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1 Sets, Functions and Countability

1.1 Sets

A set is a collection of objects; these objects are known as elements of the
set. If an element x belongs to a set X then we denote this fact by writing
x ∈ X. Sets with small numbers of elements can be specified by listing the
elements of the set enclosed within braces. For example {a, b, c, d} is the set
consisting of the elements a, b, c and d. Two sets are equal if and only if
they have the same elements.

The empty set ∅ is the set with no elements.
Standard notations N, Z, Q, R and C are adopted for the following sets:

• the set N of positive integers;

• the set Z of integers;

• the set Q of rational numbers;

• the set R of real numbers;

• the set C of complex numbers.

A set A is said to be a subset of a set B if every element of A is also an
element of B. If A is a subset of B but is not equal to B, then we say that A
is a proper subset of B. If A is a subset of a set B then we denote this fact
by writing A ⊂ B. Note that A = B if and only if A ⊂ B and B ⊂ A.

Given a set X and a condition that may or may not be satisfied by
elements of X, the subset of X consisting of all elements of X that satisfy
the stated condition is represented using the notation

{x ∈ X : condition}.

Thus for example {n ∈ Z : n > 0} is the subset of the set Z of integers which
consists of all strictly positive integers. (In certain contexts it is possible to
simplify the above notation to {x : condition} if it is clear from the context
what the set is to which the elements x in question belong.)

Let a and b be real numbers satisfying a ≤ b. Then intervals in the set of
real numbers are denoted using the following standard notation:

• [a, b] denotes the set {x ∈ R : a ≤ x ≤ b};

• (a, b) denotes the set {x ∈ R : a < x < b};

• [a, b) denotes the set {x ∈ R : a ≤ x < b};
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• (a, b] denotes the set {x ∈ R : a < x ≤ b};

• [a, +∞) denotes the set {x ∈ R : x ≥ a};

• (a, +∞) denotes the set {x ∈ R : x > a};

• (−∞, a] denotes the set {x ∈ R : x ≤ a};

• (−∞, a) denotes the set {x ∈ R : x < a}.

The union, intersection and difference of two sets are defined as follows:—

• the union X∪Y of two sets X and Y is the set consisting of all elements
that belong to X or to Y (or to both);

• the intersection X ∩ Y of two sets X and Y is the set consisting of all
elements that belong to both X and Y ;

• the difference X \ Y of two sets X and Y is the set consisting of all
elements that belong to X but not to Y .

The sets X and Y are said to be disjoint if no element belongs to both X
and Y (i.e., X ∩ Y = ∅.)

Note that X ∪ Y is the union of the three sets X ∩ Y , X \ Y and Y \X.
Moreover these three sets are pairwise disjoint (i.e., each pair is disjoint).

We can also consider unions and intersections of more than two sets. The
union of a given collection of sets is the set consisting of all elements that
belong to at least one of the given sets. The intersection of a given collection
of sets is the set consisting of all elements that belong to every one of the
given sets.

Let X1, X2, X3, . . . , Xn be sets. We denote the union and intersection of
these sets by X1∪X2∪X3∪· · ·∪Xn and X1∩X2∩X3∩· · ·∩Xn respectively.

The union and intersection of an infinite sequence X1, X2, X3, . . . of sets

are denoted by
∞⋃
i=1

Xi and by
∞⋂
i=1

Xi respectively. More generally, given any

collection C of sets, the union and intersection of the sets in the collection
are denoted by

⋃
X∈C X and

⋂
X∈C X respectively.

It is handy to introduce the notion of a collection (Xi : i ∈ I) of sets
indexed by some set I. This associates to each element i of the indexing
set I a corresponding set Xi. We can form the union or intersection of the
sets in such an indexed collection. The union

⋃
i∈I Xi consists of everything

that belongs to at least one of the sets Xi in the indexed collection; the
intersection

⋂
i∈I Xi consists of everything that belongs to every single set in

the indexed collection. Thus for example if I = {1, 2, . . . , n} then a collection
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of sets indexed by I is just a finite collection of sets X1, X2, . . . , Xn; and in
this case⋃

i∈I
Xi = X1 ∪X2 ∪ · · · ∪Xn,

⋂
i∈I

Xi = X1 ∩X2 ∩ · · · ∩Xn.

Similarly if I = N then a collection (Xi : i ∈ I) of sets indexed by I is just

an infinite sequence X1, X2, X3, . . . of sets, and in this case
⋃

i∈I Xi =
∞⋃
i=1

Xi

and
⋂

i∈I Xi =
∞⋂
i=1

Xi.

Let X be a set, and let A be a subset of X. The complement of A (in X)
is the set X \ A of all elements of X that do not belong to A.

For each subset A of a given set X, let Ac denote the complement of A in
X. Then (A∪B)c = Ac∩Bc and (A∩B)c = Ac∪Bc for all subsets A and B
of X. These identities generalize to situations where the number of subsets
of X involved is greater than two. This basic result is stated formally in the
following lemma.

Lemma 1.1 Let X be a set, and let C be an indexed collection of sets. Then⋃
Y ∈C

(X \ Y ) = X \
⋂

Y ∈C
Y and

⋂
Y ∈C

(X \ Y ) = X \
⋃

Y ∈C
Y.

Proof Let x be an element of X. Then

x ∈
⋃

Y ∈C
(X \ Y ) ⇐⇒ there exists Y ∈ C such that x ∈ X \ Y

⇐⇒ there exists Y ∈ C such that x 6∈ Y

⇐⇒ x 6∈
⋂

Y ∈C
Y,

⇐⇒ x ∈ X \
⋂

Y ∈C
Y.

It follows from this that the subsets
⋃

Y ∈C(X \Y ) and X \
⋂

Y ∈C Y of X have
the same elements, and are therefore the same set.

