
Course 223, 1987–88, Assignment 1 (SFMichael-

mas Term)

Assignment due 16th November 1987

One of the purposes of this assignment is to give you practice in construct-
ing simple ‘epsilon-delta’ arguments and to encourage you to come to grips
with the rigourous definition of continuity, so that you will (hopefully) im-
prove your understanding of this concept. For your convenience, the formal
definition of continuity is reproduced here.

A real-valued function f :D → R defined on a subset D of Rn is said to
be continuous at a point a of D if and only if, for all ε > 0 there exists some
δ > 0 (which may depend on a) such that

|f(x)− f(a)| < ε

whenever x belongs to D and

|x− a| < δ.

Observe that, as a consequence of this definition, a real-valued function
f defined on a subset D of Rn fails to be continuous at a point a of D if
and only if one can find some strictly positive real number ε0 > 0 with the
property that, for every δ > 0 (no matter how small), there exists some point
x of D (which will depend on δ) with the properties that |x − a| < δ and
|f(x) − f(a)| ≥ ε0. If you have difficulty in seeing this, study carefully the
definition of continuity given above and convince yourself that the statement
that I have just made is correct.

We come now to the questions set for this assignment.

1. (a) Let D be a subset of Rn. Let f , g and h be real-valued functions
defined on D which have the property that

f(x) ≤ g(x) ≤ h(x)

for all x ∈ D. Let a be a point of D, let c be a real number, and
let us suppose that

f(a) = g(a) = h(a) = c

and that both f and h are continuous at a. The objective of this
question is to show that g is also continuous at a.

Let ε > 0 be given.
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(i) Using the fact that the function h is continuous at a, show
that there exists some δ1 > 0 such that g(x) < c + ε for all
points x of D that satisfy |x− a| < δ1.

(ii) Show also that there exists some δ2 > 0 such that g(x) > c−ε
for all points x of D that satisfy |x− a| < δ2.

(ii) Using these results, explain why the function g is continuous
at a.

2. (a) Let f :R→ R be the real valued function on R defined by

f(x) =

{
3x cos

π

x
if x 6= 0;

0 if x = 0.

Let ε > 0 be given. Find a strictly positive real number δ (depend-
ing on ε) such that |f(x)| < ε whenever |x| < δ. Is the function f
continuous at x = 0?

(b) Let g:R→ R be the real valued function on R defined by

g(x) =

{
4 cos

π

x
if x 6= 0;

0 if x = 0.

Show that if δ > 0 is a strictly positive real number, no matter
how small then there will always exist some real number x with the
properties that 0 < |x| < δ and g(x) ≥ 1. Thus decide whether or
not the function g is continuous at x = 0.

3. Consider the situation described by the following diagram:—

O A

B

C

D

E
θ
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Here the circle passing through A, B and E is a circle of unit radius
with centre O. The lines BC and AD are perpendicular to the line
OA. The angle between OA and OB measured in radians is θ, where
0 < θ < π/2.

(a) Write down the area of the triangle OBC, the area of the triangle
ODA and the area of the sector OAB (where the sector OAB is
defined to be the region bounded by the line segments OA and
OB and the circular arc AB of length θ).

(b) Show that if 0 < θ < π/2 then

sin θ cos θ < θ <
sin θ

cos θ
..

Deduce that

cos θ <
sin θ

θ
<

1

cos θ

when 0 < θ < π/2. Explain why these inequalities also hold when
−π/2 < θ < 0.

(c) Let h be the real-valued function on R defined by

h(θ) =

{
sin θ

θ
if θ 6= 0;

1 if θ = 0.

Using the inequalities proved in part (b), or otherwise, show that
the function h is continuous at θ = 0.
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Course 223, 1987–88, Assignment 2 (SFMichael-

mas Term)

Assignment due 10th December 1987

The first question of this assignment concerns sequences and continuous
functions, as dealt with in the first two sections of the course. The second
and third questions relate to the Riemann integral. You should try to set
out your work so that the logical structure of your proofs are correct (each
line following on from the next). In particular, do not mix up your ‘for all’
and ‘there exists’ e.t.c., particularly in question 1.

