
Course 223, 1986–87, Annual Examination (SF

Trinity Term)

1. (a) State and prove Rolle’s theorem. (You may assume the theorem
that states that if a and b are real numbers with a < b and if
f : [a, b] → R is a continuous real-valued function defined on the
closed bounded interval [a, b] then there exist t1, t2 ∈ [a, b] such
that f(t1) ≤ f(x) ≤ f(t2) for all x ∈ [a, b].)

(b) Let f :R→ R be a 5 times differentiable real-valued function on R.
Suppose that f(0) = 0, f ′(0) = 0, f ′′(0) = 0, f(1) = 0, f ′(1) = 0
and f(2) = 0. Show that there exists t such that 0 < t < 2 and
f (5)(t) = 0, where f (5)(t) is the fifth derivative of f at t.

2. (a) Let a and b be real numbers satisfying a < b and let f : [a, b] →
R be a real-valued function on the closed bounded interval [a, b]
which is bounded above and below on [a, b]. State precisely what
is meant by saying that f is Riemann-integrable, and define the
Riemann integral of a Riemann-integrable function.(If you utilise
the lower sum L(P, f) and the upper sum U(P, f) used in lectures
then you should define these quantities.)

(b) Consider the function f : [0, 2]→ R defined by

f(x) =

{
2 if 0 ≤ x < 1;
2− x if 1 ≤ x ≤ 2.

Show from first principles that f is Riemann-integrable, and cal-
culate the Riemann integral of f .

3. (a) Prove that if a and b are real numbers satisfying a < b and if
f : [a, b] → R is a continuous real-valued function defined on the
closed interval [a, b] then

d

dx

∫ x

a

f(t) dt = f(x) and
d

dx

∫ b

x

f(t) dt = −f(x)

for all x ∈ (a, b).

(b) Evaluate
d

dx

∫ sinx+2

cosx−5
t5e−t dt.

4. (a) Let a and b be real numbers satisfying a < b and let f1, f2, . . . be
a sequence of real-valued functions defined on [a, b]. Let f : [a, b]→

1



R be a real-valued function on [a, b]. State precisely what is meant
by saying that the sequence (fn:n ∈ N) of functions converges
uniformly to f on [a, b].

(b) Prove that if (fn:n ∈ N) is a sequence of real-valued continu-
ous functions on [a, b] which converges uniformly to a function
f : [a, b]→ R then f is continuous.

(c) Define fn: [0, 1]→ R by

fn(x) =
2n2x

(1 + n2x2)2
.

Show that fn(x) → 0 as n → +∞ for all x ∈ [0, 1]. Does the
sequence (fn:n ∈ N) of functions converge to 0 uniformly on [0, 1]?
What is

lim
n→+∞

∫ 1

0

fn(x) dx?

5. (a) Let a and h be real numbers and let f :D → R be a real-valued
function defined an open subset D of R containing a, a+h and all
real numbers lying between a and a + h. Suppose that f is Ck+1

on D for some non-negative integer k. Prove that

f(a+ h) =
k∑
j=0

hj

j!
f (j)(a) + hk+1

∫ 1

0

(1− t)k

k!
f (k+1)(a+ th) dt.

(b) Show that if −1 < h < 1 then

∣∣∣log(1 + h)−
k∑
j=1

(−1)j−1
hj

j

∣∣∣ ≤ hk log(1 + h).

Hence prove that if −1 < h < 1 then

log(1 + h) =
+∞∑
j=1

(−1)j−1

j
hj.

6. (a) Let D be an open subset of Rn for some n ∈ N and let f :D → Rm

be a function mapping D into Rm. Let a be an element of D.
State precisely what is meant by saying that the function f is
differentiable at a and define the derivative (also known as the
total derivative) of f at a
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(b) Let f :R2 → R be the function defined by

f(x, y) =

 x2 cos y sin

(
1

x

)
, if x 6= 0;

0, if x = 0.

Prove that f is differentiable everywhere in R2. Calculate the
Jacobian matrix representing the derivative of f at every point of

R2. Are the partial derivatives
∂f

∂x
,
∂f

∂y
continuous everywhere in

R2 ? (Give reasons for your answer.)

7. (a) Define the limit limx→a f(x) of a real-valued function f :Rn → R
on Rn, (when the limit exists).

(b) Prove from first principles that if u:Rn → R and v:Rn → R are
real-valued functions on Rn and if limx→a u(x) and limx→a v(x)
exist then limx→a u(x)v(x) exists and

lim
x→a

u(x)v(x) = lim
x→a

u(x) lim
x→a

v(x).

(c) Prove that if f :Rn → R and g:Rn → R are differentiable real-
valued functions on Rn then the product f.g:Rn → R is differen-
tiable (where (f.g)(x) = f(x)g(x)).

8. (a) Let f :R2 → R be a continuous real-valued function on R2. Sup-

pose that
∂f

∂x
exists and is continuous on R2 and that

∂2f

∂y ∂x
exists

everywhere on R2. Let (a, b) be a point of R2. Prove that given
any real numbers h and k there exist p between a and a + h and
q between b and b+ k such that

f(a+h, b+k)−f(a+h, b)−f(a, b+k) +f(a, b) = hk
∂2f

∂y ∂x

∣∣∣∣
(p,q)

.

(b) Hence or otherwise, prove that if
∂f

∂x
,
∂f

∂y
and

∂2f

∂y ∂x
exist and are

continuous everywhere on R2 then
∂2f

∂x ∂y
exists everywhere on R2

and
∂2f

∂x ∂y
=

∂2f

∂y ∂x
.

9. (a) Let f :Rn → R be a continuous real-valued function on Rn. State
precisely what is meant by saying that f is uniformly continuous
on Rn.
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(b) Let g:R→ R be a differentiable real-valued function on R, and let
K be a positive constant. Prove that if |g′(t)| ≤ K for all t ∈ R
then

|g(u)− g(v)| ≤ K|u− v|
for all u, v ∈ R.

(c) Let f :Rn → R be a differentiable real-valued function on Rn with
the property that |f ′(a)h| ≤ K|h| for all a ∈ Rn and h ∈ Rn,
where K is some positive constant. Using the answer to part (b),
or otherwise, prove that

|f(a)− f(b)| ≤ K|a− b|

for all a,b ∈ Rn. Hence prove that f :Rn → R is uniformly
continuous on Rn.

10. (a) Let a and b be real numbers satisfying a < b and let γ: [a, b]→ Rn

be a continuously differentiable curve mapping the interval [a, b]
into an open subset D of Rn. Let f1, f2, . . . , fn be continuous
functions that mapD into R. Explain the procedure for evaluating
the line integral∫

γ

(f1 dx1 + f2 dx2 + · · ·+ fn dxn)

taken along the curve γ.

(b) Let γ: [0, 1] → R2 be the smooth curve parameterizing the unit
circle, given by

γ(t) = (cos(2πt), sin(2πt)).

Evaluate ∫
γ

x dy − y dx
x2 + y2

.

(c) State Green’s Theorem in the Plane.

(d) Using Green’s theorem, or otherwise, show that∫
σ

x dy − y dx
x2 + y2

= 2π,

where σ: [0, 1] → R2 is a smooth curve parameterizing an ellipse,
given by

σ(t) = (4 cos(2πt), 3 sin(2πt)).
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