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9 Signed Measures and the Radon-Nikodym

Theorem

9.1 Signed Measures

Definition Let X be a set, and let A be a σ-algebra of subsets of X. A
signed measure is a function ν:A → R that maps elements of A to real
numbers and is countably additive, so that

ν
(⋃

E∈E
E
)

=
∑
E∈E

ν(E)

for any pairwise disjoint countable collection E of subsets of X satisfying
E ⊂ A.

Thus (non-negative) measures and signed measures are countably additive
functions defined on a σ-algebra A of subsets of some set X. Non-negative
measures take values in the set [0,+∞] of non-negative extended real num-
bers, whereas signed measures take values in the field R of real numbers. In
particular, if ν is a signed measure on a σ-algebra of subsets of some set X,
and if E ∈ A, then ν(E) never takes on either of the values +∞ or −∞.

We shall prove that any signed measure may be represented as the differ-
ence of two non-negative measures.

Definition Let X be a set, let A be a σ-algebra of subsets of X, and let ν
be a signed measure defined on the σ-algebra A. A subset P of X is said to
be a positive set if P ∈ A and ν(S) ≥ 0 for all subsets S of P that belong to
A. A subset N of X is said to be a negative set if N ∈ A and ν(S) ≤ 0 for
all subsets S of P that belong to A.

9.2 The Hahn Decomposition Theorem

Proposition 9.1 Let X be a set, let A be a σ-algebra of subsets of X, and let
ν be a signed measure defined on A. Suppose that ν(N) = 0 for all negative
subsets N of X. Then ν(S) ≥ 0 for all S ∈ A.

Proof We define the measurable subsets of X to be those that belong to
the σ-algebra A. Suppose that there existed a measurable subset S of X
for which ν(S) < 0. The S could not be a negative set, and therefore there
would exist some measurable subset F of S for which ν(F ) > 0. There would
then exist some positive integer k1 and a measurable subset F1 of S such that
ν(F1) ≥ 1/k1, and such that k1 is the smallest positive integer for which there
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exists a measurable subset F1 of S satisfying ν(F1) ≥ 1/k1. Let S1 = S \ F1.
Then ν(S1) = ν(S)− ν(F1) < 0. It would therefore follow that there would
exist some positive integer k2 and a measurable subset F2 of S1 such that
ν(F2) ≥ 1/k2, and such that k2 is the smallest positive integer for which
there exists a measurable subset F2 of S1 satisfying ν(F2) ≥ 1/k2. Then F1

and F2 would be disjoint subsets of S. We could continue in this fashion to
obtain an infinite sequence of positive integers k1, k2, k3, . . . and an infinite
sequence F1, F2, F3, . . . of pairwise disjoint measurable subsets of S such that
ν(Fm) ≥ 1/km for all positive integers m, and such that, for each positive
integer m, the positive integer km is the smallest positive integer for which

there exists a corresponding subset Fm of S\
m−1⋃
j=1

Fj satisfying ν(Fm) ≥ 1/km.

Indeed suppose that positive integers k1, k2, . . . , km−1 and pairwise disjoint
measurable subsets F1, F2, . . . , Fm−1 have been found with the required prop-

erties. Let Sm = S \
m−1⋃
j=1

Fj. Then ν(Sm) = ν(S)−
m−1∑
j=1

ν(Fj) < 0. But then

Sm would not be a negative set, as X contains no measurable sets N sat-
isfying ν(N) < 0. Therefore there would exist a subset G of Sm satisfying
ν(G) > 0, and therefore there would exist a positive integer km and a mea-
surable subset Fm of Sm such that ν(Fm) ≥ 1/km, and such that km is the
smallest positive integer for which there exists a measurable subset Fm of Sm
satisfying ν(Fm) ≥ 1/km.

We see therefore that if S were a measurable subset of X satisfying ν(S) <
0 then there would exist an infinite sequence k1, k2, k3, . . . of positive integers
and an infinite sequence F1, F2, F3, . . . of pairwise disjoint subsets of S such
that ν(Fm) ≥ 1/km for all positive integers m, and such that, for each positive
integer m, the positive integer km is the smallest positive integer for which