1. Let (xi : i ∈ N) and (yi : i ∈ N) be sequences in Rn. Let c be a point
of Rn. Suppose that

lim
i→+∞

xi = c,

lim
i→+∞

|xi − yi| = 0.

(a) Using the formal definition of limits, show that, given any δ > 0,
there exists some positive integer N such that the inequalities

|xi − c| <
δ

2
,

|xi − yi| <
δ

2
,

both hold for all integers i satisfying i ≥ N . Hence prove that

lim
i→+∞

yi = c.

(b) Let f :Rn → R be a continuous function on Rn. Using (a), show
that

lim
i→+∞

|f(xi)− f(yi)| = 0.

Explain why, given any ε > 0, there exists some positive integer
N ′ such that

|f(xi)− f(yi)| < ε

for all i ≥ N ′.

(c) Explain why these results are relevent to the proof of the theorem
that states that continuous functions are uniformly continuous on
closed bounded subsets of Rn).
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2. The purpose of this question is to show from first principles that the
function f :R → R defined by f(x) = x2 is Riemann-integrable on the
interval [0, a] (where a is any positive real number) and to evaluate the
Riemann integral of f on this interval.

(a) Prove by induction on n that

n∑
i=1

i =
1

2
n(n+ 1),

n∑
i=1

i2 =
1

6
n(n+ 1)(2n+ 1).

(b) Let n be a positive integer and let Pn (= {t0, t1, . . . , tn}) be the
partition of [0, a] defined by

ti =
ia

n
(i = 0, 1, . . . , n)

(i.e., Pn represents a partition of [0, a] into n subintervals of length
a/n. Show that

L(Pn, f) =
a3

3

(
1− 3

2n
+

1

2n2

)
and calculate U(Pn, f) for all positive integers n, where f(x) = x2

and a > 0. [The quantities L(Pn, f) and U(Pn, f) are defined as
in lectures.]

(c) Show that

lim
n→+∞

L(Pn, f) =
a3

3
,

lim
n→+∞

U(Pn, f) =
a3

3
.

Hence show that f is Riemann-integrable on [a, b] and that∫ a

0

f(x) dx =
a3

3
.

3. Let g: [0, 1]→ R be the function on [0, 1] defined by

g(x) =

{
1 if x is rational;
0 if x is irrational.

Let P be a partition of [0, 1]. Show that U(P, g) = 1. Calculate L(P, g).
Is g Riemann-integrable on [a, b]?
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Course 223, 1987–88, Assignment 3 (SF Hilary

Term)

Assignment due 25th January 1988

1. The purpose of these questions is to work through the proof of Rolle’s
Theorem and the Mean Value Theorem. We now state these theorems.

Rolle’s Theorem. Let a and b be real numbers satisfying
a < b and let f : [a, b] → R be a continuous function on the
closed interval [a, b] that is differentiable on (a, b). Suppose
that f(a) = f(b). Then there exists some ξ ∈ (a, b) such that
f ′(ξ) = 0.

The Mean Value Theorem. Let a and b be real numbers
satisfying a < b and let f : [a, b]→ R be a continuous function
on the closed interval [a, b] that is differentiable on (a, b).
Then there exists some ξ ∈ (a, b) such that

f(b)− f(a) = f ′(ξ)(b− a).

(a) Let f : [a, b] → R be a continuous function defined on a closed
bounded interval [a, b]. It follows from results proved in this course
(and also in course 121) that there exist u, v ∈ [a, b] such that

f(u) ≤ f(t) ≤ f(v)

for all t ∈ [a, b]. Write down a proof of this result (referring to
your lecture notes for this course or for Course 121, if necessary).

(b) Let f : [a, b] be a continuous function on a closed bounded interval
[a, b] and let v be a real number satisfying a < v < b which has
the property that f(t) ≤ f(v) for all t ∈ [a, b]. Suppose that f is
differentiable at v. Prove that

lim
h→0+

f(v + h)− f(v)

h
≤ 0

and that

lim
h→0−

f(v + h)− f(v)

h
≥ 0

Hence show that f ′(v) = 0. Similarly, show that if u is a real
number satisfying a < u < b which has the property that f(t) ≥
f(u) for all t ∈ [a, b] and if f is differentiable at u then f ′(u) = 0.
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(c) Let a and b be real numbers satisfying a < b and let f : [a, b] →
R be a continuous function on the closed interval [a, b] that is
differentiable on (a, b). Suppose that f(a) = f(b). Let u, v ∈ [a, b]
be real numbers with the property that

f(u) ≤ f(t) ≤ f(v).

(Such real numbers exist by (a).) By considering separately the
cases when f(v) > f(a), when f(u) < f(a) and when f(u) =
f(v) = f(a) = f(b), prove Rolle’s Theorem (i.e., show that there
exists some real number ξ such that a < ξ < b and f ′(ξ) = 0.

(d) By applying Rolle’s Theorem to the function g: [a, b]→ R defined
by

g(t) =
(b− t)f(a)− (t− a)f(b)

b− a
,

show that if f : [a, b] → R is a continuous function on the closed
interval [a, b] that is differentiable on (a, b), then there exists some
ξ satisfying a < ξ < b such that f(b) − f(a) = (b − a)f ′(ξ) (i.e.,
prove the Mean Value Theorem).

2. The purpose of this question is to prove Taylor’s Theorem (with remain-
der). Taylor’s Theorem states that if f is an (n+1)-times differentiable
function defined on an open interval containing the real numbers a and
a+ h then there exists some θ satisfying 0 < θ < 1 such that

f(a+ h) =
n∑

j=0

hj

j!
f (j)(a) +

hn+1

(n+ 1)!
f (n+1)(a+ θh).

Thus let f :D → R be an (n + 1)-times differentiable function defined
on an open interval D in R and let x and x+ h be points of D, where
h 6= 0. (Note that D contains all real numbers between x and x + h,
since D is an interval.) Consider the function g:D → R defined by

g(t) = f(t)−
n∑

j=0

(t− a)j

j!
f (j)(a)− M(t− a)n+1

(n+ 1)!
,

where M is the constant defined by

M =
(n+ 1)!

hn+1

(
f(a+ h)−

n∑
j=0

hj

j!
f (j)(a)

)
.
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Show that g(a) = g(a+h) = 0 and that gj(a) = 0 for all j satisfying j ≤
n. Use Rolle’s Theorem, applied to the function g and its derivatives,
to show that there exists some θ satisfying 0 < θ < 1 with the property
that g(n+1)(a+ θh) = 0. Hence show that

f(a+ h) =
n∑

j=0

hj

j!
f (j)(a) +

hn+1

(n+ 1)!
f (n+1)(a+ θh)

for some θ satisfying 0 < θ < 1. This result is known as Taylor’s
Theorem.

3. Using the fact that

d

dx
(sinx) = cos x,

d

dx
(cosx) = − sinx,

and using Taylor’s Theorem (with remainder) in the form proved in
Question 2, prove that

sinx = lim
m→+∞

m∑
j=0

(−1)j
x2j+1

(2j + 1)!
,

cosx = lim
m→+∞

m∑
j=0

(−1)j
x2j

(2j)!
.

(You must consider the behaviour of the remainder term occuring in
the statement of Taylor’s Theorem as m→ +∞.)

4. Let f be an (n + 1)-times differentiable function on an open interval
containing a and a + h. Suppose also that f (n+1) is continuous. The
purpose of this question is to show that

f(a+ h) =
n∑

j=0

hj

j!
f (j)(a) + rn(h)

where

rn(h) =
h(n+1)

n!

∫ 1

0

(1− t)nf (n+1)(a+ th) dt.

(a) Using the fact that

rn(h) =
1

n!

∫ 1

0

(1− t)n d
n+1

dtn+1
(f(a+ th)) dt

show that

rn−1(h) =
hn

n!
f (n)(a) + rn(h).
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(b) Show by induction on n that if f is (n+ 1) times differentiable on
an open interval containing a and a+h and if f (n+1) is continuous
then

f(a+ h) =
n∑

j=0

hj

j!
f (j)(a) + rn(h),

where rn(h) is defined as above.
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Course 223, 1987–88, Assignment 4 (SF Hilary

Term)

Assignment due 8th February 1988

1. Throughout this question, let f :R→ R and p:R→ R be the functions
defined by f(x) = 2x3 + 5x2 and p(x) = 6x2 + 10x. Also e(a, h) is
defined by e(a, h) = f(a+ h)− f(a)− p(a)h.

(a) Evaluate e(a, h) as a function of a and h. Show that

|e(a, h)| < (6|a|+ 5 + 2|h|)|h|2.

Hence prove that

lim
h→0

e(a, h)

|h|
= 0.

(b) Using standard properties of limits, or otherwise, prove that

lim
h→0

f(a+ h)− f(a)

h
= p(a).

2. Let f :R2 → R be defined by f(x, y) = 3x2 − 7xy + 5y2. Prove that

lim
(x,y)→(0,0)

f(x, y)√
x2 + y2

= 0.

3. Let g:R→ R be the function defined by

g(x) =

 x2 cos

(
1

x

)
if x 6= 0;

0 if x = 0.

Show that the function g is differentiable at 0 (using an epsilon-delta
argument or otherwise). Evaluate the derivative g′(x) of g at all x ∈ R.
Show that the derivative g′ of g is not continuous at 0. (You may
assume without proof that the function s:R→ R defined by

s(x) =

 sin

(
1

x

)
if x 6= 0

0 if x = 0

is not continuous at 0.)
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Course 223, 1987–88, Assignment 5 (SF Hilary

Term)

Assignment due 22nd February 1988

1. (a) Let f :R3 → R3 be the function defined by

f(u, v, w) = (eu sin v cosw, eu sin v sinw, eu cos v).

Calculate the first order partial derivatives of the components of
f , and explain why they are continuous on R3. (You may assume
without proof that standard functions such as sin, cos, exp etc.
are continuous and have derivatives of all orders.) Explain why
the function f is differentiable at every point of R3 (by appealing
to an appropriate theorem proved in lectures), and write down the
matrix representing the derivative of f at any point in R3.

(b) Let g:R3 → R be the function defined by g(x, y, z) = x2 + y2 + z2.
Calculate the matrix representing the derivative of g at each point
of R3. Let h:R3 → R be defined to be the composition g ◦ f (i.e.,
f followed by g), where f is the function defined in (a). Give
an expression for h and evaluate the derivative of h at each point
of R3. Verify the chain rule, which in this instance states that
h′(a) = g′(f(a))f ′(a) for all points a of R3.

2. Consider the function f :R2 → R defined by

f(x, y) = minimum(|x|, |y|).

Do the partial derivatives
∂f

∂x
and

∂f

∂y
exist at (0, 0)? Is f differentiable

at (0, 0)?
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Course 223, 1987–88, Assignment 6 (SF Hilary

Term)

Assignment due 7th March 1988

1. Let (x, y, z) denote the standard coordinate system on R3. Let ω1, ω2,
ω3 and ω4 denote the differential forms on R3 defined by

ω1 = x dy + y dz + z dx,

ω2 = 4y2z dx+ 9x3 dy − 3xy2 dz,

ω3 = 3z dx ∧ dy + 4x dy ∧ dz + 5y dz ∧ dx,
ω4 = 2x dy ∧ dz + 4z2 dz ∧ dx+ 7x dx ∧ dy.

Calculate the the following quantities:

(i) ω1 ∧ ω2, (ii) ω1 ∧ ω3, (iii) ω1 ∧ ω4, (iv) ω2 ∧ ω3,
(v) ω2 ∧ ω4, (vi) dω1, (vii) dω2, (viii) dω3,
(ix) dω4, (x) d(ω1 ∧ ω2), (xi) dω1 ∧ ω2, (xii) ω1 ∧ dω2.

Check that
d(ω1 ∧ ω2) = dω1 ∧ ω2 − ω1 ∧ dω2.

2. Let (x, y) denote the standard coordinate system on R2. Let ω be the
1-form on R2 defined by

ω = cosx sin y dx+ sinx cos y dy.

Show that dω = 0. Can you find a differentiable real-valued function f
on R2 with the property that df = ω?
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Course 223, 1987–88, Assignment 7 (SF Trin-

ity Term)

Assignment due 18th April 1988

1. Let D1, D2 and D3 be open sets in Rn, Rm and Rp respectively, and let
ϕ:D1 → D2 and ψ:D2 → D3 be smooth maps. Prove that ϕ∗(ψ∗ω) =
(ψ ◦ ϕ)∗ω for all differential forms ω on D3.

2. Let (x, y, z, t) denote the standard Cartesian coordinates on R4 and let
ω be the 1-form on R4 defined by

ω = x dx+ y dy + z dz − t dt.

Show that γ∗ω = 0, where γ:R→ R4 is defined by

γ(u) = (3u cosu, 3u sinu, 4u, 5u).

3. Let (u, v) denote the standard Cartesian coordinates on R2 and let
(x, y, z) denote the standard Cartesian coordinates on R3. Let ϕ:R2 →
R3 be the smooth map defined by

ϕ(u, v) =

(
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
.

Show that
ϕ∗(x dx+ y dy + z dz) = 0

and calculate

ϕ ∗ (x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy).

4. Use the Poincaré Lemma to show that if P and Q are smooth functions
defined over the whole of R2 and if

∂P (x, y)

∂y
=
∂Q(x, y)

∂x

then there exists a smooth function f on R2 with the property that

P (x, y) =
∂f(x, y)

∂x
, Q(x, y) =

∂f(x, y)

∂y
.
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5. Let D be an open set in R3 which is star-shaped with respect to some
point of D. Let V be a smooth vector field on D. Use the Poincaré
Lemma to prove the following results:

(a) (a) if curlV = 0 then there exists a smooth real-valued function
f on D such that V = grad f ,

(b) (b) if divV = 0 then there exists a smooth vector field A on D
such that V = curlA.
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Course 223, 1987–88, Assignment 8 (SF Trin-

ity Term)

Assignment due 2nd May 1988

1. Let f1, f2, f3, . . . be a sequence of continuous real-valued functions de-
fined on an n-rectangle C in Rn. Suppose that fj → f uniformly on C
as j → +∞, where f is a continuous real-valued function defined on C.
Prove that

lim
j→+∞

∫
C

fj(x) dx1 dx2 . . . dxn =

∫
C

f(x) dx1 dx2 . . . dxn.

[Hint: A corresponding result was proved in the Michaelmas Term for
functions defined over some closed bounded interval in R.]

2. Let f :C → R be a continuous real-valued function defined over a rect-
angle C in R2, where

C = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}

for some real numbers a, b, c and d satisfying a < b and c < d. Suppose
that f(u, v) > 0 at some point (u, v) in the interior of C, where a <
u < b and c < v < d.

(a) Using the formal definition of continuity, prove that there exist
real numbers l, p, q, r and s, where l > 0, a < p < u < q < b
and c < r < v < s < d, such that f(x, y) ≥ l for all points (x, y)
which satisfy p ≤ x ≤ q and r ≤ y ≤ s.

(b) Let χ:C → R be defined by

χ(x, y) =

{
l if p ≤ x ≤ q and r ≤ y ≤ s,
0 otherwise,

Show that ∫
C

χ(x, y) dx dy = l(s− r)(q − p).

(c) Let g and h be Riemann-integrable functions on the rectangle C
in R2. Suppose that g(x, y) ≤ h(x, y) for all points (x, y) of C.
Explain briefly why∫

C

g(x, y) dx dy ≤
∫
C

h(x, y) dx dy.
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(d) Using the answers to parts (a), (b) and (c), or otherwise, prove
that if f :C → R is a continuous real-valued function defined on
the rectangle C, where

C = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d},

if f(x, y) ≥ 0 for all points (x, y) of C, if f(u, v) > 0 at some
point (u, v) of the interior of C, where a < u < b and c < v < d
then ∫

C

f(x, y) dx dy > 0.

3. Let (r, θ, ϕ) be spherical polar coordinates defined over some appropri-
ately chosen open set U in R3. Thus

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ

at each point (x, y, z) of U . Let ω and η be the differential forms on U
defined by

ω = r dr, η = r3 sin θdθ ∧ dϕ.

Calculate dω and dη and show that 3ω ∧ η = r2dη. Show that ω =
d(1

2
r2). [Use spherical polar coordinates throughout this calculation.]

c©David R. Wilkins 1987–88
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