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7 Measure Spaces

7.1 Bricks

Definition We define an n-dimensional brick to be a subset of Rn that is a
Cartesian product of bounded intervals.

Let B be an n-dimensional brick. Then there exist bounded intervals
I1, I2, . . . , In such that B = I1 × I2 × · · · × In. Let ai and bi denote the
endpoints of the interval Ii for i = 1, 2, . . . , n, where ai ≤ bi. Then the
interval Ii must coincide with one of the intervals (ai, bi), (ai, bi], [ai, bi) and
[ai, bi] determined by its endpoints, where

(ai, bi) = {x ∈ R : ai < x < bi}, (ai, bi] = {x ∈ R : ai < x ≤ bi}

[ai, bi) = {x ∈ R : ai ≤ x < bi}, [ai, bi] = {x ∈ R : ai ≤ x ≤ bi}.

We say that the brick B is open if Ii = (ai, bi) for i = 1, 2, . . . , n. Similarly
we say that the brick B is closed if Ii = [ai, bi] for i = 1, 2, . . . , n.

Definition Let B be an n-dimensional brick that is the Cartesian product
I1 × I2 × · · · × In of bounded intervals I1, I2, . . . , In, and let ai and bi denote
the endpoints of the interval Ii, where ai ≤ bi. The content m(B) of the

brick B is then defined to be the product
n∏
i=1

(bi − ai) of the lengths of the

intervals I1, I2, . . . , In.

Note that a one-dimensional brick is a bounded interval in the real line,
and the content of the brick is the length of the interval. A two-dimensional
brick is a rectangle in R2 with sides parallel to the coordinate axes, and the
content of the brick is the area of the rectangle. The content of a three-
dimensional brick is the volume of that brick.

Let B be an n-dimensional brick, and let B1, B2, . . . , Bs be a finite col-

lection of n-dimensional bricks. We shall show that if B ⊂
s⋃

k=1

Bk then

m(B) ≤
s∑

k=1

m(Bk). We shall also show that if the interiors of the bricks

B1, B2, . . . , Bs are disjoint and are contained in B then m(B) ≥
s∑

k=1

m(Bk).

These results are of course fairly intuitive, and may at first sight seem to be
obvious.

Now the brick B is the Cartesian product I1 × I2 × ×In of bounded
intervals I1, I2, . . . In in the real line. Let ai and bi denote the endpoints of
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the interval Ii for i = 1, 2, . . . , n, where ai and bi are real numbers satisfying
ai ≤ bi. Similarly each brick Bk is a Cartesian product Ik,1 × Ik,2 × ×Ik,n
of bounded intervals Ik,1, Ik,2, . . . Ik,n in the real line. Let ak,i and bk,i denote
the endpoints of the interval Ik,i for i = 1, 2, . . . , n, where ak,i and bk,i are

real numbers satisfying ak,i ≤ bk,i. Then m(B) =
n∏
i=1

(bi − ai), and m(Bk) =

n∏
i=1

(bk,i − ak,i) for k = 1, 2, . . . , s.

Now there exist finite sets P1, P2, . . . , Pn such that ai ∈ Pi, bi ∈ Pi,
ak,i ∈ Pi and bk,i ∈ Pi for i = 1, 2, . . . , n and k = 1, 2, . . . , s. Let

Pi = {ti,0, ti,1, ti,2, . . . , ti,mi}

for i = 1, 2, . . . ,mi, where

ti,0 < ti,1 < ti,2 < · · · < ti,mi .

Also let J denote the set consisting of all n-tuples (j1, j2, j3, . . . , jn) with
1 ≤ ji ≤ mi for i = 1, 2, . . . , n, and, for each (j1, j2, . . . , jn) ∈ J , let Vj1,j2,...,jn
denote the open brick consisting of all points (x1, x2, . . . , xn) of Rn that satisfy
ti,ji−1 < xi < ti,ji for i = 1, 2, . . . , n. Then the content m(Vj1,j2,...,jn) of the

brick Vj1,j2,...,jn is the product
n∏
i=1

(ti,ji − ti,ji−1) of the lengths ti,ji − ti,ji−1 of

the intervals (ti,ji−1, ti,ji).
Now, given any integer i between 1 and n, the endpoints ai and bi of the

interval Ii belong to the set Pi, and therefore there exist integers pi and qi
satisfying 1 ≤ pi ≤ qi ≤ mi such that a = ti,pi and b = ti,qi . Then

bi − ai =
∑

pi<ji≤qi

(ti,ji − ti,ji−1).

