=1

∫
γ|[tj−1,tj ]

η

(where γ|[tj−1, tj]: [tj−1, tj]→ Rn is the restriction of the curve γ to the closed
interval [tj−1, tj]).

13.2 Surface Integrals

We have seen how to integrate 1-forms along smooth curves. Similarly we can
integrate 2-forms over oriented smooth surface. First we define the concept
of a smooth surface.

Definition Let S be a subset of Rn. Then S is said to be a smooth surface
(without boundary) in Rn if and only if, for each point p of S there exists an
open set U in Rn containing p and a smooth curvilinear coordinate system
(ϕ̃1, ϕ̃2, . . . , ϕ̃n) defined on U such that

S ∩ U = {x ∈ U : ϕ̃i(x) = 0 for i = 3, . . . , n}.

Definition Let S be a smooth surface in Rn, and let (ϕ̃1, ϕ̃2, . . . , ϕ̃n) be a
smooth curvilinear coordinate system defined over some open set U in Rn.
We say that this coordinate system is adapted to the surface S if and only if

S ∩ U = {x ∈ U : ϕ̃i(x) = 0 for i = 3, . . . , n}.

Example Let r, θ and ϕ be spherical polar coordinates defined over some
suitable open set U in R3. Thus if (x, y, z) are the standard Cartesian coor-
dinates on R3 then

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

at each point of the open set U . We see that, for each positive number R, the
curvilinear coordinate system (θ, ϕ, r) is adapted to the sphere of radius R
about the origin, where this sphere is defined to be the set

{(x, y, z) ∈ R3 : x2 + y2 + z2 = R2.

Example Let ρ, ϕ and z be cylindrical polar coordinates defined over some
suitable open set U in R3. Thus if (x, y, z) are the standard Cartesian coor-
dinates on R3 then

x = ρ cosϕ, y = ρ sinϕ.

145



at each point of the open set U . We see that, for each positive number R the
curvilinear coordinate system (ϕ, z, r) is adapted to the cylinder of radius R
about the z-axis, where this cylinder is defined to be the set

{(x, y, z) ∈ R3 : x2 + y2 = R2}.

Definition Let S be a smooth surface in Rn, and let V be a subset of S.
Let U be an open set in Rn which contains V and let (ϕ̃1, ϕ̃2, . . . , ϕ̃n), be
a smooth curvilinear coordinate system for Rn which is defined over U and
which is adapted to the surface S. Let ϕ1:V → R and ϕ2:V → R be the
restrictions of ϕ̃1 and ϕ̃2 respectively to V . Then we say that (ϕ1, ϕ2) is a
smooth coordinate system for the surface S defined over the set V .

Example Let S2 denote the unit sphere in R3 defined by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Let r, θ and ϕ be spherical polar coordinates defined over some suitable open
set U in R3. Then (θ, ϕ) is a smooth coordinate system for the sphere S2

defined over S2 ∩ U .

Example Let Z be the cylinder in R3 defined by

S2 = {(x, y, z) ∈ R3 : x2 + y2 = 1}.

Let ρ, ϕ and z be cylindrical polar coordinates defined over some suitable
open set U in R3. Then (ϕ, z) is a smooth coordinate system for the cylin-
der Z defined over Z ∩ U .

We now discuss the concept of orientation for a smooth surface S in Rn.

Definition Let S be a smooth surface in Rn, let V be a subset of S and let
(ϕ1, ϕ2) and (ψ1, ψ2) be smooth coordinate systems for the surface S which
are defined over V . We say that these two coordinate systems induce the
same orientation on V if and only if∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

∣∣∣∣∣∣∣ > 0

at all points of V .
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Definition Let S be a smooth surface in Rn and let A be a collection of
smooth coordinate systems, each defined over some suitable subset of S
known as the domain of that coordinate system. The collection A of co-
ordinate systems is said to be an oriented atlas if and only if the following
conditions are satisfied:

(i) every point of S belongs to the domain of at least one of the smooth
coordinate systems in the collection A,

(ii) if (ϕ1, ϕ2) and (ψ1, ψ2) are smooth coordinate systems for the surface S
which belong to the collection A and if U and V are the domains of
these coordinate systems, then the coordinate systems (ϕ1, ϕ2) and
(ψ1, ψ2) induce the same orientation on U ∩ V .

The surface S is said to be orientable if and only if there exists an oriented
atlas for S. Such an oriented atlas is said to define an orientation on the
surface S. If such an orientation has been chosen for the surface S then we
say that S is oriented.

Definition Let S be an oriented surface and let A be an oriented atlas
for S which induces the chosen orientation on S. Let (ϕ1, ϕ2) be a smooth
coordinate system for the surface S which is defined over some subset U of S.
The coordinate system (ϕ1, ϕ2) is said to be positively oriented if and only if
the following condition is satisfied:

if (ψ1, ψ2) is a smooth coordinate system with domain D which
belongs to the atlas A, then∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

∣∣∣∣∣∣∣ > 0

at all points of U ∩D.

Similarly the coordinate system (ϕ1, ϕ2) is said to be negatively oriented if
and only if the following condition is satisfied:

if (ψ1, ψ2) is a smooth coordinate system with domain D which
belongs to the atlas A, then∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

∣∣∣∣∣∣∣ < 0

at all points of U ∩D.
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We observe that if (ϕ1, ϕ2) and (ψ1, ψ2) are positively oriented coordinate
systems for some oriented surface S defined over some subset V of S then∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

∣∣∣∣∣∣∣ > 0

at all points of V .

Remark Let S be a smooth surface in Rn. Suppose that it is possible
to find a smooth curvilinear coordinate system (ϕ1, ϕ2) for the surface S
which is defined over the whole of the surface S. Then one can specify an
orientation on the surface S simply by stating whether this coordinate system
on S is positively oriented or negatively oriented with respect to the chosen
orientation on S.

Example Let S2 be the 2-sphere in R3 defined by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Then we can specify an orientation on S2 by requiring that the coordinate
system (θ, ϕ) on S2 be positively oriented, where

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ.

Let S be an oriented surface in Rn and let V be a subset of S. Sup-
pose that there exists a positively oriented coordinate system (ϕ1, ϕ2) for the
surface S defined over V . Let us define the subset W of R2 by

W = {(ξ, η) ∈ R2 : ξ = ϕ1(p) and η = ϕ2(p) for some p ∈ V }.

We let α:W → V be the smooth map which expresses the standard Cartesian
coordinates (x1, x2, . . . , xn) at a point of V in terms of ϕ1 and ϕ2. Thus

xi = αi(ϕ1, ϕ2) (i = 1, 2, . . . , n),

where αi:W → R is the ith component of the map α. One can readily verify
that the map α:W → V has the following properties:

(i) the subset W of the plane R2 is mapped homeomorphically onto V by
the map α (i.e., α:W → V is a bijection and both α:W → V and
α−1:V → W are continuous).
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(ii) the Jacobian matrix of the map α:W → Rn has rank 2 at each point
of W .

We refer to a map α:W → V which arises from some coordinate system
(ϕ1, ϕ2) for the surface S in the manner described above as a local parame-
terization of the surface.

Now let us suppose that the domain W of the local parameterization
α:W → V is Jordan-measurable. Then we define∫

V

ω =

∫
W

α∗ω.

for each continuous 2-form defined over some open set which contains V . We
now show that the value of this integral is well-defined independently of the
choice of the positively oriented smooth coordinate system (ϕ1, ϕ2) chosen
on V .

Suppose that (ϕ1, ϕ2) and (ψ1, ψ2) are smooth positively oriented coordi-
nate systems for the oriented surface S defined over the subset V of S. We
define

W = {(ξ, η) ∈ R2 : ξ = ϕ1(p) and η = ϕ2(p) for some p ∈ V },
W̃ = {(ξ, η) ∈ R2 : ξ = ψ1(p) and η = ψ2(p) for some p ∈ V }.

We let α:W → V and β: W̃ → V be the local parameterizations of the
surface defined such that

xi = αi(ϕ1, ϕ2) = βi(ψ1, ψ2) (i = 1, 2, . . . , n),

where αi and βi denote the ith components of the maps α and β respectively.
There exists a diffeomorphism ρ:W → W̃ characterized by the property that

(ψ1(p), ψ2(p)) = ρ(ϕ1(p, ϕ2(p)

for all p ∈ V . This diffeomorphism ρ:W → W̃ is orientation preserving (since
the positively oriented coordinate systems (ϕ1, ϕ2) and (ψ1, ψ2) determine the
same orientation on V ). It follows from the definitions of α, β and ρ that
α = β ◦ ρ. Therefore ∫

W

α∗ω =

∫
W

ρ∗(β∗ω) =

∫
W̃

β∗ω

by Theorem 13.2. This shows that the value of the integral
∫
V
ω is well-

defined independently of the choice of the positively oriented smooth coor-
dinate system (ϕ1, ϕ2) chosen on V , as required.
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The discussion above explains how to calculate the integral of a 2-form
over a portion V of some oriented smooth surface S in Rn, provided that
the region V is contained within the domain of some smooth coordinate
system for the surface S and provided that V corresponds by means of this
coordinate system to a closed bounded Jordan-measurable subset of R2.

Now suppose that V is some portion of an oriented smooth surface S,
where the region V is a closed bounded set contained in S which is bounded
by piecewise-smooth curves lying in the surface S. It may not be possible
to find a smooth coordinate system defined over the whole of V . However
if V is a closed bounded set then one can decompose V into subregions
V1, V2, . . . , Vr, where each of these subregions of the surface S is bounded
by a piecewise smooth curve in S and is contained in the domain of some
positively oriented smooth coordinate system S. The intersection of any pair
of these subregions V1, V2, . . . , Vr should be contained within the boundary of
these subregions. Let ω be a continuous 2-form defined on V . The integral
of the 2-form ω over each of the regions V1, V2, . . . , Vr can be defined as
described above, since each of these regions is contained within the domain
of some smooth coordinate system on the surface S. Therefore we define∫

V

ω =
r∑
j=1

∫
Vj

ω.

It is not difficult to show that the value of this integral is independent of the
fashion in which we divide up the region V into the subregions V1, V2, . . . , Vr.

Example Let S be a smooth surface in R3 of the form

S = {(x, y, z) ∈ R3 : z = x2 + y2}.

We let (u, v) be the coordinate system on S defined by u = x and v = y. We
choose the orientation on S such that (u, v) is a positively oriented coordinate
system on S. The coordinate system (u, v) defines a local parameterization
α:R2 → R3, where

x = α1(u, v), y = α2(u, v), z = α3(u, v).

Thus
α1(u, v) = u, α2(u, v) = v, α3(u, v) = u2 + v2.

Let ω be the 2-form on R3 defined by

ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy,
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and let V be the region of the surface S defined by

V = {(x, y, z) ∈ S : x2 + y2 ≤ 1}.

Then ∫
V

ω =

∫
W

α∗ω,

where W = {(u, v) ∈ R2 : u2 + v2 ≤ 1}. Now

α∗ω = u dv ∧ d(u2 + v2) + v d(u2 + v2) ∧ du+ (u2 + v2) du ∧ dv
= (−2u2 − 2v2 + u2 + v2) du ∧ dv = −(u2 + v2) du ∧ dv

Therefore ∫
V

ω = −
∫
W

(u2 + v2) du dv = −2π

∫ 1

0

ρ3 dρ = −π
2
.

Example Let Z be the cylinder in R3 defined by

Z = {(x, y, z) ∈ R3 : x2 + y2 = 1, −1 ≤ z ≤ 1}.