there exists a subset Fm of S \
m−1⋃
j=1

Fj satisfying ν(Fm) ≥ 1/km. Clearly

km ≤ km+1 for all positive integers m. Let F =
+∞⋃
m=1

Fm. The countable

additivity of the signed measure ν would ensure that

+∞∑
m=1

1/km ≤
+∞∑
m=1

ν(Fm) = ν(F ) < +∞,

Therefore lim
m→+∞

k−1
m = 0, and thus lim

m→+∞
km = +∞. Also ν(S \ F ) =

ν(S) − ν(F ) ≤ ν(S) < 0, and moreover if G were a measurable subset of
S \ F then ν(G) < 1/(km − 1) for all positive integers km for which km > 1,
and therefore ν(G) ≤ 0. Thus S \ F would be a negative subset of X, and
ν(S \ F ) < 0. But X contains no negative set N satsifying ν(N) < 0. Thus
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the existence of a measurable subset S of X satisfying ν(S) < 0 would lead
to a contradiction. We conclude therefore that ν(S) ≥ 0 for all measurable
subsets S of X, as required.

Theorem 9.2 (Hahn Decomposition Theorem) Let X be a set, let A be a
σ-algebra of subsets of X, and let ν be a signed measure defined on the σ-
algebra A. Then there exist subsets N and P of X, such that N is a negative
set, P is a positive set, X = N ∪ P , N ∩ P = ∅.

Proof We define the measurable subsets of X to be those that belong to
the σ-algebra A. The empty set is a negative set, and therefore the set X
has negative subsets. Let the extended real number α be the infimum (or
greatest lower bound) of the values of ν(Z) for all negative subsets Z of
X, let N1, N2, N3, . . . be an infinite sequence of negative sets in X with the

property that ν(Nj) → α in [−∞, 0] as j → +∞, and let N =
+∞⋃
j=1

Nj. Let

S be a subset of N , let S1 = S ∩ N1 and let Sm = (S ∩ Nm) \
m−1⋃
j=1

Nj for

all integers m satisfying m > 1. Then the sets S1, S2, S3, . . . are pairwise

disjoint, Sm ⊂ Nm for all positive integers m, and
∞⋃
m=1

Sm = S. It follows

from the countable additivity of the signed measure ν that ν(S) =
+∞∑
m=1

ν(Sm).

Also ν(Sm) ≤ 0 for all positive integers m, as Sm is a measurable subset
of the negative set Nm. It follows that ν(S) ≤ 0. Thus the set N is a
measurable set. It follows from this that ν(N \Nm) ≤ 0, and therefore that
ν(N) = ν(N \ Nm) + ν(Nm) ≤ ν(Nm) for all positive integers m. But then
ν(N) ≤ lim

m→+∞
ν(Nm) = α, and therefore ν(N) = α. In particular α > −∞,

as the values of the signed measure ν are by definition real numbers.
Let P = X \N . If the set P were to contain a negative set S satisfying

ν(S) < 0 then N ∪ S would be a negative set in X satisfying ν(N ∪ S) < α.
But this is impossible, as α is by definition the infimum of the values ν(Z)
as Z ranges over all negative subsets of X. Therefore P cannot contain any
negative set S satisfying ν(S) < 0. We may therefore apply Proposition 9.1
to the restriction of the signed measure ν to the measurable subsets of P ,
concluding that ν(S) ≥ 0 for all measurable subsets S of P . Thus P is a
positive set. We see therefore that N is a negative set, P is a positive set,
X = N ∪ P and N ∩ P = ∅, as required.

Definition Let X be a set, let A be a σ-algebra of subsets of X, and let ν
be a signed measure defined on the σ-algebra A. A Hahn decomposition of
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X with respect to the signed measure ν is a pair (N,P ) of subsets of X such
that N is a negative set for the signed measure ν, P is a positive set for ν,
X = N ∪ P and N ∩ P = ∅.

The Hahn Decomposition Theorem thus guarantees the existence of a
Hahn decomposition for any signed measure.

Lemma 9.3 Let X be a set, let A be a σ-algebra of subsets of X, let ν be
a signed measure defined on the σ-algebra A, and let (N1, P1) and (N2, P2)
be Hahn decompositions of X with respect to the signed measure ν, where
the sets N1 and N2 are negative, and the sets P1 and P2 are positive. Then
ν(S ∩N1) = ν(S ∩N2) and ν(S ∩ P1) = ν(S ∩ P2) for all S ∈ A.

Proof Let S ∈ A. Then

S ∩N1 = (S ∩N1 ∩N2) ∪ (S ∩N1 ∩ P2).