(The sum on the right hand side of the above equality has the value zero
when pi = qi.) It follows from this that

m(B) =
n∏
i=1

(bi − ai) =
∑

(j1,j2,...,jn)∈J(B)

n∏
i=1

(ti,ji − ti,ji−1)

=
∑

(j1,j2,...,jn)∈J(B)

m(Vj1,j2,...,jn),

where

J(B) = {(j1, j2, . . . , jn) ∈ J : pi < ji ≤ qi for i = 1, 2, . . . , n}
= {(j1, j2, . . . , jn) ∈ J : Vj1,j2,...,jn ⊂ B}.
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Now (j1, j2, . . . , jn) ∈ J(B) if and only if Vj1,j2,...,jn ⊂ B. We conclude there-
fore that that the content m(B) of the brick B is the sum of the contents of
those open bricks Vj1,j2,...,jn for which (j1, j2, . . . , jn) ∈ J and Vj1,j2,...,jn ⊂ B.
Similarly

m(Bk) =
∑

(j1,j2,...,jn)∈J(Bk)

m(Vj1,j2,...,jn)

for k = 1, 2, . . . , s, where

J(Bk) = {(j1, j2, . . . , jn) ∈ J : Vj1,j2,...,jn ⊂ Bk}.

Now suppose that B ⊂
s⋃

k=1

Bk. Then J(B) ⊂
s⋃

k=1

J(Bk), and therefore

m(B) =
∑

(j1,j2,...,jn)∈J(B)

m(Vj1,j2,...,jn)

≤
s∑

k=1

∑
(j1,j2,...,jn)∈J(Bk)

m(Vj1,j2,...,jn) =
s∑

k=1

m(Bk)

On the other hand, suppose that the interiors of the bricks B1, B2, . . . , Bs

are disjoint and contained in B. Then
s⋃

k=1

J(Bk) ⊂ J(B), and moreover each

n-tuple (j1, j2, . . . , jn) of integers in J(B) belongs to at most one of the sets
J(B1), J(B2), . . . , J(Bs). Therefore

m(B) ≥
s∑

k=1

∑
(j1,j2,...,jn)∈J(Bk)

m(Vj1,j2,...,jn) =
s∑

k=1

m(Bk).

We have therefore proved the following two results.

Proposition 7.1 Let B be a brick in n-dimensional Euclidean space Rn,
and let B1, B2, . . . , Bs be a finite collection of bricks in Rn. Suppose that

B ⊂
s⋃

k=1

Bk. Then m(B) ≤
s∑

k=1

m(Bk).

Proposition 7.2 Let B be a brick in n-dimensional Euclidean space Rn,
and let B1, B2, . . . , Bs be a finite collection of bricks in Rn. Suppose that the
interiors of the bricks B1, B2, . . . , Bs are disjoint and are contained in B.

Then m(B) ≥
s∑

k=1

m(Bk).

The following corollary follows immediately from the inequalities proved
above.
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Corollary 7.3 Let B be a brick in n-dimensional Euclidean space Rn, and
let B1, B2, . . . , Bs be a finite collection of bricks in Rn. Suppose that the

interiors of the bricks B1, B2, . . . , Bs are disjoint and B =
s⋃

k=1

Bk. Then

m(B) =
s∑

k=1

m(Bk).

Lemma 7.4 Let B be an brick in Rn, and let ε be any positive real number.
Then there exist a closed brick F and and open brick V such that F ⊂ B ⊂ V ,
m(F ) > m(B)− ε and m(V ) < m(B) + ε.

Proof Suppose that B = I1× I2× · · · × In, where I1, I2, . . . , In are bounded
intervals. Now

lim
h→0

n∏
i=1

(m(Ii) + h) =
n∏
i=1

m(Ii) = m(B).

It follows that, given any positive real number ε, we can choose the positive
real number δ small enough to ensure that

n∏
i=1

(m(Ii)− δ) > m(B)− ε,
n∏
i=1

(m(Ii) + δ) < m(B) + ε.

Let F = J1×J2×· · ·×Jn and V = K1×K2×· · ·×Kn, where J1, J2, . . . , Jn
are closed bounded intervals chosen such that Ji ⊂ Ii and m(Ji) > m(Ii)− δ
for i = 1, 2, . . . , n, and K1, K2, . . . , Kn are open bounded intervals chosen
such that Ii ⊂ Ki and m(Ki) < m(Ii) + δ for i = 1, 2, . . . , n. Then F is
a closed brick, V is an open brick, F ⊂ B ⊂ V , m(F ) > m(B) − ε and
m(V ) < m(B) + ε, as required.

Any closed n-dimensional brick F is a compact subset of Rn. This means
that, given any collection V of open sets in Rn that covers F (so that each
point of F belongs to at least one of the open sets in the collection), there
exists some finite collection V1, V2, . . . , Vs of open sets belonging to the col-
lection V such that

F ⊂ V1 ∪ V2 ∪ · · · ∪ Vs.
We shall use this property of closed bricks in order to generalize Proposi-
tion 7.1 to countable infinite unions of bricks.

Proposition 7.5 Let A be a brick in n-dimensional Euclidean space Rn, and
let C be a countable collection of bricks in Rn. Suppose that A ⊂

⋃
B∈C B.