We choose the orientation on Z such that (ϕ, z) is a positively oriented
coordinate system on Z, where (x, y, z) = (cosϕ, sinϕ, z). Let W be the
subset of R2 defined by

W = {(ξ, η) ∈ R2 : 0 ≤ η ≤ 2π, −1 ≤ η ≤ 1}.

and let α:W → Z be the parameterization of Z defined by

α(ξ, η) = (cos ξ, sin ξ, η).

Let ω be the 2-form on R2 defined by

ω = z2x dy ∧ dz = z2y dx ∧ dz.

Then

α∗ω = η2 cos ξ d(sin ξ) ∧ dη − η2 sin ξ d(cos ξ) ∧ dη
= η2(cos2 ξdξ ∧ dη + sin2 ξdξ ∧ dη)

= η2 dξ ∧ dη,

and hence ∫
Z

ω =

∫
W

α∗ω =

∫ 1

η=−1

∫ 2π

ξ=0

η2 dξ dη =
4π

3
.
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13.3 Smooth Surfaces in R3

Let Z be a smooth surface in R3. Given any smooth coordinate system (ξ, η)
for the surface Z let us define

∂r

∂ξ
=


∂x

∂ξ
∂y

∂ξ
∂z

∂ξ

 ,
∂r

∂η
=


∂x

∂η
∂y

∂η
∂z

∂η

 .

The vector product
∂r

∂ξ
× ∂r

∂η

is normal to the surface Z.

Lemma 13.7 Let Z be a smooth surface in R3, and let (ξ, η) and (σ, τ) be
smooth coordinate systems for the surface Z defined over some subset V of Z.
Then

∂r

∂ξ
× ∂r

∂η
=

∣∣∣∣∣∣∣
∂σ

∂ξ

∂σ

∂η
∂τ

∂ξ

∂τ

∂η

∣∣∣∣∣∣∣
∂r

∂σ
× ∂r

∂τ

at each point of V .

Proof Using the fact that

∂r

∂ξ
=

∂r

∂σ

∂σ

∂ξ
+
∂r

∂τ

∂τ

∂ξ
,

∂r

∂η
=

∂r

∂σ

∂σ

∂η
+
∂r

∂τ

∂τ

∂η
,

we see that

∂r

∂ξ
× ∂r

∂η
=

(
∂r

∂σ

∂σ

∂ξ
+
∂r

∂τ

∂τ

∂ξ

)
×
(
∂r

∂σ

∂σ

∂η
+
∂r

∂τ

∂τ

∂η

)
=

(
∂σ

∂ξ

∂τ

∂η
− ∂τ

∂ξ

∂σ

∂η

)
∂r

∂σ
× ∂r

∂τ

=

∣∣∣∣∣∣∣
∂σ

∂ξ

∂σ

∂η
∂τ

∂ξ

∂τ

∂η

∣∣∣∣∣∣∣
∂r

∂σ
× ∂r

∂τ
,

as required.
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Suppose that the surface Z is orientable. Let us choose an orientation
on Z. Then this orientation determines a smooth normal vector field n on Z.
Indeed suppose that (ξ, η) is a positively oriented smooth coordinate system
for the surface Z. Then the vector product

∂r

∂ξ
× ∂r

∂η

is normal to the surface Z. We define the unit normal vector field n to be
the unit vector field on Z characterized by the property that

∂r

∂ξ
× ∂r

∂η
=

∣∣∣∣∂r

∂ξ
× ∂r

∂η

∣∣∣∣n
on the domain of the coordinate system (ξ, η). It follows from Lemma 13.7
that if (ξ, η) and (σ, τ) are positively oriented coordinate systems for the
surface Z then the directions of the unit normal vector field n determined
by these coordinate systems will be consistent, since∣∣∣∣∣∣∣

∂σ

∂ξ

∂σ

∂η
∂τ

∂ξ

∂τ

∂η

∣∣∣∣∣∣∣ > 0,

at each point of the surface Z that belongs to the domain of both of these
coordinate systems. Thus we conclude that if the surface Z is oriented then
the orientation determines a smooth unit normal vector field n:Z → R3 over
the whole of Z. Conversely if such a smooth normal vector field n can be
defined over the whole of some smooth surface Z then Z is orientable, and
the unit normal vector field n determines an orientation of the surface Z
characterized by the property that a smooth coordinate system (ξ, η) for the
surface Z is positively oriented if and only if

∂r

∂ξ
× ∂r

∂η
= f n,

where f(p) > 0 at each point p of the domain of the coordinate system (ξ, η).
Let Z be an oriented smooth surface in R3, where the set Z is a closed

bounded subset of R3. and let n be the unit normal vector field on Z de-
termined by the orientation. Let B be a continuous vector field on Z. The
surface integral ∫

Z

B.n dS

is evaluated into the following manner:
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(i) divide up the surface Z into regions V1, V2, . . . , Vr such that each of
these regions is in the domain of some positively oriented smooth co-
ordinate system for the surface Z,

(ii) choose a positively oriented coordinate system (ξ, η) on the region Vj
and define∫

Vj

B.n dS =

∫
W

B(x(ξ, η), y(ξ, η), z(ξ, η)).

(
∂r

∂ξ
× ∂r

∂η

)
dξdη,

where

W = {(u, v) ∈ R2 : u = ξ(p) and v = η(p) for some p ∈ Vj}.

(iii) Define ∫
Z

B.n dS =
r∑
p=1

∫
Vj

B.n dS,

where the integral over the region Vj is defined as described above.

One can verify (using the change of variables formula) that the value of
the surface integral is independent of the manner in which the surface Z is
partitioned into the regions V1, V2, . . . , Vr and is independent of the choice of
coordinate system chosen on each of these regions.

Remark One can interpret the surface integral∫
Z

B.n dS

as the integral of the scalar product B.n with respect to surface area on the
surface Z. The reason for this is that if (ξ, η) is a smooth coordinate system
on the surface Z then (

∂r

∂ξ
δξ

)
×
(
∂r

∂η
δη

)
= (δA)n

where δA is the area of the paralellogram whose sides are determined by the
vectors

∂r

∂ξ
δξ and

∂r

∂η
δη.
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Lemma 13.8 Let Z be an oriented smooth surface in R3, and let n be the
unit normal vector field on Z determined by the orientation on Z. Let B be
a continuous vector field defined over some open set D in R3 which contains
the surface Z. Let B1, B2 and B3 be the Cartesian components of the vector
field B and let ω be the 2-form on D defined by

ω = B1 dy ∧ dz +B2 dz ∧ dx+B3 dx ∧ dy.

Then ∫
Z

B.n dS =

∫
Z

ω.

Proof We may suppose (without loss of generality) that there exists some
coordinate system (ξ, η) for the surface Z which is defined over the whole of
Z (since otherwise we could subdivide the surface Z into portions possessing
this property and then prove the result for the surface Z by proving it for
each of these portions). Let W be the subset of R2 defined by

W = {(u, v) ∈ R2 : u = ξ(p) and v = η(p) for some p ∈ Z}.

and let α:W → Z be the parameterization of the surface Z defined by the
coordinate system (ξ, η), so that

(x, y, z) = α(ξ, η)

at each point of the surface Z. Then

α∗ω = B1(α(ξ, η))

(
∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η

)
dξ ∧ dη

+B2(α(ξ, η))

(
∂z

∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η

)
dξ ∧ dη

+B3(α(ξ, η))

(
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

)
dξ ∧ dη

= B(α(ξ, η)).

(
∂r

∂ξ
× ∂r

∂η

)
dξ ∧ dη.

But

∂r

∂ξ
× ∂r

∂η
=


∂y

∂ξ

∂z

∂η
− ∂z

∂ξ

∂y

∂η
∂z

∂ξ

∂x

∂η
− ∂x

∂ξ

∂z

∂η
∂x

∂ξ

∂y

∂η
− ∂y

∂ξ

∂x

∂η

 ,

155



and hence ∫
Z

B.n dS =

∫
W

B(α(ξ, η)).

(
∂r

∂ξ
× ∂r

∂η

)
dξdη

=

∫
W

α∗ω =

∫
Z

ω,

as required.

14 Stokes’ Theorem for Differential Forms

We shall prove a generalization of Stokes’ Theorem which applies to the
integrals of smooth differential forms over submanifolds of Rn. We first define
the concept of a k-dimensional smooth submanifold of Rn, and explain how
to defined the integral of a continuous k-form over an oriented k-dimensional
submanifold of Rn. We shall then state the Generalized Stokes’ Theorem
(Theorem 14.1) and deduce a number of classical theorems of vector calculus
that follow from this theorem. We conclude this section with a discussion of
the proof of the Generalized Stokes’ Theorem.

14.1 Submanifolds of Rn

Definition Let M be a subset of Rn, and let k be an integer between 1
and n. We say that M is a smooth k-dimensional submanifold of Rn without
boundary if and only if the following condition is satisfied:

if p is a point of M then there exists a smooth curvilinear co-
ordinate system (ϕ̃1, ϕ̃2, . . . , ϕ̃n) defined over an open neighbour-
hood U of p in Rn such that

M ∩ U = {x ∈ U : ϕ̃j(x) = 0 for j = k + 1, . . . , n}.

Observe that a smooth 1-dimensional submanifold of Rn is a smooth
curve in Rn, and a smooth 2-dimensional submanifold is a smooth surface
in Rn. Thus, for any integer k between 1 and n, a k-dimensional smooth
submanifold of Rn is the k-dimensional analogue of a smooth surface in Rn.

Definition Let M be a smooth k-dimensional submanifold of Rn without
boundary, and let (ϕ̃1, ϕ̃2, . . . , ϕ̃n) be a smooth curvilinear coordinate sys-
tem defined over an open neighbourhood U of p in Rn. We say that this
coordinate system is adapted to the submanifold S if and only if

M ∩ U = {x ∈ U : ϕ̃j(x) = 0 for j = k + 1, . . . , n}.
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We now define the concept of a submanifold of Rn with boundary.

Definition Let M be a subset of Rn and let ∂M be a subset of M . Let k
be an integer between 1 and n. We say that M is a smooth k-dimensional
submanifold of Rn with boundary ∂M if and only if the following conditions
are satisfied:

(i) the boundary ∂M of M is a smooth (k − 1)-dimensional submanifold
of Rn without boundary,

(ii) if p is a point of M then there exists a smooth curvilinear coordinate
system (ϕ̃1, ϕ̃2, . . . , ϕ̃n) defined over an open neighbourhood U of p
in Rn such that

M ∩ U = {x ∈ U : ϕ̃1(x) ≤ 0 and ϕ̃j(x) = 0 for j = k + 1, . . . , n}

and

∂M ∩ U = {x ∈ U : ϕ̃1(x) = 0 and ϕ̃j(x) = 0 for j = k + 1, . . . , n}

Definition Let M be a smooth submanifold of Rn of dimension k with
boundary ∂M , and let (ϕ̃1, ϕ̃2, . . . , ϕ̃n) be a smooth curvilinear coordinate
system defined over an open neighbourhood U of p in Rn. We say that this
coordinate system is adapted to the submanifold S if and only if

M ∩ U = {x ∈ U : ϕ̃1(x) ≤ 0 and ϕ̃j(x) = 0 for j = k + 1, . . . , n}

and

∂M ∩ U = {x ∈ U : ϕ̃1(x) = 0 and ϕ̃j(x) = 0 for j = k + 1, . . . , n}

Definition Let M be a smooth k-dimensional submanifold in Rn (with or
without boundary), and let V be a subset of M . Let U be an open set in Rn

which contains V and let (ϕ̃1, ϕ̃2, . . . , ϕ̃n), be a smooth curvilinear coordinate
system for Rn which is defined over U which is adapted to the submanifold M .
Let ϕ1, ϕ2, . . . , ϕk be the restrictions of ϕ̃1, ϕ̃2, . . . , ϕ̃k to V . Then we say that
(ϕ1, ϕ2, . . . , ϕk) is a smooth coordinate system for the submanifold M defined
over the set V .

A subset S of Rn is said to be compact if and only if every open cover of
the set S has a finite subcover. A well-known theorem states that a subset S
of Rn is compact if and only if the set S is closed and bounded. If M is a
compact submanifold of Rn then one can find a finite collection of coordinate
systems for the submanifold M such that every point of M belongs to the
domain of at least one of these coordinate systems.

We now discuss the concept of orientation for a smooth submanifold M
in Rn.
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Definition Let M be a smooth submanifold in Rn of dimension k (with
or without boundary), let V be a subset of M and let (ϕ1, . . . , ϕk) and
(ψ1, . . . , ψk) be smooth coordinate systems for the submanifold M which are
defined over V . We say that these two coordinate systems induce the same
orientation on V if and only if∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

. . .
∂ψ1

∂ϕk
∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

. . .
∂ψ2

∂ϕk
...

...
. . .

...
∂ψk
∂ϕ1

∂ψk
∂ϕ2

. . .
∂ψk
∂ϕk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

at all points of V .

Definition Let M be a smooth submanifold in Rn of dimension k (with or
without boundary) and let A be a collection of smooth coordinate systems,
each defined over some suitable subset of M known as the domain of that
coordinate system. The collection A of coordinate systems is said to be an
oriented atlas if and only if the following conditions are satisfied:

(i) every point of M belongs to the domain of at least one of the smooth
coordinate systems in the collection A,

(ii) if (ϕ1, . . . , ϕk) and (ψ1, . . . , ψk) are smooth coordinate systems for the
submanifold M which belong to the collection A and if U and V are
the domains of these coordinate systems, then the coordinate systems
(ϕ1, . . . , ϕk) and (ψ1, . . . , ψk) induce the same orientation on U ∩ V .

The submanifold M is said to be orientable if and only if there exists an
oriented atlas for M . Such an oriented atlas is said to define an orienta-
tion on the submanifold M . If such an orientation has been chosen for the
submanifold M then we say that M is oriented.

Definition Let M be an oriented submanifold of Rn of dimension k (with or
without boundary) and let A be an oriented atlas for M which induces the
chosen orientation on M . Let (ϕ1, . . . , ϕk) be a smooth coordinate system
for the submanifold M which is defined over some subset U of M . The
coordinate system (ϕ1, . . . , ϕk) is said to be positively oriented if and only if
the following condition is satisfied:
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if (ψ1, . . . , ψk) is a smooth coordinate system with domain D
which belongs to the atlas A, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

. . .
∂ψ1

∂ϕk
∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

. . .
∂ψ2

∂ϕk
...

...
. . .

...
∂ψk
∂ϕ1

∂ψk
∂ϕ2

. . .
∂ψk
∂ϕk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

at all points of U ∩D.

Similarly the coordinate system (ϕ1, . . . , ϕk) is said to be negatively oriented
if and only if the following condition is satisfied:

if (ψ1, . . . , ψk) is a smooth coordinate system with domain D
which belongs to the atlas A, then∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂ψ1

∂ϕ1

∂ψ1

∂ϕ2

. . .
∂ψ1

∂ϕk
∂ψ2

∂ϕ1

∂ψ2

∂ϕ2

. . .
∂ψ2

∂ϕk
...

...
. . .

...
∂ψk
∂ϕ1

∂ψk
∂ϕ2

. . .
∂ψk
∂ϕk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
< 0

at all points of U ∩D.

We observe that if (ϕ1, . . . , ϕk) and (θ1, . . . , θk) are positively oriented
coordinate systems for some oriented submanifold M defined over some sub-
set V of M then ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂θ1

∂ϕ1

∂θ1

∂ϕ2

. . .
∂θ1

∂ϕk
∂θ2

∂ϕ1

∂θ2

∂ϕ2

. . .
∂θ2

∂ϕk
...

...
. . .

...
∂θk
∂ϕ1

∂θk
∂ϕ2

. . .
∂θk
∂ϕk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0

at all points of V .
Let M be a smooth orientable submanifold of Rn of dimension k with

boundary ∂M . If we choose an orientation of M then this induces an ori-
entation of the boundary ∂M of M . Suppose that p is a point of ∂M .
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Let (ϕ1, ϕ2, . . . , ϕk) be a smooth coordinate system for the submanifold M ,
defined over some neighbourhood V of p in M which has the following prop-
erties:

(i) the coordinate system (ϕ1, ϕ2, . . . , ϕk) is positively oriented (with re-
spect to the chosen orientation on the submanifold M).

(ii) ϕ1 ≤ 0 on V ,

(iii) ∂M ∩ V = {p ∈ V : ϕ1(p) = 0},

(It follows from the definition of a submanifold M of Rn with boundary ∂M
that there exists such a coordinate system defined around any point of the
boundary ∂M of M). Then the restriction of (ϕ2, . . . , ϕk) to ∂M ∩ V de-
fines a coordinate system for ∂M defined over ∂M ∩ V . The induced ori-
entation on ∂M is characterized by the property that the coordinate sys-
tem (ϕ2, . . . , ϕk) for ∂M is positively oriented for each coordinate system
(ϕ1, ϕ2, . . . , ϕk) for M satisfying the three properties listed above.

We now describe how to integrate a continuous k-form over an oriented
k-dimensional submanifold M of Rn (with or without boundary). The defi-
nition of the integral is completely analogous to the definition of the integral
of a continuous 2-form over a smooth surface.

Let M be an oriented submanifold in Rn and let V be a subset of M .
Suppose that there exists a positively oriented coordinate system (ϕ1, . . . , ϕk)
for the submanifold M defined over V . Let us define the subset W of Rk by

W = {u ∈ Rk : u = (ϕ1(p), . . . , ϕk(p)) for some p ∈ V }.

We let α:W → V be the smooth map which expresses the standard Cartesian
coordinates (x1, x2, . . . , xn) at a point of V in terms of ϕ1, . . . , ϕk. Thus

xi = αi(ϕ1, . . . , ϕk) (i = 1, 2, . . . , n),

where αi:W → R is the ith component of the map α. One can readily verify
that the map α:W → V has the following properties:

(i) the subset W of Rk is mapped homeomorphically onto V by the map α
(i.e., α:W → V is a bijection and both α:W → V and α−1:V → W
are continuous).

(ii) the Jacobian matrix of the map α:W → Rn has rank k at each point
of W .
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We refer to a map α:W → V which arises from some coordinate system
(ϕ1, . . . , ϕk) for the submanifold M in the manner described above as a local
parameterization of the submanifold.

Now let us suppose that the domain W of the local parameterization
α:W → V is Jordan-measurable. Then we define∫

V

ω =

∫
W

α∗ω.

for each continuous k-form defined over some open set which contains V .
We now show that the value of this integral is well-defined independently of
the choice of the positively oriented smooth coordinate system (ϕ1, . . . , ϕk)
chosen on V .

Suppose that (ϕ1, . . . , ϕk) and (ψ1, . . . , ψk) are smooth positively oriented
coordinate systems for the oriented submanifold M defined over the subset V
of M . We define

W = {u ∈ Rk : u = (ϕ1(p), . . . , ϕk(p)) for some p ∈ V },
W̃ = {u ∈ Rk : u = (ψ1(p), . . . , ψk(p)) for some p ∈ V }.

We let α:W → V and β: W̃ → V be the local parameterizations of the
submanifold defined such that

xi = αi(ϕ1, . . . , ϕk) = βi(ψ1, . . . , ψk) (i = 1, 2, . . . , n),

where αi and βi denote the ith components of the maps α and β respectively.
There exists a diffeomorphism ρ:W → W̃ characterized by the property that

(ψ1(p), . . . , ψk(p)) = ρ(ϕ1(p, . . . , ϕk(p)

for all p ∈ V . This diffeomorphism ρ:W → W̃ is orientation preserving (since
the positively oriented coordinate systems (ϕ1, . . . , ϕk) and (ψ1, . . . , ψk) de-
termine the same orientation on V ). It follows from the definitions of α, β
and ρ that α = β ◦ ρ. Therefore∫

W

α∗ω =

∫
W

ρ∗(β∗ω) =

∫
W̃

β∗ω

by Theorem 13.2. This shows that the value of the integral
∫
V
ω is well-

defined independently of the choice of the positively oriented smooth coor-
dinate system (ϕ1, . . . , ϕk) chosen on V , as required.

The discussion above explains how to calculate the integral of a k-form
over a portion V of some oriented smooth submanifold M in Rn, provided
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that the region V is contained within the domain of some smooth coordinate
system for the submanifold M and provided that V corresponds by means of
this coordinate system to a closed bounded Jordan-measurable subset of Rk.

If M is a compact oriented smooth submanifold of Rk (with or without
boundary) then it is possible to partition M into regions V1, V2, . . . , Vk, where
each region Vi is a closed bounded set which belongs to the domain of some
smooth coordinate system for the submanifold M and which corresponds by
means of that coordinate system to a closed bounded Jordan-measurable set
in Rk. Let ω be a continuous k-form defined on M . The integral of the
k-form ω over each of the regions V1, V2, . . . , Vr can be defined as described
above. We define ∫

V

ω =
r∑
j=1

∫
Vj

ω.

It is not difficult to show that the value of this integral is independent of the
fashion in which we divide up the region V into the subregions V1, V2, . . . , Vr.

14.2 The Generalized Stokes’ Theorem

We now state a generalization of Stokes’ Theorem which applies to integrals
of smooth differential forms over smooth submanifolds of Rn.

We recall that if M as a smooth submanifold of Rn with boundary ∂M
then any orientation of M induces a corresponding orientation of the bound-
ary ∂M of M . This orientation on ∂M is known as the induced orientation
on ∂M .

Theorem 14.1 (The Generalized Stokes’ Theorem) Let M be a compact
smooth oriented k-dimensional submanifold of Rn with boundary ∂M . Then∫

M

dω =

∫
∂M

ω

for every smooth (k − 1)-form ω on M , where the integral over ∂M is taken
with respect to the induced orientation on ∂M .

We shall present a proof of this theorem below. First however we show
that a number of well-known theorems of vector calculus can be deduced as
corollaries of this result.

The first of these Corollaries is Green’s Theorem in the Plane. Let D
be a region on the plane R2 which is bounded by smooth closed curves
γ1, γ2, . . . , γr. Then there is an induced orientation (i.e., direction of travel)
on these boundary curves characterized by the property that the region D
lies to ones left as one traverses each of these boundary curves.
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Theorem 14.2 (Green’s Theorem in the Plane) Let D be a closed bounded
region on the plane R2 which is bounded by smooth curves γ1, γ2, . . . , γr. Let
P and Q be smooth functions on D. Then

r∑
j=1

∫
γj

(P dx+Qdy) =

∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy,

where the orientation of the closed curves γ1, γ2, . . . , γr is the induced orien-
tation described above.

Proof This result follows from Theorem 14.1 in the particular case when
M = D, ∂M = γ1 ∪ · · · ∪ γr, and ω = P dx+Qdy, so that

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy.