Now S∩N1∩P2 ⊂ N1, and therefore ν(S∩N1∩P2) ≤ 0. Also S∩N1∩P2 ⊂ P2,
and therefore ν(S ∩ N1 ∩ P2) ≥ 0. It follows that ν(S ∩ N1 ∩ P2) = 0, and
therefore

ν(S ∩N1) = ν(S ∩N1 ∩N2) + ν(S ∩N1 ∩ P2) = ν(S ∩N1 ∩N2).

Similarly ν(S∩N2) = ν(S∩N1∩N2). It follows that ν(S∩N1) = ν(S∩N2).
Moreover

ν(S ∩ P1) = ν(S)− ν(S ∩N1) = ν(S)− ν(S ∩N2) = ν(S ∩ P2),

as required.

9.3 The Jordan Decomposition of a Signed Measure

Let X be a set, let A be a σ-algebra of subsets of X, and let ν be a signed
measure defined on the σ-algebraA. Then there exists a Hahn decomposition
of X as the disjoint union of a negative set N and a positive set P . Let
ν+(S) = ν(S ∩ P ) and ν−(S) = −ν(S ∩ N) for all S ∈ S. Then ν+ and ν−
are countably additive functions defined on A and are thus (non-negative)
measures on X. Moreover

ν(S) = ν(S ∩ P ) + ν(S ∩N) = ν+(S)− ν−(S)

for all subsets S of X that belong to A. Moreover it follows from Lemma 9.3
that the values of ν+(S) and ν−(S) are determined by the signed measure ν
and the measurable set S, and do not depend on the choice of the Hahn
decomposition (N,P ). It follows that every signed measure ν defined on A
may be expressed as the difference ν+ − ν− of two (non-negative) measures
defined on A.
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Definition Let X be a set, let A be a σ-algebra of subsets of X, and let ν be
a signed measure defined on the σ-algebra A. The Jordan decomposition of ν
on X is the representation of ν as the difference ν+−ν− of two (non-negative)
measures ν+ and ν− defined on A, where, for each S ∈ A, the values ν+(S)
and ν−(S) of the measures ν+ and ν− on S are characterized by the property
that ν+(S) = ν(S ∩P ) and ν−(S) = −ν(S ∩N) for any Hahn decomposition
of X as the disjoint union of a negative set N and a positive set P .

Definition Let X be a set, let A be a σ-algebra of subsets of X, and let ν be
a signed measure defined on the σ-algebra A. The total variation of ν is the
(non-negative) measure |ν| defined on A such that |ν|(E) = ν+(E) + ν−(E)
for all E ∈ A.

Let X be a set, let A be a σ-algebra of subsets of X, and let ν be a signed
measure defined on the σ-algebra A. Then

ν+ = 1
2
(|ν|+ ν) and ν− = 1

2
(|ν| − ν),

9.4 Absolute Continuity

Definition Let X be a set, let A be a σ-algebra of subsets of X, let µ be
a (non-negative) measure defined on A, and let ν be a measure or signed
measure defined on A. The measure ν is said to be absolutely continuous
with respect to the measure µ if ν(E) = 0 for all E ∈ A satisfying µ(E) = 0.
If ν is absolutely continuous with respect to the measure µ then we denote
this fact by writing ν << µ.

Lemma 9.4 Let X be a set, let A be a σ-algebra of subsets of X, let µ be
a (non-negative) measure defined on A, and let ν be a measure or signed
measure defined on A. Then ν << µ if and only if ν+ << ν and ν− << ν.
Also ν << µ if and only if |ν| << µ.

Proof Let X = N ∪ P where N is the negative set and P is the positive
set determined by a Hahn Decomposition of X, so that P = X \ N . Then
ν −+(E) = ν(E ∩ P ) and ν−(E) = −ν(E ∩N) for all E ∈ A.

If ν+ << µ and ν− << µ then ν(E) = ν+(E)− ν−(E) = 0 for all E ∈ A
satisfying µ(E) = 0, and therefore ν << µ. Conversely suppose that ν << µ.
Let E ∈ A satisfy µ(E) = 0. Then µ(E ∩ P ) = 0 and µ(E ∩ N) = 0, and
therefore ν+(E) = ν(E∩P ) = 0 and ν−(E) = −ν(E∩N) = 0. Thus ν+ << µ
and ν− << µ if and only if ν << µ.

Now 0 ≤ ν+(E) ≤ |ν|(E), 0 ≤ ν−(E) ≤ |ν|(E) and |ν|(E) = ν+(E) +
ν−(E) for all E ∈ A. Therefore |ν|(E) = 0 if and only if ν+(E) = 0 and
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ν−(E) = 0. It follows that |ν| << µ if and only if ν+ << µ and ν− << µ.
These results ensure that ν << µ if and only if |ν| << µ, as required.

Proposition 9.5 Let X be a set, let A be a σ-algebra of subsets of X, let µ
and ν be (non-negative) measures defined on A, where ν(X) < +∞. Then
ν << µ if and only if, given any strictly positive real number ε, there ex-
ists some strictly positive real number δ such that ν(E) < ε for all E ∈ A
satisfying µ(E) < δ.

Proof Let ν be a non-negative measure satisfying ν(X) < +∞, and suppose
that, given any strictly positive real number ε, there exists some strictly
positive real number δ such that ν(E) < ε for all E ∈ A satisfying µ(E) < δ.
Let E ∈ A satisfy µ(E) = 0. Then ν(E) < ε for all ε > 0, and therefore
ν(E) = 0.

We must prove the converse result. Suppose therefore that ν is a non-
negative measure for which ν(X) < +∞, and suppose also that it is not
the case that, given any strictly positive real number ε, there exists some
strictly positive real number δ such that ν(E) < ε for all E ∈ A satisfying
µ(E) < δ. Then there exists some strictly positive real number ε0 and an
infinite sequence E1, E2, E3, . . . of subsets of X belonging to A such that

ν(Ej) ≥ ε0 and µ(Ej) < 1/2j for all positive integers j. Let Fj =
+∞⋃
k=j

Ek.

Then

µ(Fj) ≤
+∞∑
k=j

µ(Ek) <
+∞∑
k=j

1

2k
=

1

2j−1

for all j ∈ N. It follows that lim
j→+∞

µ(Fj) = 0. Now Fj+1 ⊂ Fj and ν(Fj) ≥

ν(Ej) ≥ ε0 for all j ∈ N. Let F =
⋂+∞
j=1 µ(Fj). It follows from Lemma 7.21

that µ(F ) = lim
j→+∞

µ(Fj) = 0 and ν(F ) = lim
j→+∞

µ(Fj) ≥ ε0. Thus the

measure ν is not absolutely continuous with respect to ν. We conclude that
if ν is a measure that is absolutely continuous with respect to µ, and if
ν(X) < +∞, then, given any strictly positive real number ε, there exists
some strictly positive real number δ such that ν(E) < ε for all E ∈ A
satisfying µ(E) < δ, as required.

Corollary 9.6 Let X be a set, let A be a σ-algebra of subsets of X, let µ be
a (non-negative) measure defined on A, and let ν be a signed measure defined
on A. Then ν << µ if and only if, given any strictly positive real number ε,
there exists some strictly positive real number δ such that |ν(E)| < ε for all
E ∈ A satisfying µ(E) < δ.
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Proof If ν is a signed measure then ν is absolutely continuous with respect
to µ if and only if its total variation |ν| is absolutely continuous with re-
spect to µ (Lemma 9.4). Moreover |ν(X)| = ν+(X) + ν−(X) < +∞. The
result therefore follows immediately on applying Proposition 9.5 to the mea-
sure |ν|.

9.5 The Radon-Nikodym Theorem

The following theorem is a special case of the Radon-Nikodym Theorem.

Theorem 9.7 Let X be a set, let A be a σ-algebra of subsets of X, and let
µ and ν be (non-negative) measures defined on A. Suppose that µ(A) < +∞
and ν(A) < +∞, and that ν << µ. Then there exists a non-negative function
f :X → [0,+∞] on X that is integrable with respect to the measure µ and
that satisfies

ν(E) =

∫
E

f dµ

for all E ∈ A.

Proof We define the measurable subsets of X to be those subsets that belong
to the σ-algebra A on which the measures µ and ν are defined.

Let G denote the collection of all non-negative functions g:X → [0,+∞]
on X that are integrable with respect to the measure µ and that satisfy∫

E

g dµ ≤ ν(E)

for all E ∈ A. The set G is non-empty, as it contains the zero function.
Moreover

∫
X
g dµ ≤ ν(X) for all g ∈ G. It follows that the set{∫

X

g dµ : g ∈ G
}

is a non-empty set of real numbers which is bounded above, and therefore
has a least upper bound in the set R of real numbers. Let

M = sup

{∫
X

g dµ : g ∈ G
}
.

We shall prove that there exists a function f in the collection G that satisfies∫
X
f dµ = M . We shall also prove that such a function f satisfies ν(E) =∫

E
f dµ for all E ∈ A.
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Now the definition of M as the least upper bound of the integrals of the
functions in G ensures that there exists an infinite sequence g1, g2, g3, . . . of
functions belonging to G, where∫

X

gm dµ > M − 1

m

for all m ∈ N. For each positive integer m, let fm:X → [0,+∞] be defined
such that

fm(x) = max{gj(x) : j = 1, 2, . . . ,m},
and let Em,1, Em,2, . . . , Em,m ∈ A be defined such that

Em,j = {x ∈ X : fm(x) = gj(x) and fm(x) > gk(x) for all k < j}.

(Thus a point x of X belongs to the set Em,j for some positive integers m and
j with j ≤ m if and only if j is the smallest positive integer for which fm(x) =
gj(x).) Then, for each positive integer m, the function fm is measurable with
respect to the measure µ, the sets Em,1, Em,2, . . . , Em,j are pairwise disjoint,

and X =
m⋃
j=1

Em,j. It follows that

∫
E

fm dµ =
m∑
j=1

∫
E∩Em,j

fm dµ =
m∑
j=1

∫
E∩Em,j

gj dµ ≤
m∑
j=1

ν(E ∩ Em,j) = ν(E)

for all E ∈ A, and therefore fm ∈ G. Now fm(x) ≥ gm(x), and therefore

M − 1

m
<

∫
X

gm dµ ≤
∫
X

fm dµ ≤M

for all positive integers m. Also fm(x) ≤ fm+1(x) for all m ∈ N and x ∈ X.
Let the function f :X → [0,+∞] be defined such that f(x) = lim

m→+∞
fm(x)

for all x ∈ X. Then the function f is measurable, and it follows from the
Monotone Convergence Theorem (Theorem 8.19) that∫

E

f dµ = lim
m→+∞

∫
E

fm dµ ≤ ν(E)

for all E ∈ E . Thus f ∈ G. Moreover∫
X

f dµ = lim
m→+∞

∫
X

fm dµ = M.

Finally we prove that
∫
E
f dµ = ν(E) for all E ∈ A. Suppose that

this were not the case. Then there would exist some E ∈ A for which
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∫
E
f dµ < ν(E). Moreover µ(E) < +∞ (because µ(X) < +∞), and therefore

there would exist some strictly positive real number ε such that
∫
E

(f+ε) dµ <
ν(E). Let σ(F ) = ν(F )−

∫
F

(f+ε) dµ for all measurable subsets F of E. Then
σ would be a signed measure defined on the σ-algebra of measurable subsets
of E. It follows from the Hahn Decomposition Theorem (Theorem 9.2) that
there would exist a measurable subset P of E such that P is positive with
respect to the signed measure σ and E \ P is negative with respect to σ.
Moreover σ(P ) ≥ σ(P ) + σ(E \ P ) = σ(E) > 0, and therefore ν(P ) >∫
P

(f + ε) dµ ≥ 0. The absolute continuity of the measure ν with respect to
the measure µ would then ensure that µ(P ) > 0. Define h:X → [0,+∞]
such that

h(x) =

{
f(x) + ε if x ∈ P ;
f(x) if x ∈ X \ P .

Then σ(S) ≥ 0 and thus
∫
S
h dµ ≤ ν(S) for all measurable subsets S of P .

Also
∫
S
h dµ =

∫
S
f dµ ≤ ν(S) for all measurable subsets S of X \ P . It

would follow that
∫
S
h dµ ≤ ν(S) for all S ∈ A, and therefore h ∈ G. But

this is impossible as∫
X

h dµ =

∫
X

f dµ+ εµ(P ) = M + εµ(P ) > M,

where M is by definition the least upper bound of the values of the integrals∫
X
g dµ for all g ∈ G. Thus the existence of a measurable set E for which∫

E
f dµ < ν(E) would lead to a contradiction. We conclude therefore that∫

E
f dµ = ν(E) for all E ∈ A, and thus f is the required function.

Definition Let (X,A, µ) be a measure space. The measure µ is said to
be σ-finite if there exists an infinite sequence E1, E2, E3, . . . of measurable

subsets of X such that µ(Ej) < +∞ for all j and X =
+∞⋃
j=1

Ej.

Example Lebesgue measure is a σ-finite measure defined on the Lebesgue-
measurable sets of n-dimensional Euclidean space Rn. Indeed Rn is the union
of the open balls of radius j about the origin for j = 1, 2, 3, . . ., and each
such open ball is a Lebesgue-measurable set with finite measure.

Definition Let (X,A, µ) be a measure space. A property P (x) that may or
may not be satisfied by points x of X is said to hold almost everywhere on
X if the set of points of X for which the property fails to hold is contained
in a measurable set of measure zero.
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Let (X,A, µ) be a measure space, and let f and g be functions defined
on X. The functions f and g are said to be equal almost everywhere on X
if {x ∈ X : f(x) 6= g(x)} ⊂ E for some measurable subset E of X satisfying
µ(E) = 0.

Proposition 9.8 Let (X,A, µ) be a measure space, and let f and g be real-
valued measurable functions defined on X. Suppose that

∫
E
f dµ =

∫
E
g dµ

for all E ∈ A. Then the functions f and g are equal almost everywhere on
X.

Proof For each positive integer j, let Ej = {x ∈ X : f(x) − g(x) ≥ 1/j}.
Then

0 =

∫
Ej

(f − g) dµ ≥ µ(Ej)

j
≥ 0,

and therefore µ(Ej) = 0 for all positive integers j. Now

{x ∈ X : f(x) > g(x)} =
+∞⋃
j=1

Ej,

where Ej ⊂ Ej+1 for all j ∈ N. It follows that

µ({x ∈ X : f(x) > g(x)}) = lim
j→+∞

µ(Ej) = 0,

Similarly µ({x ∈ X : f(x) < g(x)}) = 0. It follows that

µ({x ∈ X : f(x) 6= g(x)}) = 0,

and thus the functions f and g are equal almost everywhere on X, as re-
quired.

Theorem 9.9 (Radon-Nikodym) Let X be a set, let A be a σ-algebra of
subsets of X, let µ be a σ-finite measure defined on A, and let ν be a signed
measure defined on A. Suppose that ν << µ. Then there exists a function
f :X → [−∞,+∞] on X that is integrable with respect to the measure µ and
that satisfies

ν(E) =

∫
E

f dµ

for all E ∈ A. Moreover any two functions with this property are equal
almost everywhere on X.
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Proof We define the measurable subsets of X to be those subsets that belong
to the σ-algebra A. The measure µ is σ-finite, and therefore there exists an
infinite sequence F1, F2, F3, . . . of measurable subsets of X such that µ(Fj) <

+∞ for all j ∈ N and X =
+∞⋃
j=1

Fj. Let E1 = F1, and let Ej = Fj \
j−1⋃
k=1

Fk

for all integers j satisfying j > 1. Then the sets E1, E2, E3, . . . are pairwise

disjoint measurable sets, µ(Ej) < +∞ for all j ∈ N, and X =
+∞⋃
j=1

Ej.

First let us suppose that the measure ν is non-negative. We may then
apply Theorem 9.7 to the restriction of the measure ν to each set Ej. It
follows that, for each positive integer j, there exists a integrable function f̃j
defined on Ej such that ν(E) =

∫
E
f̃j dµ for all measurable subsets E of Ej.

Let fj be the integrable function on X which is defined such that fj(x) =
f̃j(x) for all x ∈ Ej, and fj(x) = 0 for all x ∈ X\Ej. Then

∫
E
fj µ = ν(E∩Ej)

for all measurable subsets E of X. Let f =
+∞∑
j=1

fj (so that f(x) = fj(x) for

all x ∈ Ej). It follows from Proposition 8.21 that∫
E

f dµ =
+∞∑
j=1

∫
E

fj dµ =
+∞∑
j=1

ν(E ∩ Ej) = ν(E)

for all measurable subsets E of X. This proves the existence of the required
integrable function f in the case where the signed measure ν is non-negative.
If the signed measure ν takes both positive and negative values then we can
apply the result for non-negative measures to the measures ν+ and ν− in
order to deduce the existence of integrable non-negative functions f+ and f−
on X such that ν+(E) =

∫
E
f+ dµ and ν−(E) =

∫
E
f− dµ for all E ∈ A. Then

ν(E) = ν+(E)− ν−(E) =
∫
E
f dµ for all E ∈ A, where f = f+ − f−.

It follows from Proposition 9.8 that if f and g are integrable functions on
X, and if ν(E) =

∫
E
f dµ =

∫
E
g dµ for all E ∈ A, then the functions f and

g are equal almost everywhere on X, as required.
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