Then m(A) ≤
∑
B∈C

m(B).
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Proof There is nothing to prove if
∑
B∈C

m(B) = +∞. We may therefore

restrict our attention to the case where
∑
B∈C

m(B) < +∞. Moreover the

result is an immediate consequence of Proposition 7.1 if the collection C is
finite. It therefore only remains to prove the result in the case where the
collection C is infinite, but countable. In that case there exists an infinite
sequence B1, B2, B3, . . . of bricks with the property that each brick in the
collection C occurs exactly once in the sequence.

Let some positive real number ε be given. It follows from Lemma 7.4
that there exists a closed brick F such that F ⊂ A and m(F ) ≥ m(A) − ε.
Also, for each k ∈ N, there exists an open brick Vk such that Bk ⊂ Vk

and m(Vk) < m(Bk) + 2−kε. Then F ⊂
+∞⋃
k=1

Vk, and thus {V1, V2, V3, . . .} is a

collection of open sets in Rn which covers the closed bounded set F . It follows
from the compactness of F that there exists a finite collection k1, k2, . . . , ks
of positive integers such that F ⊂ Vk1 ∪ Vk2 ∪ · · · ∪ Vks . It then follows from
Proposition 7.1 that

m(F ) ≤ m(Vk1) +m(Vk2) + · · ·+m(Vks).

Now
1

2k1
+

1

2k2
+ · · ·+ 1

2ks
≤

+∞∑
k=1

1

2k
= 1,

and therefore

m(F ) ≤ m(Vk1) +m(Vk2) + · · ·+m(Vks)

≤ m(Bk1) +m(Bk2) + · · ·+m(Bks) + ε

≤
+∞∑
k=1

m(Bk) + ε.

Also m(A) < m(F ) + ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk) + 2ε.

Moreover this inequality holds no matter how small the value of the positive
real number ε. It follows that

m(A) ≤
+∞∑
k=1

m(Bk),

as required.
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7.2 Lebesgue Outer Measure

We say that a collection C of n-dimensional bricks covers a subset E of Rn if
E ⊂

⋃
B∈C B, (where

⋃
B∈C B denotes the union of all the bricks belonging to

the collection C). Given any subset E of Rn, we shall denote by CCBn(E)
the set of all countable collections of n-dimensional bricks that cover the
set E.

Definition Let E be a subset of Rn. We define the Lebesgue outer measure
µ∗(E) of E to be the infimum, or greatest lower bound, of the quantities∑
B∈C

m(B), where this infimum is taken over all countable collections C of

n-dimensional bricks that cover the set E. Thus

µ∗(E) = inf

{∑
B∈C

m(B) : C ∈ CCBn(E)

}
.

The Lebesgue outer measure µ∗(E) of a subset E of Rn is thus the great-
est extended real number l with the property that l ≤

∑
B∈C

m(B) for any

countable collection C of n-dimensional bricks that covers the set E. In par-
ticular, µ∗(E) = +∞ if and only if

∑
B∈C

m(B) = +∞ for every countable

collection C of n-dimensional bricks that covers the set E.
Note that µ∗(E) ≥ 0 for all subsets E of Rn.

Lemma 7.6 Let E be a brick in Rn. Then µ∗(E) = m(E), where m(E) is
the content of the brick E.

Proof It follows from Proposition 7.5 that m(E) ≤
∑
B∈C

m(B) for any count-

able collection of n-dimensional bricks that covers the brick E. Therefore
m(E) ≤ µ∗(E). But the collection {E} consisting of the single brick E is it-
self a countable collection of bricks covering E, and therefore µ∗(E) ≤ m(E).
It follows that µ∗(E) = m(E), as required.

Lemma 7.7 Let E and F be subsets of Rn. Suppose that E ⊂ F . Then
µ∗(E) ≤ µ∗(F ).

Proof Any countable collection of n-dimensional bricks that covers the set F
will also cover the set E, and therefore CCBn(F ) ⊂ CCBn(E). It follows
that

µ∗(F ) = inf

{∑
B∈C

m(B) : C ∈ CCBn(F )

}

≥ inf

{∑
B∈C

m(B) : C ∈ CCBn(E)

}
= µ∗(E),
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as required.

Proposition 7.8 Let E be a countable collection of subsets of Rn. Then

µ∗
(⋃

E∈E
E
)
≤
∑
E∈E

µ∗(E).

Proof Let K = N in the case where the countable collection E is infinite,
and let K = {1, 2, . . . ,m} in the case where the collection E is finite and
has m elements. Then there exists a bijective function ϕ:K → E . We define
Ek = ϕ(k) for all k ∈ K. Then E = {Ek : k ∈ K}, and any subset of Rn

belonging to the collection E is of the form Ek for exactly one element k of
the indexing set K.

Let some positive real number ε be given. Then corresponding to each
element k of K there exists a countable collection Ck of n-dimensional bricks
covering the set Ek for which∑

B∈Ck

m(B) < µ∗(Ek) +
ε

2k
.