The next corollary is Gauss’ Theorem (also known as the Divergence
Theorem).

Theorem 14.3 (Gauss’ Theorem) Let V be a closed bounded region in R3

which is bounded by some smooth surface Σ. Let n be the unit normal vector
field on Σ directed outwards (i.e., directed away from the region V ). Let B
be a smooth vector field on V . Then∫

V

div B dx dy dz =

∫
Σ

B.n dS.

Proof Let B1, B2 and B3 be the Cartesian components of the vector field B.
Let ω be the smooth vector field on V defined by

ω = B1 dy ∧ dz +B2 dz ∧ dx+B3 dx ∧ dy

(where (x, y, z) are the standard Cartesian coordinates on R3. Then∫
Σ

B.n dS =

∫
Σ

ω.

by Lemma 13.8, where the orientation on Σ is the orientation induced on the
boundary Σ of the region V by the standard orientation of V . Also

dω = div B dx ∧ dy ∧ dz,

hence ∫
V

dω =

∫
V

div B dx dy dz.

We conclude from Theorem 14.1 that∫
V

div B dx dy dz =

∫
Σ

B.n dS.
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We now show how the classical form of Stokes’ Theorem can be deduced
from Theorem 14.1. Let Z be an oriented smooth surface in R3 bounded
by smooth closed curves γ1, γ2, . . . , γr. The orientation on the surface Z
determines a unit normal vector field n on Z (see Section 13). The orientation
on Z induces an orientation on the boundary ∂Z of Z. Moreover∫

∂Z

η =
r∑
j=1

∫
γj

η,

for all continuous 1-forms η on the boundary of Z, where each of the curves
γ1, γ2 . . . , γr is traversed in the direction determined by the induced orienta-
tion on the boundary of Z. This direction may be described as follows: if p
is a point which lies on the curve γj, if T is a vector tangential to the curve γj
at p in the direction in which this curve is traversed, if U is a vector directed
into the surface Z at p, and if n is the unit normal vector to the surface Z
determined by the orientation on Z, then (T,U,n) is a positively oriented
basis of R3. Let B be a vector field on Z whose Cartesian components are
(B1, B2, B3). We denote the line integral∫

γj

B1 dx+B2 dy +B3 dz

by

∮
γj

B.dr.

Theorem 14.4 (Stokes’ Theorem) Let Z be a smooth oriented surface in R3

bounded by smooth curves γ1, γ2, . . . , γr, and let n be the normal vector field
on Z determined by the orientation of Z. Then∫

Z

(curl B).n dS =
r∑
j=1

∮
γj

B.dr

for all smooth vector fields B on the surface Z, where the boundary curves
γ1, γ2 . . . , γr are traversed in the direction determined by the orientation in-
duced on the boundary of Z by the orientation of Z.

Proof Consider the smooth 1-form η on Z defined by

η = B1 dx+B2 dy +B3 dz,

where (B1, B2, B3) are the Cartesian components of the vector field B. Then

dη =

(
∂B2

∂z
− ∂B3

∂y

)
dy ∧ dz +

(
∂B3

∂x
− ∂B1

∂z

)
dz ∧ dx

+

(
∂B1

∂y
− ∂B2

∂x

)
dx ∧ dy.
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It follows from Lemma 13.8 that∫
Z

dη =

∫
Z

(curl B).n dS,

where

curl B =

(
∂B2

∂z
− ∂B3

∂y
,
∂B3

∂x
− ∂B1

∂z
,
∂B1

∂y
− ∂B2

∂x

)
.

Thus ∫
Z

(curl B).n dS =

∫
Z

dη =

∫
∂Z

η

=
r∑
j=1

∮
γj

B.dr,

by Theorem 14.1.

14.3 The Proof of the Generalized Stokes’ Theorem

The material in the remainder of this section of the course is NON-
EXAMINABLE. We give a proof of the Generalized Stokes’ The-
orem below, after first describing a number of concepts and results
that we use in the proof of this theorem.

Definition Let f :D → R be a continuous function defined over some sub-
set D of Rn. The support of the function f is defined to be the closure (in
Rn) of the set

{x ∈ D : f(x) 6= 0}.

We see from this definition that the support supp f of the function f is the
smallest closed set with the property that the function f vanishes throughout
the complement of this set. We can generalize this definition to differential
forms: if ω is a continuous differential form defined over some subset D of Rn

then the support suppω of the differential form ω is the smallest closed set
in Rn with the property that ω vanishes throughout the complement of this
set.

Definition Let ω be a continuous differential form on Rn. Then ω is said
to have bounded support if and only if there exists some R ≥ 0 with the
property that ω vanishes throughout the set

{x ∈ Rn : |x| > R}.
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We see from these definitions that a differential form on Rn has bounded
support if and only if the support of the differential form is a bounded set in
Rn. If η is a continuous n-form on Rn then the integral

∫
Rn η is well-defined,

since η vanishes outside some bounded set. Similarly the integral
∫
H
η is

well-defined, where H is any half-space in Rn.

Lemma 14.5 Let H be the half-space in Rn defined by

H = {(x1, x2, . . . , xn) ∈ Rn : x1 ≤ 0},

and let ∂H be the boundary of H, given by

∂H = {(x1, x2, . . . , xn) ∈ Rn : x1 = 0},

Let ∂H be oriented so that (x2, x3, . . . , xn) is a positively oriented coordinate
system on ∂H. Let ω be a continuously differentiable (n − 1)-form with
bounded support on H. Then ∫

H

dω =

∫
∂H

ω.

Proof Let σ1, σ2, . . . , σn be the n− 1-forms on H defined by

σ1 = dx2 ∧ dx3 ∧ · · · ∧ dxn
σ2 = −dx1 ∧ dx3 ∧ · · · ∧ dxn

...

σn = (−1)n−1dx1 ∧ dx3 ∧ · · · ∧ dxn.

(Thus σi = (−1)i−1dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn for i = 1, 2, . . . , n.)
Note that dxj ∧ σi = 0 if j 6= i and that

dxi ∧ σi = dx1 ∧ dx2 ∧ · · · ∧ dxn

for i = 1, 2, . . . , n. If ω is a continuously differentiable (n − 1)-form on H
then we can write

ω =
n∑
i=1

fiσi,

where f1, f2, . . . , fn are continuously differentiable functions on H. But then

dω =
n∑
i=1

n∑
j=1

∂fi
dxj

dxj ∧ σi =
n∑
i=1

∂fi
dxi

dxi ∧ dx2 ∧ · · · ∧ dxn.
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Therefore ∫
H

dω =

∫
H

(
n∑
i=1

∂fi
dxi

)
dx1 dx2 . . . , dxn.

However there exists some R > 0 with the property that f(x) = 0 whenever
x ∈ H satisfies |x| > R. It follows from this that∫

H

∂fi
dxi

dx1 dx2 . . . , dxn = 0

if i 6= 1 and that∫
H

∂f1

dx1

dx1 dx2 . . . , dxn =

∫ ∞
−∞
· · ·
∫ ∞
−∞

(∫ 0

−∞

∂fi
dx1

dx1

)
dx2 dx3 . . . , dxn

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

f1(0, x2, . . . , xn) dx2 dx3 . . . , dxn

=

∫
∂H

f1σ1.

Moreover ∫
∂H

ω =

∫
∂H

f1σ1,

since i∗σi = 0 on ∂H whenever i 6= 1, where i: ∂H ↪→ H is the inclusion map.
If we combine these results we see that∫

H

dω =

∫
∂H

ω,

as required.

In the proof of Theorem 14.1 we shall make use of the following result,
which we state without proof.

Theorem 14.6 Let M be a compact smooth submanifold of Rn (with or with-
out boundary). Then there exist smooth real-valued functions f1, f2, . . . , fr
defined over Rn such that

f1 + f2 + · · ·+ fr = 1

and such that the support of each function fj is contained within the domain
of some smooth curvilinear coordinate system adapted to the submanifold M .
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We can now prove the Generalized Stokes’ Theorem for differential forms.

Proof of Theorem 14.1. In order to prove Stokes’ Theorem we consider
first the case when the support of the (k − 1)-form ω is contained within
the domain of some smooth curvilinear coordinate system for Rn which is
adapted to the submanifold M . Thus let us suppose that there exists some
open set U in Rn and a smooth curvilinear coordinate system

(ψ1, ψ2, . . . ψn)

on U such that the following conditions are satisfied:

(i) M ∩ U = {x ∈ U : ψ1(x) ≤ 0 and ψi(x) = 0 for i = k + 1, . . . , n} and
∂M ∩ U = {x ∈ U : ψ1(x) = 0 and ψi(x) = 0 for i = k + 1, . . . , n}.

(ii) (ψ1, ψ2, . . . , ψk) defines a positively-oriented coordinate system on M ∩
U ,

(iii) the support suppω of the (k − 1)-form ω is contained in U .

It follows from condition (ii), together with the definition of the induced
orientation on ∂M , that the restriction of (ψ2, . . . , ψk) to ∂M ∩ U defines a
positively oriented coordinate system on ∂M ∩ U .

Let α:W → M be the local parameterization of the submanifold M
determined by the coordinate system (ψ1, ψ2, . . . , ψk), where

W =
{
u ∈ Rk : u = (ψ1(p), ψ2(p), . . . , ψk(p)) for some p ∈M ∩ U

}
.

The local parameterization α expresses the standard Cartesian coordinates
(x1, x2, . . . , xn) in terms of (ψ1, ψ2, . . . , ψk). Thus

xi = αi(ψ1, ψ2, . . . , ψk) (i = 1, 2, . . . , n)

on M ∩ U (where αi denotes the ith component of the map α). Let H be
the half-space defined by H = {u ∈ Rk : u1 ≤ 0}. Let (u1, u2, . . . , uk) denote
the standard Cartesian coordinate system on H. Let σ be the (k − 1)-form
on H defined such that σ = α∗ω on W and σ = 0 on H \W . Then σ is a
smooth (k − 1)-form on H. (This follows from the fact that ω is a smooth
(k − 1)-form whose support is contained in U .) Therefore∫

H

dσ =

∫
∂H

σ

by Lemma 14.5, where ∂H is the k−1 dimensional subspace of Rk defined by
∂H = {u ∈ Rk : u1 = 0}, and where ∂H is oriented so that (u2, u3, . . . , uk)
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is a positively oriented coordinate system on ∂H. But then∫
M

dω =

∫
W

α∗(dω) =

∫
W

d(α∗ω) =

∫
W

dσ

=

∫
H

dσ =

∫
∂H

σ =

∫
∂H∩W

α∗ω

=

∫
∂M

ω,

where we have used the definition of
∫
M
dω and

∫
∂M

ω together with the fact
that α∗(dω) = d(α∗ω) (see Lemma 9.7). This proves the theorem in the
special case when the support of the (k − 1)-form ω is contained within the
domain of some coordinate system on Rn which is adapted to the submani-
fold M .

We now prove the result in the general case. It follows from Theorem 14.6
that there exist smooth functions f1, f2, . . . , fr defined over Rn such that

f1 + f2 + · · ·+ fr = 1

and such that the support of each function fj is contained within the domain
of some smooth curvilinear coordinate system adapted to the submanifold M .
It then follows from the special case proved above that∫

M

d(fjω) =

∫
∂M

fjω (j = 1, 2, . . . , r).

Therefore ∫
M

dω =
r∑
j=1

∫
M

d(fjω) =
r∑
j=1

∫
∂M

fjω =

∫
∂M

ω,

as required.
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