Similarly

x ∈
⋂

Y ∈C
(X \ Y ) ⇐⇒ for all Y ∈ C, x ∈ X \ Y

⇐⇒ for all Y ∈ C, x 6∈ Y

⇐⇒ x 6∈
⋃

Y ∈C
Y,

⇐⇒ x ∈ X \
⋃

Y ∈C
Y,

and therefore
⋂

Y ∈C(X \ Y ) = X \
⋃

Y ∈C Y , as required.
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Lemma 1.1 thus ensures that the complement of the intersection of any
collection of subsets of a given set is the union of the complements of those
subsets; and the complement of the union of any collection of subsets of a
given set is the intersection of the complements of those subsets. In par-
ticular, if X is a set, and if (Yi : i ∈ Y ) is any indexed collection of sets,
then ⋃

i∈I
(X \ Yi) = X \

⋂
i∈I

Yi and
⋂

i∈I
(X \ Yi) = X \

⋃
i∈I

Yi,

1.2 Cartesian Products of Sets

Let X and Y be sets. An element x of X and an element y of Y together
specify an ordered pair (x, y). Ordered pairs (x, y) are characterized by the
following property:

(x, y) = (u, v) if and only if x = u and y = v.

The set of all ordered pairs (x, y) with x ∈ X and y ∈ Y is referred to as the
Cartesian product of the sets X and Y , and is denoted by X × Y .

Example The Cartesian product R × R consists of all ordered pairs (x, y)
where x and y are real numbers. This set is denoted by R2.

Example Let X = {1, 2, 3} and Y = {2, 4}. Then

X × Y = {(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)}.

The Cartesian product X1×X2×X3×· · ·×Xn of n sets X1, X2, X3, . . . , Xn

is the set consisting of all ordered n-tuples (x1, x2, . . . , xn), where xi ∈ Xi for
i = 1, 2, 3, . . . , n.

Example Points of 3-dimensional space are represented with respect to a
Cartesian co-ordinate system as ordered triples (x, y, z), where x, y and z
are real numbers. The set of all such ordered triples is the Cartesian product
R× R× R (denoted by R3).

Note that if Xi is a finite set with mi elements for i = 1, 2, . . . , n, then
the Cartesian product X1×X2×X3×· · ·×Xn has m1m2m3 · · ·mn elements.
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1.3 Relations

Let X be a set. A binary relation on X determines, for elements u and v of
X, whether or not u is related to v. For example, there is a binary relation
on the set of real numbers, where two real numbers x and y are related if
and only if x is less than y.

It is traditional to denote binary relations by inserting the symbol for the
relation between any two elements that are related. Thus if ∼ is a relation
on a set X then u ∼ v is true for elements u and v of X if and only if u
and v are related. Familiar examples of this notation are provided by the
relations = (‘equals’), < (‘less than’) and ≤ (‘less than or equal to’) on sets
of numbers.

Any binary relation ∼ on a set X determines a corresponding subset
{(u, v) ∈ X × X : u ∼ v} of the Cartesian product X × X. Conversely
any subset R of X ×X determines a corresponding relation ∼ on X, where
elements u and v of X satisfy u ∼ v if and only if (u, v) ∈ R. There is thus a
one-to-one correspondence between binary relations on a set X and subsets
of X ×X.

1.4 Equivalence Relations

Let ∼ be a binary relation on a set S.

• The relation ∼ is reflexive on S if the following is true: x ∼ x for all
elements x of S.

• The relation ∼ is symmetric on S if the following is true: if x and y
are elements of S and if x ∼ y then y ∼ x.

• The relation ∼ is transitive on S if the following is true: if x, y and z
are elements of S and if if x ∼ y and y ∼ z then x ∼ z.

Example The relation = (i.e., ‘is equal to’) is reflexive, symmetric and
transitive on any set.

Example The relation < (i.e., ‘is less than’) is transitive on the set of real
numbers but is neither reflexive nor symmetric.

Example The relation ≤ (i.e., ‘is less than of equal to’) is reflexive and
transitive on the set of real numbers but is not symmetric.

Example The relation 6= (i.e., ‘is not equal to’) is symmetric on the set of
real numbers but is neither reflexive nor transitive.
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Example The relation ‘has the same number of elements as’ is reflexive,
symmetric and transitive on any collection of finite sets.

Definition An equivalence relation on a given set is a binary relation on
that set which is reflexive, symmetric and transitive.

The relation of equality is an equivalence relation on any set.
The relation < (i.e., ‘is less than’) is not an equivalence relation on the

set of real numbers because it is neither reflexive nor symmetric.

Definition Let ∼ be an equivalence relation on a set X. The equivalence
class of x in X (with respect to the equivalence relation ∼) is the set Cx

consisting of all elements of X that are related to x. Thus

Cx = {y ∈ X : x ∼ y}.

Lemma 1.2 Let ∼ be an equivalence relation on a set X, and, for each
x ∈ X, let Cx denote equivalence class of x, defined by

Cx = {y ∈ X : x ∼ y}.

Then the following are true:

(i) x ∈ Cx for all x ∈ X;

(ii) y ∈ Cx if and only if Cx = Cy;

(iii) if x and y are elements of X and if Cx∩Cy is non-empty, then Cx = Cy;

(iv) an element x of X belongs to exactly one equivalence class.

Proof The fact that x ∈ Cx for all x ∈ X follows immediately from the fact
that any equivalence relation is required to be reflexive. This proves (i).

Suppose that y ∈ Cx. Then x ∼ y. Also y ∼ x, since any equivalence
relation is transitive. If z ∈ Cy then x ∼ y and y ∼ z, and hence x ∼ z,
since any equivalence relation is transitive. It follows that if z ∈ Cy then
z ∈ Cx, and thus Cy ⊂ Cx. Similarly Cx ⊂ Cy. Thus if y ∈ Cx then Cx = Cy.
Conversely if Cx = Cy then y ∈ Cx, since y ∈ Cy. This proves (ii).

Next note that if x and y are elements of X and if Cx ∩Cy is non-empty,
then there exists some element z of X such that z ∈ Cx and z ∈ Cy. It
follows from (ii) that Cx = Cz and Cy = Cz, and therefore Cx = Cy. This
proves (iii).

Finally (iv) is a consequence of (i) and (iii).
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Definition Let X be a set. A partition of X is a collection of subsets of X
with the property that every element of X belongs to exactly one of these
subsets.

Let an equivalence relation be given on a set X. Then the collection of
equivalence classes constitutes a partition of X. Conversely any partition
of a set X determines an equivalence relation, where two elements of X are
related if and only if they belong to the same subset in the partition.

1.5 Functions

Let X and Y be sets. A function f : X → Y from X to Y assigns to each
element x of the set X exactly one element f(x) of the set Y . The set X is
the domain of the function, and the set Y is the co-domain of the function.

The notation f : X → Y is used to specify a function f whose domain is
the set X and whose co-domain is the set Y .

A function is not fully specified unless its domain and co-domain are
specified.

Example Let us consider ‘the function that sends x to 1/x2’. Note that
1/x2 is is not defined when x = 0. Therefore we cannot view this ‘function’
as a function on the set of real numbers. We can however take as the domain
of the function the set R\{0} of all non-zero real numbers. We thus obtain a
function f : R \ {0} → R from the set R \ {0} of non-zero real numbers to the
set R of real numbers, where f(x) = 1/x2 for all non-zero real numbers x.

There is also a function g: C \ {0} → C from the set C \ {0} of non-zero
complex numbers to the set C of complex numbers, where g(z) = 1/z2 for all
non-zero complex numbers z. The functions f and g have different domains,
and are therefore considered to be different functions.

Note that there is no element x of the domain R \ {0} of f : R \ {0} → R
for which f(x) = 0. Also f(x) = f(−x) for all non-zero real numbers x.
Thus, given an element y of the co-domain R of the function f , there need
not be exactly one element x of the domain satisfying f(x) = y. There may
not be any such elements x, as is the case when y < 0, or there may be more
than one such element x, as is the case when y > 0.

Let X be a set. There is a function i: X → X from X to itself, where
i(x) = x for all x ∈ X. This function is referred to as the identity map of X.

Let f : X → Y be a function from a set X to a set Y . The range f(X)
of the function is defined to be the set {f(x) : x ∈ X} of all elements of the
co-domain Y that are of the form f(x) for some element x of the domain.
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The image f(A) of a subset A of X is defined to be the set {f(x) : x ∈ A} of
all elements of the co-domain Y that are of the form f(x) for some element x
of A.

Note that the range of a function f : X → Y is the image f(X) of the
domain X of the function. Also f−1(Y ) = X.

Example Let f : R → R be the function defined by f(x) = x2 for all x ∈ R.
The range of f is the set [0, +∞) of non-negative real numbers. The image
f([1, 2]) of the interval [1, 2] is the interval [1, 4].

Let X, Y and Z be sets, and let f : X → Y and g: Y → Z be functions,
where the domain Y of g: Y → Z is the co-domain of f : X → Y . The
composition function g ◦ f : X → Z is defined by (g ◦ f)(x) = g(f(x)) for all
x ∈ X. Note that g ◦ f denotes the function ‘f followed by g’.

1.6 The Graph of a Function

Let X and Y be sets. To every function f : X → Y from X to Y there
corresponds a subset Γ(f) of the Cartesian product X × Y , where

Γ(f) = {(x, y) ∈ X × Y : y = f(x)}.

Mathematicians often refer to the subset of X×Y corresponding to a function
f : X → Y as the graph of the function. The following example suggests the
reason for this terminology.

Example Let q: R → R be the function from the set R of real numbers to
itself defined such that q(x) = x2 for all real numbers x. The graph of this
function is the subset of R× R given by

{(x, y) ∈ R× R : y = x2}.

Note that this subset consists of the Cartesian coordinates of the points of
the plane that lie on the curve that represents the graph of the given function.

Whilst every function from X to Y determines a corresponding sub-
set Γ(f) of X × Y , it is not possible to obtain every subset of X × Y in
this fashion. Indeed it is easy to see that a subset R of X×Y is the graph of
some function f : X → Y if and only if, for every element x of X, there exists
exactly one element y of Y for which (x, y) ∈ R. If the subset R of X×Y has
this property, then the corresponding function f : X → Y is characterized by
the property that, for each element x of X, f(x) is the unique element of Y
for which (x, f(x)) ∈ R.
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Remark Some mathematicians choose to define a function from a set X to
a set Y to be a subset G of the Cartesian product with the property that,
to each element x of G there exists exactly one element y of Y for which the
ordered pair (x, y) belongs to the subset G. This amounts to identifying the
function with its graph.

1.7 Functions and the Empty Set

We shall adopt the convention that, given any any set Y , there exists exactly
one function from the empty set ∅ to the set Y . This convention may at
first seem a bit strange. Nevertheless experience shows it is in practice a
natural convention to adopt, and it tends to simplify the statements and
proofs of theorems (which would otherwise be hedged about with all sorts of
qualifications and subsidiary arguments to cover the special cases where one
of more of the sets involved happens to be the empty set).

This convention can also be justified on the grounds that functions from a
set X to a set Y correspond to subsets G of the Cartesian product that have
the property that, given any element x of X, the set {y ∈ Y : (x, y) ∈ G} has
exactly one element. (The subset G of X×Y is the graph of the function f .)
In the case where X is the empty set, the Cartesian product X×Y is also the
empty set. The empty set has exactly one subset. This subset is of course
the empty set. Moreover it has, vacuously, the property required in order to
be the graph of the function, for if the set X is empty, then it is not possible
to find any element x of X for which the number of elements belonging to
the subset {y ∈ Y : (x, y) ∈ G} of Y differs from one. Thus, if X is the
empty set, then the Cartesian product X × Y has exactly one subset which
has the properties required of the graph of any function.

Note that if there exists a function f : X → Y from a set X to a set Y ,
and if the set Y is the empty set, then the set X must also be the empty set.
(For if x were an element of X, then f(x) would be an element of Y , and
therefore the set Y would be non-empty.)

We see therefore that the number of functions from a set X to the empty
set is zero if X is non-empty, but is one if X is the empty set.

When defining properties that sets may or may not have, it is sometimes
necessary to decide whether or not the empty set has the given property.
There are standard conventions and forms of reasoning that mathematicians
regularly adopt to settle such questions.

In mathematics, one often meets definitions of properties, applicable to
sets, where a set is said to have some property P if and only if all the elements
of the set have some property Q. (For example suppose that P represents the
property of being a subset of a given set Y . Then the corresponding property
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Q is that of being an element of the set Y . For a set X is a subset of a given
set Y if and only if all the elements of X are elements of Y .) In such cases
the question arises as to whether or not the empty set has the property P .
The standard convention adopted is that in such cases the empty set does
indeed have the property P . Note that if a non-empty set X fails to have
the property P , then there must exist at least one element of X which fails
to have the property Q. It is natural to extend this basic logical principle to
the case where the set X is empty. Clearly the empty set cannot have any
elements that fail to have this property Q. So it makes sense to say that all
elements of the empty set have the property Q, and therefore the empty set
has property P .

In effect, we are saying that, if Q is some property that elements of sets
may or may not have, then the empty set is considered to be an example of
a set whose elements all have the property Q. As a result, given any set X,
empty or non-empty, and given any property Q, the statement “all elements
of X have the property Q” is the logical negation of the statement “there
exists an element of X which does not have the property Q”.

Example To give a concrete example, consider the definition of a subset of a
given set Y . We say that a set X is a subset of Y if and only if every element
of X is an element of Y . Thus if a set X fails to be a subset of Y , there
must exist at least one element of X that is not an element of Y . According
to the convention we have described, the empty set is to be regarded as a
subset of Y , since the empty set clearly does not have any elements that are
not elements of Y . (Of course, it does not have any elements at all.)

Example Let u be a real number. We say that a subset X of the set of real
numbers is bounded above by u if every element x of X satisfies the inequality
x ≤ u. Accordingly the empty set is bounded above by u. Moreover if X is
a subset of the set of real numbers (empty or non-empty), and if X is not
bounded above by the real number u, then there exists at least one element x
of the set X which satisfies the inequality x > u.

1.8 Injective, Surjective and Bijective Functions

We now define injective, surjective and bijective functions:—

• a function f : X → Y is said to be injective (or one-to-one) if f(u) 6=
f(v) whenever u and v are elements of the domain X with u 6= v;

• a function f : X → Y is said to be surjective (or onto) if each element of
the codomain of the function is the image f(x) of at least one element x
of the domain X;
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• a function f : X → Y is said to be bijective (or is said to be a one-to-one
correspondence) if it is both injective and surjective.

Injective, surjective and bijective functions are also referred to as injections,
surjections and bijections respectively.

Note that a function f : X → Y is bijective if and only if, given any ele-
ment y of the co-domain Y of the function, there exists exactly one element x
of the domain X satisfying f(x) = y.

Example Let N denote the set {1, 2, 3, 4, . . .} of positive integers. Let
f : N → N be the function defined by f(n) = n2 for all positive integers n.
This function is injective, for if m and n are positive integers and if m 6= n
then m2 6= n2. The function is not surjective, since there is no positive
integer n satisfying f(n) = 3.

Example Let g: R → [0, +∞) be the function from the set R of real numbers
to the set [0, +∞) of non-negative real numbers that sends each real number x
to x2. This function is not injective, since g(2) = g(−2) = 4. It is surjective:
for any non-negative real number y, there is a real number

√
y satisfying

g(
√

y) = y.

Example Let h: N → N be the function from the set N of positive integers
to itself defined by

h(n) =
{

n + 1 if n is odd;
n− 1 if n is even.

Thus h(1) = 2, h(2) = 1, h(3) = 4, h(4) = 3, etc. The function is injective.
Indeed let m and n be positive integers with m 6= n. If m is odd and n is
even then h(m) 6= h(n), since h(m) is even and h(n) is odd. If m is even
and n is odd then h(m) 6= h(n), since h(m) is odd and h(n) is even. If m
and n are both odd then h(m) 6= h(n) since h(m) = m + 1, h(n) = n + 1
and m + 1 6= n + 1. If m and n are both even then h(m) 6= h(n) since
h(m) = m− 1, h(n) = n− 1 and m− 1 6= n− 1. We have thus verified that
h(m) 6= h(n) for all positive integers m and n satisfying m 6= n. Thus the
function is injective.

Let n be a positive integer. If n is odd then n = h(n + 1). If n is even
then n = h(n− 1). Thus the function is surjective.

The function h: N → N is therefore bijective.

Example Let Y be a set. We have adopted the convention that there is
exactly one function e: ∅ → Y from the empty set ∅ to the set Y . Clearly
there do not exist distinct elements of the empty set that get mapped to the
same element of Y . Therefore this function e: ∅ → Y is an injective function.
The function e is surjective if and only if Y = ∅.
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Lemma 1.3 Let X, Y and Z be sets, and let f : X → Y and g: Y → Z be
functions.

(i) If f : X → Y and g: Y → Z are injective, then so is g ◦ f : X → Z.

(ii) If f : X → Y and g: Y → Z are surjective, then so is g ◦ f : X → Z.

(iii) If f : X → Y and g: Y → Z are bijective, then so is g ◦ f : X → Z.

Proof First suppose that f : X → Y and g: Y → Z are injective. We must
prove that g◦f : X → Z is injective. Let u and v be elements of X with u 6= v.
Then f(u) 6= f(v), since f : X → Y is injective. But then g(f(u)) 6= g(f(v)),
since g: Y → Z is injective. It follows that g ◦ f : X → Z is injective. This
proves (i).

Next suppose that f : X → Y and g: Y → Z are surjective. We must
prove that g ◦ f : X → Z is surjective. Let z be an element of Z. Then there
exists y ∈ Y satisfying g(y) = z, since g: Y → Z is surjective. Then there
exists x ∈ X satisfying f(x) = y, since f : X → Y is surjective. But then
g(f(x)) = z. It follows that g ◦ f : X → Z is surjective. This proves (ii).

Clearly (iii) follows from (i) and (ii).

1.9 Inverse Functions

Definition Let X and Y be sets, and let f : X → Y be a function from X to
Y . A function g: Y → X from Y to X is said to be the inverse of f : X → Y
if g(f(x)) = x for all x ∈ X and f(g(y)) = y for all y ∈ Y .

We denote by f−1: Y → X the inverse of a function f : X → Y , provided
that such an inverse exists.

Example Consider the function f : [1, 2] → [1, 4], where f(x) = x2 for all
x ∈ [1, 2]. The inverse of this function is the function g: [1, 4] → [1, 2], where
g(y) =

√
y for all y ∈ [1, 4].

Example Consider the function h: R → R, where h(x) = x2 for all real
numbers x. This function does not have an well-defined inverse. Indeed no
function k: R → R has the property that y = h(k(y)) for all real numbers y,
since this identity clearly cannot be satisfied when y < 0.

Lemma 1.4 Let X and Y be sets. A function f : X → Y has a well-defined
inverse if and only if it is a bijection. Moreover the inverse of a bijection is
itself a bijection.
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Proof Let f : X → Y be a function which has a well-defined inverse f−1: Y →
X. Let u and v be elements of X. Then u = f−1(f(u)) and v = f−1(f(v)).
Thus if u 6= v then f(u) 6= f(v). The function f : X → Y is therefore injective.
The function f : X → Y is also surjective, since y = f(f−1(y)) for all y ∈ Y .
We have thus shown that if a function f : X → Y has a well defined inverse
then it is both injective and surjective, and is thus a bijection.

Conversely suppose that f : X → Y is a bijection. Then, given any ele-
ment y of Y , there exists exactly one element x of X satisfying f(x) = y. We
therefore define f−1(y) to be the unique element x of X satisfying f(x) = y.
Clearly f(f−1(y)) = y for all y ∈ Y . Thus f ◦ f−1 is the identity map of
Y . We must also show that f−1 ◦ f is the identity map of X. Let x be an
element of X. Then f(f−1(f(x))) = f(x), since f ◦ f−1 is the identity map
of Y . But f : X → Y is injective. It follows that f−1(f(x)) = x, since the
elements x and f−1(f(x)) are mapped by f to the same element of the set Y .
We have thus shown that if the function f : X → Y is a bijection then it has
a well-inverse.

If g: Y → X is the inverse of a bijection f : X → Y then f is the inverse
of g, and therefore g: Y → X must be a bijection.

1.10 Preimages

Let f : X → Y be a function from a set X to a set Y , and let B be a subset of
Y . The preimage of the set B under the function f is the set f−1(B) defined
such that

f−1(B) = {x ∈ X : f(x) ∈ B}.

Remark The preimage f−1(B) of a subset B of Y is defined in this fashion
for all functions f : X → Y from X to Y , irrespective of whether or not that
function has a well-defined inverse function. The standard notation f−1(B)
adopted for the preimage of the set B reflects that fact that any function
f : X → Y from a set X to a set Y induces a corresponding function from
subsets of Y to subsets of X that obviously goes in the reverse direction to
the function f .

In cases where the function f : X → Y does have well-defined inverse
f−1: Y → X, the preimage of a subset B of Y under the function f coincides
with the image of B under the inverse of the function f , so that, in this case,
the notation f−1(B) is unambiguous, and can be taken to represent either
the preimage of the set B under the function f , or else the image of B under
the function f−1.

Example Let f : R → R be the function defined by f(x) = x2 for all x ∈ R.
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The preimage f−1([1, 4]) of the interval [1, 4] is the union [−2,−1] ∪ [1, 2] of
the intervals [1, 2] and [−2,−1].

Lemma 1.5 Let f : X → Y be a function between sets X and Y and let B
be a subset of Y . Then f−1(Y \ B) = X \ f−1(B). Thus the preimage of
the complement of any subset of Y is the complement of the preimage of that
subset.

Proof Let x be an element of X. Then

x ∈ f−1(Y \B) ⇐⇒ f(x) ∈ Y \B ⇐⇒ f(x) 6∈ B

⇐⇒ x 6∈ f−1(B) ⇐⇒ x ∈ X \ f−1(B).

It follows that the subsets f−1(Y \B) and X \f−1(B) of X contain the same
elements, and must therefore be the same subset of X.

Lemma 1.6 let f : X → Y be a function from a set X to a set Y , and let C
be any collection of subsets of Y . Then

f−1
(⋃

B∈C
B

)
=

⋃
B∈C

f−1(B), f−1
(⋂

B∈C
B

)
=

⋂
B∈C

f−1(B).

Thus the preimage of any union of subsets of Y is the union of the preimages
of those subsets, and the preimage of any intersection of subsets of Y is the
intersection of the preimages of those subsets.

Proof Let x be an element of X. Then

x ∈ f−1
(⋃

B∈C
B

)
⇐⇒ f(x) ∈

⋃
B∈C

B

⇐⇒ there exists B ∈ C such that f(x) ∈ B

⇐⇒ there exists B ∈ C such that x ∈ f−1(B)

⇐⇒ x ∈
⋃

B∈C
f−1(B).

It follows that the subsets f−1
(⋃

B∈C B
)

and
⋃

B∈C f−1(B) of X contain the
same elements, and must therefore be the same subset of X.

Also

x ∈ f−1
(⋂

B∈C
B

)
⇐⇒ f(x) ∈

⋂
B∈C

B

⇐⇒ for all B ∈ C, f(x) ∈ B

⇐⇒ for all B ∈ C, x ∈ f−1(B)

⇐⇒ x ∈
⋂

B∈C
f−1(B).

It follows that the subsets f−1
(⋂

B∈C B
)

and
⋂

B∈C f−1(B) of X contain the
same elements, and must therefore be the same subset of X.
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1.11 Finite and Infinite Sets

A set is said to be finite if the number of elements it contains is finite.
A basic result states that if X is a finite set then any injection f : X → X

from the set X to itself is a bijection. Infinite sets do not have this property.
Although the above result seems fairly obvious, we shall give a fairly

formal proof.
Let n be a positive integer. We say that a set X has n elements if there

exists a bijection f : {1, 2, . . . , n} → X defined on the set {1, 2, . . . , n} of
natural numbers not exceeding n, and mapping this set onto X. We say that
a set X has zero elements if it is the empty set. We say that a set X is finite
if there exists some non-negative integer n such that X has n elements. If X
is a set with n elements, where n ≥ 1, and if x is some element of X, then
the set X \ {x} has n − 1 elements. This fact is readily verified, and is an
easy consequence of the fact that, for each integer j between 1 and n there
exists a bijection from the set {m ∈ N : 1 ≤ m ≤ n− 1} to the set

{m ∈ N : 1 ≤ m ≤ n and m 6= j}.

This observation enables us to set up a proof of the required result for finite
sets by induction on the number of elements in the set.

Proposition 1.7 Let X be a finite set. Then any injection f : X → X is a
bijection.

Proof The result is easily seen to be true when the number of elements in
X is zero or one. Suppose that the result is true for all sets with k elements,
where k is some natural number. We show that the result is then true for
all sets with k + 1 elements. Let X be a set with k + 1 elements, and let
f : X → X be a function from X to X which is an injection. Suppose that
there were to exist some element x of X that was not in the range of f . Let
Y = X \{x}, and let g: Y → Y be the function defined such that g(y) = f(y)
for all y ∈ Y . The function g would then be an injection from the set Y to
itself. Moreover the set Y has k elements. The inductive hypothesis therefore
ensures that every injection from the set Y to itself is a surjection. Therefore
the function g would be a surjection. In particular there would exist some
element y of Y such that g(y) = f(x). But then x and y would be distinct
elements of X with the property that f(x) = f(y). But the function f is
an injection, and therefore this situation cannot arise. We see therefore that
a contradiction would arise were there to exist any element x of the set X
that was not in the range of the injection f . It follows that the range of the
function f must be the whole of the set X. Thus f is a surjection, and is
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therefore a bijection. We have thus shown that if every injection from a set
with k elements to itself is a bijection, then every injection from a set with
k + 1 elements to itself is a bijection. It now follows by induction on the
number of elements in the set that every injection from a finite set to itself
is a bijection.

Example Consider the function f : N → N from the set of natural numbers
to itself defined such that f(n) = n + 1 for all natural numbers n. This
function is an injection. However it is not a surjection, because the number 1
is not in the range of the function. The function f is thus an example of a
function from a set to itself that is an injection but is not a bijection.

A set is said to be infinite if it is not finite.

Lemma 1.8 Let X be an infinite set. Then there exists an injection f : X →
X that is not a bijection.

Proof No finite list of elements of X can include all elements of X, and
therefore there exists an infinite sequence x1, x2, x3, . . . of elements of X which
are distinct (so that xj 6= xk whenever j 6= k). Let f : X → X be the function
defined such that f(xn) = xn+1 for all natural numbers n, and f(x) = x
for all elements of X not included in the sequence x1, x2, x3, . . .. Then the
function f is an injective function whose range is X \ {x1}. This injection is
not a bijection.

The following result follows immediately on combining the results of
Proposition 1.7 and Lemma 1.8.

Proposition 1.9 A set X is infinite if and only if there exists an injection
f : X → X that is not a bijection.

1.12 Countability

Definition A set X is said to be countable if there exists an injection f : X →
N mapping X into the set N of natural numbers.

Example The set Z of integers is countable. For there is a well-defined
bijection f : Z → N defined such that f(n) = 2n + 1 when n ≥ 0 and f(n) =
−2n when n < 0. This bijection maps the set of non-negative integers onto
the set of odd natural numbers, and maps the set of negative integers onto
the set of even natural numbers.

Lemma 1.10 Any subset of a countable set is countable.
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Proof Let Y be a subset of a countable set X. Then there exists an injection
f : X → N from X to the set N of natural numbers. The restriction of this
injection to set Y gives an injection from Y to N.

Proposition 1.11 A non-empty set X is countable if and only if there exists
a surjective function g: N → X mapping the set N of natural numbers onto
X.

Proof Suppose that X is a countable non-empty set. Then there exists an
injection f : X → N from X to N. Let x0 be some chosen element of the set X.
Then there is a well-defined function g: N → X defined such that g(f(x)) = x
for all x ∈ X, and g(n) = x0 for natural numbers n that do not belong to
the range f(X) of the function f . (The definition of the function g relies
on the fact that, given an element n of the range f(X) of the injection f ,
there exists exactly one element x of the set X for which f(x) = n.) The
function g is clearly a surjection, in view of the fact that x = g(f(x)) for all
x ∈ X.

Conversely let X be a non-empty set, and let g: N → X be a surjection
from N to X. Given an element x, there exists at least one natural number n
for which g(n) = x. It follows that there is a well-defined function f : X → N
such that, given any element x of X, f(x) is the smallest natural number n
for which g(n) = x. Then g(f(x)) = x for all x ∈ X. It follows from
this that if x1 and x2 are elements of X (not necessarily distinct), and if
f(x1) = f(x2), then x1 = g(f(x1)) = g(f(x2)) = x2. We conclude that
distinct elements of the set X get mapped to distinct natural numbers. Thus
the function f : X → N is an injection, and therefore the set X is countable,
as required.

Corollary 1.12 Let h: X → Y be a surjection. Suppose that the set X is
countable. Then the set Y is countable.

Proof There is nothing to prove if the set X is the empty set, since in that
case the set Y must also be the empty set. Suppose therefore that the set
X is non-empty and countable. It follows from Proposition 1.11 that there
exists a surjection g: N → X from N to X. The composition h ◦ g: N → Y
of g and h is then a surjection from N to Y (since the composition of two
surjections is always a surjection). It then follows from Proposition 1.11 that
the set Y is countable, as required.

1.13 Cartesian Products and Unions of Countable Sets

Lemma 1.13 There exists a bijection between the sets N× N and N.
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Proof Let f : N× N → N be the function defined such that

f(j, k) = 1
2
(j + k − 1)(j + k − 2) + k.

One can check that this function f is a bijection.
Note that, for each natural number m greater than one, this function f

maps the set Dm into the set Im, where Dm = {(j, k) ∈ N× N : j + k = m}
and

Im = {n ∈ N : 1
2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1)}.

Now, given any natural number n, there exists a unique natural number m
greater than one such that 1

2
(m−1)(m−2) < n ≤ 1

2
m(m−1). It follows that

each natural number belongs to exactly one of the sets I2, I3, I4 . . . . Moreover
if n is a natural number, and if n ∈ Im, where m is a natural number greater
than one, then n = f(m − k, k) where k = n − 1

2
(m − 1)(m − 2). Moreover

(m−k, k) is the unique element of Dn satisfying f(n−k, k) = n. These facts
ensure that, given any natural number n, there exists exactly one pair (j, k)
of natural numbers satisfying f(j, k) = n. (These natural numbers j and k
satisfy j + k = m, where m is the unique natural number greater than one
that satisfies the inequalities 1

2
(m− 1)(m− 2) < n ≤ 1

2
m(m− 1).) Therefore

the function f is both injective and surjective, and is thus a bijection, as
required.

Remark The function f : N × N → N used in the proof of Lemma 1.13 is
constructed so that

f(1, 1) = 1,

f(2, 1) = 2, f(1, 2) = 3,

f(3, 1) = 4, f(2, 2) = 5, f(1, 3) = 6,

f(4, 1) = 7, f(3, 2) = 8, f(2, 3) = 9, f(1, 4) = 10, etc.

These examples giving the value of (j, k) for small values of j and k should
convey the basic scheme used to construct this function f .

Proposition 1.14 Let X and Y be countable sets. Then the Cartesian prod-
uct X × Y of X and Y is a countable set.

Proof There exist injective functions g: X → N and h: Y → N, because the
sets X and Y are countable. Also there exists a bijection f : N×N → N from
N×N to N (Lemma 1.13). Let p: X×Y → N be the function defined such that
p(x, y) = f(g(x), h(y)) for all x ∈ X and y ∈ Y . We claim that the function p
is an injection. Let x1 and x2 be elements of X (not necessarily distinct),
and let y1 and y2 be elements of Y . Suppose that p(x1, y1) = p(x2, y2). Then
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(g(x1), h(y1)) = (g(x2), h(y2)), because the function f : N → N is an injection,
and therefore g(x1) = g(x2) and h(y1) = h(y2). But the functions g and h are
injections. It follows that x1 = x2 and y1 = y2, and thus (x1, y1) = (x2, y2).
We have therefore shown that if the elements (x1, y1) and (x2, y2) of X × Y
are such that p(x1, y1) = p(x2, y2) then (x1, y1) = (x2, y2). This shows that
the function p: X×Y → N is an injection. The existence of such an injection
guarantees that the set X × Y is countable, as required.

Corollary 1.15 Let X1, X2, . . . , Xn be countable sets. Then the Cartesian
product X1 ×X2 × · · · ×Xn of these sets is a countable set.

Proof The result follows by induction on the number of sets forming the
Cartesian product, because the set X1 ×X2 × · · · ×Xn may be regarded as
the Cartesian product of the sets X1 × X2 × · · · × Xn−1 and Xn whenever
n > 1, and the Cartesian product of any two countable sets is countable
(Proposition 1.14).

Lemma 1.16 The set Q of rational numbers is countable.

Proof The set Z of integers and the set N of natural numbers are countable
sets, and therefore the Cartesian product Z×N is a countable set (Proposi-
tion 1.14). There is an obvious surjection g: Z×N → Q, where g(z, n) = z/n
for all integers z and natural numbers n. The result therefore follows imme-
diately on applying Corollary 1.12.

Proposition 1.17 Let X1, X2, X3, . . . be a sequence of countable sets Then
the union

⋃∞
n=1 Xn of these countable sets is itself a countable set.

Proof For each natural number n let gn: Xn → N be an injective function
from Xn to the set N of natural numbers. (Such injective functions exist
because each set Xn is countable.) We shall construct an injective function
h: X → N× N from X to N, where X =

⋃∞
n=1 Xn.

Given any element x of X, let h(x) = (n(x), gn(x)(x)), where n(x) is
the smallest natural number with the property that x ∈ Xn(x). (Note that x
belongs to at least one of the sets Xn, and therefore this natural number n(x)
is well-defined.)

Let x and y be elements of X satisfying h(x) = h(y). We claim that
x = y. Now if h(x) = h(y) then n(x) = n(y). It follows that x ∈ Xn and
y ∈ Xn, where n = n(x) = n(y). Moreover gn(x) = gn(y). But g: Xn → N is
an injective function. It follows that x = y. We conclude therefore that the
function h: X → N× N is injective.
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Now Lemma 1.13 ensures that there exists a bijective function f : N×N →
N from N×N to N. The composition function f◦h: X → N is then an injective
function from X to N. We conclude therefore that the set X is countable, as
required.

Corollary 1.18 Let (Xi : i ∈ I) be a collection of countable sets, indexed
by a countable set I. Then the union

⋃
i∈I Xi of the sets in this countable

collection is a countable set.

Proof The indexing set I is a countable set. Therefore there exists an in-
jective function g: I → N. It follows that, for each natural number n, there
exists at most one element i of the indexing set such that g(i) = n. If there
exists some element i of I such that g(i) = n, let Yn = Xi; otherwise let
Yn = ∅. Then Y1, Y2, Y3, . . . is an infinite sequence of countable sets, and
clearly

⋃
i∈I Xi =

⋃∞
n=1 Yn. It follows immediately from Proposition 1.17⋃

i∈I Xi is a countable set, as required.

We define a countable union of sets to be a union of sets where the sets
making up the collection can be indexed by some countable sets. Thus the
union of a finite number of sets is a countable union of sets. Also the union
of an infinite sequence X1, X2, X3, . . . of sets is a countable union. The result
of Corollary 1.18 may be summed up in the statement that any countable
union of countable sets is itself a countable sets.

1.14 Uncountable Sets

A set that is not countable is said to be uncountable. Many sets occurring
in mathematics are uncountable. These include the set of real numbers (see
Proposition 1.21).

It follows directly from Lemma 1.10 that if a set X has an uncountable
subset, then X must itself be uncountable.

It also follows directly from Corollary 1.12 that if h: X → Y is a surjection
from a set X to a set Y , and if the set Y is uncountable, then the set X is
uncountable.

1.15 Power Sets

Definition Let X be a set. The power set P(X) is defined to be the set of
subsets of X.

Proposition 1.19 Let X be a set. Then there does not exist any surjection
from X to the power set P(X) of X.
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Proof Let f : X → P(X) be any function from X to P(X), and let

Zf = {x ∈ X : x 6∈ f(x)}.

Let x ∈ X. Then x belongs to exactly one of the sets Zf and f(x). It
follows that Zf 6= f(x) for all x ∈ X. We have thus shown that any function
f : X → P(X) determines an element Zf of P(X) that does not belong to
the range of the function f . Thus no function f : X → P(X) can be a
surjection.

Corollary 1.20 ) The power set P(N) of the set N of natural numbers is
uncountable.

Proof It follows from Proposition 1.11 that if the set P(N) were countable
then there would exist a surjection f : N → P(N) from N to P . But it
follows from Proposition 1.19 that there are no surjections from N to P(N).
Therefore P(N) cannot be countable.

1.16 The Cantor Set

Definition The Cantor set is the set consisting of all real numbers that can

be expressed as the sums of infinite series of the form
∞∑

n=1

2an

3n
, where, for

each natural number n, either an = 0 or an = 1.

We shall show that the Cantor set is an uncountable set.
Let P(N) denote the set of all subsets of the set N of natural numbers,

and let f :P(N) → R be the function defined such that f(I) = 2
∑
n∈I

3−n for

all subsets I of N. The range of this function f is the Cantor set. We claim
that the function f is injective.

Let I and J be subsets of N, and let a1, a2, a3, . . . and b1, b2, b3, . . . be the
infinite sequences defined such that an = 1 if n ∈ I, an = 0 if n 6∈ I, bn = 1
if n ∈ J and bn = 0 if n 6∈ J . Then

f(I) =
∞∑

n=1

2an

3n
, f(J) =

∞∑
n=1

2bn

3n
.

Suppose that I 6= J . Let m be the smallest value of n for which an 6= bn.
Then

f(J)− f(I) =
2(bm − am)

3m
+

∞∑
n=m+1

2(bn − an)

3n
.
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Now |bn − an| ≤ 1 for all natural numbers n, and therefore∣∣∣∣∣
∞∑

n=m+1

2(bn − an)

3n

∣∣∣∣∣ ≤
∞∑

n=m+1

2|bn − an|
3n

≤
∞∑

n=m+1

2

3n
=

2

3m+1
× 1

1− 1
3

=
1

3m
.

It follows that ∣∣∣∣f(J)− f(I)− 2(bm − am)

3m

∣∣∣∣ ≤ 1

3m
,

where |bm − am| = 1, and therefore

|f(J)− f(I)| ≥
∣∣∣∣2(bm − am)

3m

∣∣∣∣− 1

3m
=

1

3m
.

We conclude from this that f(I) 6= f(J) when I 6= J . It follows from
this that the function f :P(N) → R is injective, and therefore defines a
bijection between the set P(N) and the Cantor set. Now P(N) is uncountable
(Corollary 1.20). It follows that that Cantor set is uncountable.

Proposition 1.21 The set R of real numbers is uncountable.

Proof Every subset of a countable set is countable (Lemma 1.10). The
Cantor set is an uncountable set that is a subset of the set R of real numbers.
Therefore R cannot be countable.
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