Let C =
⋃
k∈K Ck. Then C is a collection of n-dimensional bricks that covers

the union
⋃
E∈E E of all the sets in the collection E . Moreover every brick

belonging to the collection C belongs to at least one of the collections Ck,
and therefore belongs to exactly one of the collections Dk, where Dk = Ck \⋃
j<k Cj. It follows that

µ∗
(⋃

E∈E
E
)
≤

∑
B∈C

m(B) =
∑
k∈K

∑
B∈Dk

m(B)

≤
∑
k∈K

∑
B∈Ck

m(B) ≤
∑
k∈K

(
µ∗(Ek) +

ε

2k

)
≤

∑
k∈K

µ∗(Ek) + ε

Thus µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek) + ε, no matter how small the value of ε. It

follows that µ∗
(⋃

E∈E E
)
≤
∑
k∈K

µ∗(Ek), as required.

7.3 Outer Measures

Definition Let X be a set, and let P(X) be the collection of all subsets
of X. An outer measure λ:P(X) → [0,+∞] on X is a function, mapping
subsets of X to non-negative extended real numbers, which has the following
properties:
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(i) λ(∅) = 0;

(ii) λ(E) ≤ λ(F ) for all subsets E and F of X that satisfy E ⊂ F ;

(iii) λ
(⋃

E∈E E
)
≤
∑
E∈E

λ(E) for any countable collection E of subsets of X.

Lebesgue outer measure is an outer measure on the set Rn. (This follows
directly from the definition of Lebesgue outer measure, and from Lemma 7.7
and Proposition 7.8.)

We shall prove that any outer measure on a set X determines a collection
of subsets of X with particular properties. The subsets belonging to this col-
lection are known as measurable sets. Any countable union or intersection of
measurable sets is itself a measurable set. Also any difference of measurable
sets is itself a measurable set. We shall also prove that if C is any countable
collection of pairwise disjoint measurable sets then λ

(⋃
E∈E E

)
=
∑
E∈E

λ(E).

These results are fundamental to the branch of mathematics known as mea-
sure theory. Moreover the existence of such collections of measurable sets
underlies the powerful and very general theory of integration introduced into
mathematics by Lebesgue.

Definition Let λ be an outer measure on a set X. A subset E of X is said
to be λ-measurable if λ(A) = λ(A ∩ E) + λ(A \ E) for all subsets A of X.

The above definition of measurable sets may seem at first somewhat
strange and unmotivated. Nevertheless it serves to characterize a collection
of subsets of X with convenient properties, as we shall see.

The empty set ∅ and the set X are both λ-measurable subsets of X. This
follows directly from the definition of measurable sets.

We say that the sets in some collection are pairwise disjoint if the in-
tersection of any two distinct sets belonging to this collection is the empty
set.

Lemma 7.9 Let λ be an outer measure on a set X, let A be a subset of X,
and let E1, E2, . . . , Em be pairwise disjoint λ-measurable sets. Then

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).

Proof There is nothing to prove if m = 1. Suppose that m > 1. It follows
from the definition of measurable sets that

λ

(
A ∩

m⋃
k=1

Ek

)
= λ

((
A ∩

m⋃
k=1

Ek

)
\ Em

)
+ λ

((
A ∩

m⋃
k=1

Ek

)
∩ Em

)
.
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But

(
A ∩

m⋃
k=1

Ek

)
\ Em = A ∩

m−1⋃
k=1

Ek and

(
A ∩

m⋃
k=1

Ek

)
∩ Em = A ∩ Em,

because the sets E1, E2, . . . , Em are pairwise disjoint. Therefore

λ

(
A ∩

m⋃
k=1

Ek

)
= λ

(
A ∩

m−1⋃
k=1

Ek

)
+ λ(A ∩ Em).

The required result therefore follows by induction on m.

Proposition 7.10 Let λ be an outer measure on a set X, and let E and
F be λ-measurable subsets of X. Then the complement X \ E of E, and
the union E ∪ F , intersection E ∩ F and difference E \ F of E and F are
λ-measurable.

Proof Let Ec = X \ E, F c = X \ F and (E ∪ F )c = X \ (E ∪ F ). Then
A ∩ Ec = A \ E and A \ Ec = A ∩ E, and therefore

λ(A) = λ(A \ E) + λ(A ∩ E) = λ(A ∩ Ec) + λ(A \ Ec).

We conclude that the complement X \E of the λ-measurable subset E of X
is itself a λ-measurable subset of X.

Next we show that E ∪ F is λ-measurable. Now

λ(A) = λ(A ∩ E) + λ(A \ E) = λ(A ∩ E) + λ(A ∩ Ec).

for all subsets A of X. Also

λ(B) = λ(B ∩ F ) + λ(B \ F ) = λ(B ∩ F ) + λ(B ∩ F c).

for all subsets B of X. Therefore

λ(A ∩ E) = λ(A ∩ E ∩ F ) + λ((A ∩ E ∩ F c),

λ(A ∩ Ec) = λ(A ∩ Ec ∩ F ) + λ((A ∩ Ec ∩ F c),

and thus

λ(A) = λ(A ∩ E) + λ(A ∩ Ec)

= λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c) + λ(A ∩ Ec ∩ F )

+ λ(A ∩ Ec ∩ F c)

for all subsets A of X. Let A be a subset of X, and let B = A ∩ (E ∪ F ).
Then

A ∩ E ∩ F ⊂ B, A ∩ E ∩ F c ⊂ B, A ∩ Ec ∩ F ⊂ B,
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A ∩ Ec ∩ F c ⊂ X \B,

and therefore

B ∩ E ∩ F = A ∩ E ∩ F, B ∩ E ∩ F c = A ∩ E ∩ F c,

B ∩ Ec ∩ F = A ∩ Ec ∩ F, B ∩ Ec ∩ F c = ∅.

It follows that

λ(A ∩ (E ∪ F )) = λ(B)

= λ(B ∩ E ∩ F ) + λ(B ∩ E ∩ F c) + λ(B ∩ Ec ∩ F )

+ λ(B ∩ Ec ∩ F c)

= λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c) + λ(A ∩ Ec ∩ F ).

Also A ∩ Ec ∩ F c = A ∩ (E ∪ F )c. We conclude therefore that

λ(A) = λ(A ∩ E ∩ F ) + λ(A ∩ E ∩ F c) + λ(A ∩ Ec ∩ F )

+ λ(A ∩ Ec ∩ F c)

= λ(A ∩ (E ∪ F )) + λ(A ∩ (E ∪ F )c)

for all subsets A of X. This shows that if E and F are λ-measurable subsets
of X, then so is E ∪ F .

Let E and F be λ-measurable subsets of X. Then X \ E and X \ F are
λ-measurable sets, and therefore (X \E)∪(X \F ) is a λ-measurable set. But
(X \E)∪(X \F ) = X \(E∩F ). Thus the complement X \(E∩F ) of E∩F is
a λ-measurable set, and therefore E∩F is itself a λ-measurable set. Thus the
intersection of any two λ-measurable subsets of X is a λ-measurable set. It
follows from this that the intersection of any finite collection of λ-measurable
subsets of X is itself λ-measurable.

Let E and F be λ-measurable subsets of X. Then E \ F = E ∩ (X \ F ),
and E and X \ F are both λ-measurable sets. It follows that the difference
E \F of any two λ-measurable subsets E and F of X is itself λ-measurable.
This completes the proof.

It follows from the above proposition that any finite union or intersection
of measurable sets is measurable.

Proposition 7.11 Let λ be an outer measure on a set X. Then the union
of any countable collection of λ-measurable subsets of X is λ-measurable.
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Proof The union of any two λ-measurable sets is λ-measurable (Proposi-
tion 7.10). It follows from this that the union of any finite collection of
λ-measurable sets is λ-measurable.

LetE1, E2, E3, . . . be an infinite sequence of pairwise disjoint λ-measurable
subsets of X. We shall prove that the union of these sets is λ-measurable.

Let A be a subset of X. Now
m⋃
k=1

Ek is a λ-measurable set for each positive

integer m, because any finite union of λ-measurable sets is λ-measurable,
and therefore

λ(A) = λ

(
A ∩

m⋃
k=1

Ek

)
+ λ

(
A \

m⋃
k=1

Ek

)

for all positive integers m. Moreover it follows from Lemma 7.9 that

λ

(
A ∩

m⋃
k=1

Ek

)
=

m∑
k=1

λ(A ∩ Ek).

Also

A \
+∞⋃
k=1

Ek ⊂ A \
m⋃
k=1

Ek,

and therefore

λ

(
A \

m⋃
k=1

Ek

)
≥ λ

(
A \

+∞⋃
k=1

Ek

)
.

It follows that

λ(A) ≥
m∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
,

and therefore

λ(A) ≥ lim
m→+∞

m∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)

=
+∞∑
k=1

λ(A ∩ Ek) + λ

(
A \

+∞⋃
k=1

Ek

)
.

However it follows from the definition of outer measures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek).
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Therefore

λ(A) ≥ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.

But the set A is the union of the sets A∩
+∞⋃
k=1

Ek and A\
+∞⋃
k=1

Ek, and therefore

λ(A) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
.

We conclude therefore that

λ(A) = λ

(
A ∩

+∞⋃
k=1

Ek

)
+ λ

(
A \

+∞⋃
k=1

Ek

)
for all subsets A of X. We conclude from this that the union of any pairwise
disjoint sequence of λ-measurable subsets of X. is itself λ-measurable.

Now let E1, E2, E3, . . . be a countable sequence of (not necessarily pairwise

disjoint) λ-measurable sets. Then
+∞⋃
k=1

Ek =
+∞⋃
k=1

Fk, where F1 = E1, and

Fk = Ek \
k−1⋃
j=1

Ej for all integers k satisfying k > 1. Now we have proved that

any finite union of λ-measurable sets is λ-measurable, and any difference of
λ-measurable sets is λ-measurable. It follows that the sets F1, F2, F3, . . . are
all λ-measurable. These sets are also pairwise disjoint. We conclude that the
union of the sets F1, F2, F3, . . . is λ-measurable, and therefore the union of
the sets E1, E2, E3, . . . is λ-measurable.

We have now shown that the union of any finite collection of λ-measurable
sets is λ-measurable, and the union of any infinite sequence of λ-measurable
sets is λ-measurable. We conclude that the union of any countable collection
of λ-measurable sets is λ-measurable, as required.

Corollary 7.12 Let λ be an outer measure on a set X. Then the intersection
of any countable collection of λ-measurable subsets of X is λ-measurable.

Proof Let C be a countable collection of λ-measurable subsets of X. Then
X \

⋂
E∈C E =

⋃
E∈C(X \ E) (i.e., the complement of the intersection of the

sets in the collection is the union of the complements of those sets.) Now
X\E is λ-measurable for every E ∈ C. Therefore the complement X\

⋂
E∈C E

of
⋂
E∈C E is a union of λ-measurable sets, and is thus itself λ-measurable. It

follows that intersection
⋂
E∈C E of the sets in the collection is λ-measurable,

as required.

13



Proposition 7.13 Let λ be an outer measure on a set X, let A be a subset
of X, and let C be a countable collection of pairwise disjoint λ-measurable
sets. Then

λ

(
A ∩

⋃
E∈C

E

)
=
∑
E∈C

λ(A ∩ E).

Proof It follows from Lemma 7.9 that the required identity holds for any
finite collection of pairwise disjoint λ-measurable sets.

LetE1, E2, E3, . . . be an infinite sequence of pairwise disjoint λ-measurable
subsets of X. Then

m∑
k=1

λ(A ∩ Ek) = λ

(
A ∩

m⋃
k=1

Ek

)
≤ λ

(
A ∩

+∞⋃
k=1

Ek

)

for all positive integers m. It follows that

+∞∑
k=1

λ(A ∩ Ek) = lim
m→+∞

m∑
k=1

λ(A ∩ Ek) ≤ λ

(
A ∩

+∞⋃
k=1

Ek

)
.

But the definition of outer measures ensures that

λ

(
A ∩

+∞⋃
k=1

Ek

)
= λ

(
+∞⋃
k=1

(A ∩ Ek)

)
≤

+∞∑
k=1

λ(A ∩ Ek)

We conclude therefore that λ

(
A ∩

+∞⋃
k=1

Ek

)
=

+∞∑
k=1

λ(A ∩ Ek) for any infinite

sequence E1, E2, E3, . . . of pairwise disjoint λ-measurable subsets of X.
Thus the required identity holds for any countable collection of pairwise

disjoint λ-measurable subsets of X, as required.

7.4 Measure Spaces

Definition Let X be a set. A collection A of subsets of X is said to a σ-
algebra (or sigma-algebra) of subsets of X if it has the following properties:

(i) the empty set ∅ is a member of A;

(ii) the complement X \E of any member E of A is itself a member of A;

(iii) the union of any countable collection of members ofA is itself a member
of A.

14



Lemma 7.14 Let X be a set, and let A be a σ-algebra of subsets of X. Then
the intersection of any countable collection of members of the σ-algebra A is
itself a member of A.

Proof Let C be a countable collection of sets belonging to A. Then X \E ∈
A for all E ∈ C, and therefore

⋃
E∈C

(X \E) ∈ A. But
⋃
E∈C

(X \E) = X \
⋂
E∈C

E.

It follows that the complement of the intersection
⋂
E∈C

E of the sets in the

collection C is itself a member of A, and therefore the intersection
⋂
E∈C

E of

those sets is a member of the σ-algebra A, as required.

Let X be a set, and let C be a collection of subsets of X. The collection
of all subsets of X is a σ-algebra. Also the intersection of any collection of
σ-algebras of subsets of X is itself a σ-algebra. Let A be the intersection of
all σ-algebras B of subsets of X that have the property that C ⊂ B. Then
A is a σ-algebra, and C ⊂ A. Moreover if B is a σ-algebra of subsets of X,
and if C ⊂ B then A ⊂ B. The σ-algebra A may therefore be regarded as
the smallest σ-algebra of subsets of X for which C ⊂ A. We shall refer to
this σ-algebra A as the σ-algebra of subsets of X generated by C. We see
therefore that any collection of subsets of a set X generates a σ-algebra of
subsets of X which is the smallest σ-algebra of subsets of X that contains
the given collection of subsets.

Definition Let X be a set, and let A be a σ-algebra of subsets of X. A
measure on A is a function µ:A → [0,+∞], taking values in the set [0,+∞]
of non-negative extended real numbers, which has the property that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E)

for any countable collection C of pairwise disjoint members of the σ-algebraA.

Definition A measure space (X,A, µ) consists of a set X, a σ-algebra A of
subsets of X, and a measure µ:A → [0,+∞] defined on this σ-algebra A.
A subset E of a measure space (X,A, µ) is said to be measurable (or µ-
measurable) if it belongs to the σ-algebra A.

Theorem 7.15 Let λ be an outer measure on a set X. Then the collection
Aλ of all λ-measurable subsets of X is a σ-algebra. The members of this
σ-algebra are those subsets E of X with the property that λ(A) = λ(A ∩
E) + λ(A \ E) for any subset of A. Moreover the restriction of the outer
measure λ to the λ-measurable sets defines a measure µ on the σ-algebra Aλ.
Thus (X,A, µ) is a measure space.

15



Proof Immediate from Propositions 7.10, 7.11 and 7.13.

Definition A measure space (X,A, µ) is said to be complete if, given any
measurable subset E of X satisfying µ(E) = 0, and given any subset F of
E, the subset F is also measurable. The measure µ on A is then said to be
complete.

Lemma 7.16 Let λ be an outer measure on a set X, let A be the σ-algebra
consisting of the λ-measurable subsets of X, and let µ be the measure on
A obtained by restricting the outer measure λ to the members of A. Then
(X,A, µ) is a complete measure space.

Proof Let E be a measurable set in X satisfying µ(E) = 0, let F be a subset
of E, and let A be a subset of X. Then A∩F ⊂ A∩E and A\E ⊂ A\F ⊂ A,
and therefore 0 ≤ λ(A ∩ F ) ≤ λ(A ∩ E) and λ(A \ E) ≤ λ(A \ F ) ≤ λ(A).
Now it follows from the definition of measurable sets in X that λ(A) =
λ(A∩E) +λ(A \E). Moreover 0 ≤ λ(A∩E) ≤ λ(E) = µ(E) = 0. It follows
that λ(A∩E) = 0 and λ(A \E) = λ(A). The inequalities above then ensure
that λ(A∩F ) = 0 and λ(A\F ) = λ(A). But then λ(A) = λ(A∩F )+λ(A\F ),
and thus F is λ-measurable, as required.

7.5 Lebesgue Measure on Euclidean Spaces

We are now in a position to give the definition of Lebesgue measure on n-
dimensional Euclidean space Rn. We have already defined an outer mea-
sure µ∗ on Rn known as Lebesgue outer measure. We defined a brick in Rn

to be a subset of Rn that is a Cartesian product of n bounded intervals. The
product of the lengths of those intervals is the content of the brick. Then,
given any subset E of Rn, we defined the Lebesgue outer measure µ∗(E) of
the set E to be the infimum of the quantities

∑
B∈C

m(B), where the infimum

is taken over all countable collections of bricks in Rn that cover the set E,
and where m(B) denotes the content of a brick B in such a collection. Thus∑

B∈C

m(B) ≥ µ∗(E)

for every countable collection C of bricks in Rn that covers E; and, moreover,
given any positive real number ε, there exists a countable collection C of
bricks in Rn covering E for which

µ∗(E) ≤
∑
B∈C

m(B) ≤ µ∗(E) + ε.

16



These properties characterize the Lebesgue outer measure µ∗(E) of the set E.
We say that a subset E of Rn is Lebesgue-measurable if and only if it

is µ∗-measurable, where µ∗ denotes Lebesgue outer measure on Rn. Thus
a subset E of Rn is Lebesgue-measurable if and only if µ∗(A) = µ∗(A ∩
E) + µ∗(A \ E) for all subsets A of Rn. The collection Ln of all Lebesgue-
measurable sets is a σ-algebra of subsets of Rn, and therefore the difference
of any two Lebesgue-measurable subsets of Rn is Lebesgue-measurable, and
any countable union or intersection of Lebesgue-measurable sets is Lebesgue-
measurable. The Lebesgue measure µ(E) of a Lebesgue-measurable subset E
of Rn is defined to be the Lebesgue outer measure µ∗(E) of that set. Thus
Lebesgue measure µ is the restriction of Lebesgue outer measure µ∗ to the
σ-algebra Ln of Lebesgue-measurable subsets of Rn.

It follows from Lemma 7.16 that Lebesgue measure is a complete measure
on Rn.

Remark The Lebesgue measure µ(E) of a subset E of R2 may be regarded
as the area of that set. It is not possible to assign an area to every subset
of R2 in such a way that the areas assigned to such subsets have all the
properties that one would expect from a well-defined notion of area. One
might at first sight expect that Lebesgue outer measure would provide a
natural definition of area, applicable to all subsets of the plane, that would
have the properties that one would expect of a well-defined notion of area.
One would expect in particular that the area of a disjoint union of two
subsets of the plane would be the sum of the areas of those sets. However
one it is possible to construct examples of disjoint subsets E and F in the
plane which interpenetrate one another to such an extent as to ensure that
µ∗(E ∩ F ) < µ∗(E) + µ∗(F ), where µ∗ denotes Lebesgue outer measure on
R

2. The σ-algebra L2 consisting of the Lebesgue-measurable subsets of the
plane R2 is in fact that largest collection of subsets of the plane for which
the sets in the collection have a well-defined area; the Lebesgue measure of
a Lebesgue-measurable subset of the plane can be regarded as the area of
that set. Similarly the σ-algebra L3 of Lebesgue-measurable subsets of three-
dimensional Euclidean space R3 is the largest collection of subsets of R3 for
which the sets in the collection have a well-defined volume.

Proposition 7.17 Every open set in Rn is Lebesgue-measurable.

Proof Let W be the collection of all open bricks in Rn that are Cartesian
products of intervals whose endpoints are rational numbers. Now the set I of
all open intervals in Rn whose endpoints are rational numbers is a countable
set, as the function that sends such an interval to its endpoints defines an

17



injective function from I to the countable set Q × Q. Moreover there is a
bijection from the countable set In to W that sends each ordered n-tuple
(I1, I2, . . . , In) of open intervals to the open brick I1× I2×· · ·× In. It follows
that the collection W is countable.

Let V be an open set in Rn, and let v be a point of V . Then there exists
some positive real number δ such that B(v, δ) ⊂ V , where B(v, δ) ⊂ V
denotes the open ball of radius δ centred on v. Moreover there exist open
bricks W belonging toW for which v ∈ W and W ⊂ B(v, δ). It follows that
the open set V is the union of the countable collection

{W ∈ W : W ⊂ V }

of open bricks. Now each open brick is a Lebesgue-measurable set, and any
countable union of Lebesgue-measurable sets is itself a Lebesgue-measurable
set. Therefore the open set V is a Lebesgue-measurable set, as required.

Corollary 7.18 Every closed set in Rn is Lebesgue-measurable.

Proof This follows immediately from Proposition 7.17, since the comple-
ment of any Lebesgue-measurable set is itself Lebesgue measurable set.

Definition A subset of Rn is said to be a Borel set if it belongs to the
σ-algebra generated by the collection of open sets in Rn.

All open sets and closed sets in Rn are Borel sets. The collection of all
Borel sets is a σ-algebra in Rn and is the smallest such σ-algebra containing
all open subsets of Rn.

Definition A measure defined on a σ-algebra A of subsets of Rn is said to
be a Borel measure if the σ-algebra A contains all the open sets in Rn.

Corollary 7.19 Lebesgue measure on Rn is a Borel measure, and thus every
Borel set in Rn is Lebesgue-measurable.

Remark The definitions of Borel sets and Borel measures generalize in the
obvious fashion to arbitrary topological spaces. The collection of Borel sets
in a topological space X is the σ-algebra generated by the open subsets of X.
A measure defined on a σ-ring of subsets of X is said to be a Borel measure
if every Borel set is measurable.
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7.6 Basic Properties of Measures

Let (X,A, µ) be a measure space. Then the measure µ is defined on the
σ-algebra A of measurable subsets of X, and takes values in the set [0,+∞],
where [0,+∞] = [0,+∞)∪{+∞}. Thus µ(E) is defined for each measurable
subset E of X, and is either a non-negative real number, or else has the value
+∞. The measure µ is by definition countably additive, so that

µ

(⋃
E∈C

E

)
=
∑
E∈C

µ(E)

for every countable collection C of pairwise disjoint measurable subsets of X.
In particular µ is finitely additive, so that if E1, E2, . . . , Er are measurable
subsets of X that are pairwise disjoint, then

µ(E1 ∪ E2 ∪ · · · ∪ Er) = µ(E1) + µ(E2) + · · ·+ µ(Er).

Also

µ

(
+∞⋃
j=1

Ej

)
=

+∞∑
j=1

µ(Ej)

for any infinite sequence E1, E2, E3, . . . of pairwise disjoint measurable subsets
of X.

Let E and F be measurable subsets of X. Then E = (E ∩ F ) ∪ (E \ F ),
and the sets E∩F and E\F are measurable and disjoint. It therefore follows
from the finite additivity of the measure µ that µ(E) = µ(E∩F )+µ(E \F ).
Also E ∪ F is the disjoint union of E and F \ E. and therefore

µ(E ∪ F ) = µ(E) + µ(F \ E) = µ(E ∩ F ) + µ(E \ F ) + µ(F \ E).

It follows that

µ(E ∪ F ) + µ(E ∩ F ) = (µ(E ∩ F ) + µ(E \ F )) + (µ(E ