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9 Signed Measures and the Radon-Nikodym
Theorem

9.1 Signed Measures

Definition Let X be a set, and let A be a o-algebra of subsets of X. A
signed measure is a function v: A — R that maps elements of A to real
numbers and is countably additive, so that

(Upee B) = 219

Ec&

for any pairwise disjoint countable collection £ of subsets of X satisfying

£ C A

Thus (non-negative) measures and signed measures are countably additive
functions defined on a g-algebra A of subsets of some set X. Non-negative
measures take values in the set [0, +oo] of non-negative extended real num-
bers, whereas signed measures take values in the field R of real numbers. In
particular, if v is a signed measure on a og-algebra of subsets of some set X,
and if F € A, then v(E) never takes on either of the values +o0o or —oc.

We shall prove that any signed measure may be represented as the differ-
ence of two non-negative measures.

Definition Let X be a set, let A be a o-algebra of subsets of X, and let v
be a signed measure defined on the g-algebra A. A subset P of X is said to
be a positive set if P € A and v(S) > 0 for all subsets S of P that belong to
A. A subset N of X is said to be a negative set if N € A and v(S) < 0 for
all subsets S of P that belong to A.

9.2 The Hahn Decomposition Theorem

Proposition 9.1 Let X be a set, let A be a o-algebra of subsets of X, and let
v be a signed measure defined on A. Suppose that v(N) =0 for all negative
subsets N of X. Then v(S) >0 for all S € A.

Proof We define the measurable subsets of X to be those that belong to
the o-algebra A. Suppose that there existed a measurable subset S of X
for which v(S) < 0. The S could not be a negative set, and therefore there
would exist some measurable subset £ of S for which v(F) > 0. There would
then exist some positive integer k; and a measurable subset F} of S such that
v(Fy) > 1/ky, and such that k; is the smallest positive integer for which there
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exists a measurable subset F} of S satisfying v(Fy) > 1/ky. Let S; = S\ F.
Then v(S) = v(S) — v(F1) < 0. It would therefore follow that there would
exist some positive integer ko and a measurable subset F, of S; such that
v(Fy) > 1/ks, and such that ko is the smallest positive integer for which
there exists a measurable subset F, of S; satisfying v(Fy) > 1/ks. Then Fy
and F3 would be disjoint subsets of S. We could continue in this fashion to
obtain an infinite sequence of positive integers ki, ko, k3, ... and an infinite
sequence F, Iy, F3, ... of pairwise disjoint measurable subsets of S such that
v(Fy,) > 1/k,, for all positive integers m, and such that, for each positive
integer m, the positive integer k,, is the smallest positive integer for which

m—1
there exists a corresponding subset F,,, of S\ |J F} satisfying v(F,,) > 1/kp,.
=1

J
Indeed suppose that positive integers kq, ko, ..., k,_1 and pairwise disjoint

measurable subsets Fi, Fs, ..., F,,_1 have been found with the required prop-
m—1 m—1

erties. Let S, =S\ U Fj. Then v(S,,) =v(S) — > v(F;) < 0. But then
j=1 j=1

S, would not be a negative set, as X contains no measurable sets N sat-
isfying v(N) < 0. Therefore there would exist a subset G of S, satisfying
v(G) > 0, and therefore there would exist a positive integer k,, and a mea-
surable subset F,, of S,, such that v(F,,) > 1/k,,, and such that k,, is the
smallest positive integer for which there exists a measurable subset F,, of .S,,
satisfying v(F,,) > 1/kp,.

We see therefore that if S were a measurable subset of X satisfying v(S) <
0 then there would exist an infinite sequence ki, ks, k3, . . . of positive integers
and an infinite sequence Fi, Fy, F3, ... of pairwise disjoint subsets of S such
that v(F,,) > 1/k,, for all positive integers m, and such that, for each positive
integer m, the positive integer k,, is the smallest positive integer for which

m—1
there exists a subset F,, of S\ |J Fj satisfying v(F,,) > 1/k,,. Clearly
j=1

+o00

ky < kpyyq for all positive integers m. Let F' = |J F,,. The countable
m=1

additivity of the signed measure v would ensure that

+oo +oo
Z 1/ kn < ZV(Fm) =v(F) < 400,
m=1 m=1

Therefore lim k! = 0, and thus lim k, = +oco. Also v(S\ F) =

m——+00 m—-+00
v(S) — v(F) < v(S) < 0, and moreover if G were a measurable subset of

S\ F then v(G) < 1/(k,, — 1) for all positive integers k,, for which k,, > 1,
and therefore v(G) < 0. Thus S\ F' would be a negative subset of X, and
v(S'\ F) < 0. But X contains no negative set N satsifying v(N) < 0. Thus
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the existence of a measurable subset S of X satisfying v(S) < 0 would lead
to a contradiction. We conclude therefore that v(S) > 0 for all measurable
subsets S of X, as required. |

Theorem 9.2 (Hahn Decomposition Theorem) Let X be a set, let A be a
o-algebra of subsets of X, and let v be a signed measure defined on the o-
algebra A. Then there exist subsets N and P of X, such that N is a negative
set, P is a positive set, X = NUP, NN P = 0.

Proof We define the measurable subsets of X to be those that belong to
the o-algebra A. The empty set is a negative set, and therefore the set X
has negative subsets. Let the extended real number a be the infimum (or
greatest lower bound) of the values of v(Z) for all negative subsets Z of
X, let Ny, Ny, N3, ... be an infinite sequence of negative sets in X with the

+o00
property that v(N;) — a in [—00,0] as j — 400, and let N = |J N;. Let
j=1

m—1
S be a subset of N, let S; = SN N; and let S,,, = (SN N,,) \ U N, for

j=1
all integers m satisfying m > 1. Then the sets Si,S55,S53,... are pairwise
disjoint, S,, C N,, for all positive integers m, and |J S,, = S. It follows
m=1
+o00
from the countable additivity of the signed measure v that v(S) = > v(S,,).
m=1

Also v(S,,) < 0 for all positive integers m, as S,, is a measurable subset
of the negative set N,,. It follows that v(S) < 0. Thus the set N is a
measurable set. It follows from this that v(N \ N,,) <0, and therefore that
v(N) =v(N\ N,,) + v(N,,) < v(N,,) for all positive integers m. But then
v(N) < lim v(N,,) = «, and therefore ¥(N) = «. In particular a > —o0,

m—-+00
as the values of the signed measure v are by definition real numbers.

Let P = X \ N. If the set P were to contain a negative set S satisfying
v(S) < 0 then N US would be a negative set in X satisfying v(N U S) < a.
But this is impossible, as « is by definition the infimum of the values v(Z7)
as Z ranges over all negative subsets of X. Therefore P cannot contain any
negative set S satisfying v(S) < 0. We may therefore apply Proposition 9.1
to the restriction of the signed measure v to the measurable subsets of P,
concluding that v(S) > 0 for all measurable subsets S of P. Thus P is a
positive set. We see therefore that N is a negative set, P is a positive set,
X =NUPand NN P =0, as required. ||

Definition Let X be a set, let A be a o-algebra of subsets of X, and let v
be a signed measure defined on the o-algebra A. A Hahn decomposition of
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X with respect to the signed measure v is a pair (N, P) of subsets of X such
that IV is a negative set for the signed measure v, P is a positive set for v,
X=NUPand NN P = 0.

The Hahn Decomposition Theorem thus guarantees the existence of a
Hahn decomposition for any signed measure.

Lemma 9.3 Let X be a set, let A be a o-algebra of subsets of X, let v be
a signed measure defined on the o-algebra A, and let (N1, Py) and (N, P»)
be Hahn decompositions of X with respect to the signed measure v, where
the sets N1 and Ny are negative, and the sets P, and P are positive. Then

v(SNN) =v(SNNy) and v(SNP) =v(SNP,) forall S € A.
Proof Let S € A. Then
SOAN; =(SNNNNy)U(SNN; N Py).

Now SNN;NP, C Ny, and therefore v(SNN1NP,y) < 0. Also SON1NP, C P,
and therefore v(S N Ny N Py) > 0. It follows that v(S N N; N P,) =0, and
therefore

V(Sle):V(SlemN2)+V(SmN1ﬂP2>:V(SlemN2>.

Similarly v(SNNy) = v(SNN;NNy). It follows that v(SNNy) = v(SNNy).
Moreover

v(SNP)=v(S)—v(SNNy) =v(S)—v(SNNy) =v(SNP),

as required. |}

9.3 The Jordan Decomposition of a Signed Measure

Let X be a set, let A be a o-algebra of subsets of X, and let v be a signed
measure defined on the o-algebra A. Then there exists a Hahn decomposition
of X as the disjoint union of a negative set N and a positive set P. Let
vi(S)=v(SNP)and v_(S) = —v(SNN) for all S € S. Then v, and v_
are countably additive functions defined on A and are thus (non-negative)
measures on X. Moreover

v(S)=v(SNP)+v(SNN)=wvy(S)—v_(5)

for all subsets S of X that belong to A. Moreover it follows from Lemma 9.3
that the values of v, (S) and v_(S) are determined by the signed measure v
and the measurable set S, and do not depend on the choice of the Hahn
decomposition (N, P). It follows that every signed measure v defined on A
may be expressed as the difference v, — v_ of two (non-negative) measures

defined on A.



Definition Let X be a set, let A be a o-algebra of subsets of X, and let v be
a signed measure defined on the g-algebra A. The Jordan decomposition of v
on X is the representation of v as the difference v, —v_ of two (non-negative)
measures v, and v_ defined on A, where, for each S € A, the values v (5)
and v_(.5) of the measures v, and v_ on S are characterized by the property
that v, (S) = v(SNP) and v_(S) = —v(SNN) for any Hahn decomposition
of X as the disjoint union of a negative set N and a positive set P.

Definition Let X be a set, let A be a o-algebra of subsets of X, and let v be
a signed measure defined on the o-algebra A. The total variation of v is the
(non-negative) measure |v| defined on A such that |v|(F) = vy (F) +v_(E)
for all £ € A.

Let X be a set, let A be a o-algebra of subsets of X, and let v be a signed
measure defined on the o-algebra A. Then

ve=4(vl+v) and v =Ly~

9.4 Absolute Continuity

Definition Let X be a set, let A be a o-algebra of subsets of X, let u be
a (non-negative) measure defined on A, and let v be a measure or signed
measure defined on A. The measure v is said to be absolutely continuous
with respect to the measure p if v(E) = 0 for all E € A satisfying pu(E) = 0.
If v is absolutely continuous with respect to the measure i then we denote
this fact by writing v << p.

Lemma 9.4 Let X be a set, let A be a o-algebra of subsets of X, let p be
a (non-negative) measure defined on A, and let v be a measure or signed
measure defined on A. Then v << u if and only if vy << v and v_ << v.
Also v << p if and only if |v] << p.

Proof Let X = N U P where N is the negative set and P is the positive
set determined by a Hahn Decomposition of X, so that P = X \ N. Then
v—+(E)=v(ENP)and v_(E)=—v(ENN) for all E € A.

If vy <<pand v_ << pthen v(F)=v,(E)—v_(E)=0forall E € A
satisfying u(E) = 0, and therefore v << p. Conversely suppose that v << p.
Let £ € A satisfy u(F) = 0. Then up(ENP) =0 and up(ENN) = 0, and
therefore v, (E) = v(ENP) =0and v_(E) = —v(ENN) = 0. Thus vy <<
and v_ << p if and only if v << p.

Now 0 < vy (F) < |[v|(E), 0 < v_(F) <
v_(FE) for all E € A. Therefore |v|(E) =0

V[(E) and |v|(E) = vi(E) +
if and only if v, (F) = 0 and

6



v_(E) = 0. It follows that |v| << p if and only if v, << p and v_ << p.
These results ensure that v << p if and only if |v| << p, as required. ||

Proposition 9.5 Let X be a set, let A be a o-algebra of subsets of X, let p
and v be (non-negative) measures defined on A, where v(X) < 4+o00. Then
v << u if and only if, given any strictly positive real number €, there ex-
ists some strictly positive real number 0 such that v(E) < e for all E € A
satisfying p(E) < 9.

Proof Let v be a non-negative measure satisfying v(X) < 400, and suppose
that, given any strictly positive real number ¢, there exists some strictly
positive real number ¢ such that v(E) < ¢ for all E € A satisfying u(F) < 0.
Let £ € A satisfy pu(E£) = 0. Then v(E) < ¢ for all € > 0, and therefore
v(E) = 0.

We must prove the converse result. Suppose therefore that v is a non-
negative measure for which v(X) < +o0, and suppose also that it is not
the case that, given any strictly positive real number €, there exists some
strictly positive real number § such that v(E) < € for all E € A satistying
pu(E) < 6. Then there exists some strictly positive real number ¢y and an
infinite sequence FE, Fs, E3, ... of subsets of X belonging to A such that
v(E;) > g0 and u(E;) < 1/27 for all positive integers j. Let F; = JU Ek.

k=j
Then

+00 400 1 1
k=j k=j

for all j € N. It follows that }lirgl pu(F;) = 0. Now Fjiq C F; and v(Fj) >
j—rtoo

v(E;) > ep for all j € N. Let F' = ﬂjzof w(F;). It follows from Lemma 7.21
that u(F) = 'liin u(F;) = 0 and v(F) = 'ligrn p(Fj) > eo. Thus the
j—too oo

measure v is not absolutely continuous with respect to v. We conclude that
if v is a measure that is absolutely continuous with respect to p, and if
v(X) < 400, then, given any strictly positive real number ¢, there exists
some strictly positive real number ¢ such that v(E) < ¢ for all £ € A
satisfying u(E) < ¢, as required. |

Corollary 9.6 Let X be a set, let A be a o-algebra of subsets of X, let p be
a (non-negative) measure defined on A, and let v be a signed measure defined
on A. Then v << u if and only if, given any strictly positive real number ¢,

there exists some strictly positive real number § such that |v(E)| < € for all
E € A satisfying u(E) < 4.



Proof If v is a signed measure then v is absolutely continuous with respect
to p if and only if its total variation |v| is absolutely continuous with re-
spect to p (Lemma 9.4). Moreover |v(X)| = v (X) +v_(X) < 4+o00. The
result therefore follows immediately on applying Proposition 9.5 to the mea-
sure |v|.

9.5 The Radon-Nikodym Theorem

The following theorem is a special case of the Radon-Nikodym Theorem.

Theorem 9.7 Let X be a set, let A be a o-algebra of subsets of X, and let
p and v be (non-negative) measures defined on A. Suppose that p(A) < 400
and v(A) < 400, and that v << u. Then there exists a non-negative function
f:X — [0,400] on X that is integrable with respect to the measure p and
that satisfies

oE) = [ 1
forall E € A.

Proof We define the measurable subsets of X to be those subsets that belong
to the o-algebra A on which the measures p and v are defined.

Let G denote the collection of all non-negative functions g: X — [0, +00]
on X that are integrable with respect to the measure 1 and that satisfy

[Egdu < v(E)

for all E € A. The set G is non-empty, as it contains the zero function.
Moreover [, gdu < v(X) for all g € G. It follows that the set

[frwires

is a non-empty set of real numbers which is bounded above, and therefore
has a least upper bound in the set R of real numbers. Let

M—sup{/gdu:geg}.
X

We shall prove that there exists a function f in the collection G that satisfies
Jx fdp = M. We shall also prove that such a function f satisfies v(E) =
J fdp for all E € A.



Now the definition of M as the least upper bound of the integrals of the
functions in G ensures that there exists an infinite sequence g1, go, g3, . . . of
functions belonging to G, where

1
/gmdu>M——
X m

for all m € N. For each positive integer m, let f,,: X — [0, +00] be defined
such that

fm(z) = max{g;(z) : 7 =1,2,...,m},
and let E,, 1, Epo, ..., Epm € A be defined such that

Enj={r€ X f(z) = g;(z) and f,,(z) > gx(x) for all k < j}.

(Thus a point  of X belongs to the set £, ; for some positive integers m and
j with j < m if and only if j is the smallest positive integer for which f,,(x) =
gj(x).) Then, for each positive integer m, the function f,, is measurable with

respect to the measure p, the sets Fy, 1, Fp o, ..., Ey, ; are pairwise disjoint,
and X = |J E,, ;. It follows that
j=1
/fmdu:Z/ fmd,u:Z/ gjdugszﬂEm,j):l/(E)
E j=1 EﬂEm,j j=1 EﬂEm’j =1

for all £ € A, and therefore f,, € G. Now f,,(x) > gn(x), and therefore

1
M—-—< gmdué/fmduﬁM
m X X

for all positive integers m. Also f,(z) < fiu1(z) for all m € N and z € X.
Let the function f: X — [0, +oc] be defined such that f(z) = lirJrrl fm(2)

for all x € X. Then the function f is measurable, and it follows from the
Monotone Convergence Theorem (Theorem 8.19) that

/Efduz lim /EfmduSV(E)

m——+00

for all £ € £. Thus f € G. Moreover

/fdu: lim /fmd,u:M.
X m—+oo Jx

Finally we prove that [, fdu = v(E) for all E € A. Suppose that
this were not the case. Then there would exist some E € A for which



S [dp < v(E). Moreover ji(E) < 400 (because u(X) < +00), and therefore
there would exist some strictly positive real number e such that [, (f+¢) du <
v(E). Let 0(F) = v(F)— [,(f+¢) du for all measurable subsets F' of E. Then
o would be a signed measure defined on the g-algebra of measurable subsets
of E. It follows from the Hahn Decomposition Theorem (Theorem 9.2) that
there would exist a measurable subset P of E such that P is positive with
respect to the signed measure o and E \ P is negative with respect to o.
Moreover o(P) > o(P) + o(E \ P) = o(F) > 0, and therefore v(P) >
/ p(f +€)dp > 0. The absolute continuity of the measure v with respect to
the measure p would then ensure that p(P) > 0. Define h: X — [0, +00]

such that i) ;
_ r)+e iftxeP;
W)—{ f@)  itzeX\P.
Then ¢(S) > 0 and thus [, hdp < v(S) for all measurable subsets S of P.
Also [yhdp = [y fdp < v(S) for all measurable subsets S of X \ P. It

would follow that [ hdp < v(S) for all S € A, and therefore h € G. But
this is impossible as

/hdu:/fdu~l—€u(P):M—i—5u(P)>M,
X X

where M is by definition the least upper bound of the values of the integrals
/ x gdp for all g € G. Thus the existence of a measurable set £ for which
J fdp < v(E) would lead to a contradiction. We conclude therefore that
fE fdu=v(E) for all E € A, and thus f is the required function. |

Definition Let (X, A, ) be a measure space. The measure p is said to

be o-finite if there exists an infinite sequence E7, Ey, Fs, ... of measurable
+o00

subsets of X such that u(E;) < 400 for all j and X = |J E;.
j=1

Example Lebesgue measure is a o-finite measure defined on the Lebesgue-
measurable sets of n-dimensional Euclidean space R™. Indeed R" is the union
of the open balls of radius j about the origin for ;7 = 1,2,3,..., and each
such open ball is a Lebesgue-measurable set with finite measure.

Definition Let (X, .A, 1) be a measure space. A property P(x) that may or
may not be satisfied by points x of X is said to hold almost everywhere on
X if the set of points of X for which the property fails to hold is contained
in a measurable set of measure zero.
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Let (X, A, 1) be a measure space, and let f and g be functions defined
on X. The functions f and g are said to be equal almost everywhere on X
if {x € X : f(z) # g(x)} C E for some measurable subset E of X satisfying
u(E) = 0.

Proposition 9.8 Let (X, A, 1) be a measure space, and let f and g be real-
valued measurable functions defined on X. Suppose that fE fdu = ngdu
for all E € A. Then the functions f and g are equal almost everywhere on

X.

Proof For each positive integer j, let £; = {x € X : f(z) —g(x) > 1/5}.

Then
0:/ (f—g)duzu@) > 0,
Ej

J
and therefore p(E;) = 0 for all positive integers j. Now

{zeX: fle)>g(0)} = U Ej,

where E; C Ejy, for all j € N. It follows that

p{z e X f(z) > g(0)}) = lim u(E;) =0,

j—-+oo

Similarly p({z € X : f(x) < g(x)}) = 0. It follows that

plfe € X o f(x) # g(2)}) =0,

and thus the functions f and g are equal almost everywhere on X, as re-
quired. |}

Theorem 9.9 (Radon-Nikodym) Let X be a set, let A be a o-algebra of
subsets of X, let pu be a o-finite measure defined on A, and let v be a signed
measure defined on A. Suppose that v << p. Then there exists a function
f: X — [—00,400] on X that is integrable with respect to the measure p and
that satisfies

WE) = [ 1

for all E € A. Moreover any two functions with this property are equal
almost everywhere on X.
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Proof We define the measurable subsets of X to be those subsets that belong
to the o-algebra A. The measure p is o-finite, and therefore there exists an
infinite sequence Fi, Fy, F, . .. of measurable subsets of X such that pu(F}) <

+oo Jj—1
+oo for all j € Nand X = | Fj. Let By = Fi, and let E; = F; \ |J Fy

j=1 k=1
for all integers j satisfying j > 1. Then the sets Ey, Fs, Ejs, ... are pairwise

disjoint measurable sets, p(L;) < +oo for all j € N, and X = U E;.
j=1
First let us suppose that the measure v is non-negative. We may then

apply Theorem 9.7 to the restriction of the measure v to each set Fj;. It
follows that, for each pos1t1ve integer j, there exists a integrable functlon f]

defined on Ej such that v(E) = || 5 fJ dp for all measurable subsets E of Ej.
Let f; be the integrable functlon on X which is defined such that f;(z) =
fij(x)forallz € E;, and f;(z) =0forallz € X\E Then [, f; p = v(ENE;)

for all measurable subsets £ of X. Let f = Z fj (so that f(z) = f;(z) for

Jj=
all x € E;). It follows from Proposition 8.21 that

+o0o +o0o
/EfdMZ;/Efjdu=;V(EﬂEj)=V(E)

for all measurable subsets E/ of X. This proves the existence of the required
integrable function f in the case where the signed measure v is non-negative.
If the signed measure v takes both positive and negative values then we can
apply the result for non-negative measures to the measures v, and v_ in
order to deduce the existence of integrable non-negative functions f, and f_
on X such that v, (E) = [, fyduand v_(E) = [, f—dpfor all E € A. Then
V(E) =vy(E)—v_(E)= [, fdufor all E € A, where f = f, — f_.

It follows from Proposition 9.8 that if f and g are integrable functions on
X,and if v(E) = [, fdu = [, gdu for all E € A, then the functions f and
g are equal almost everywhere on X, as required. |
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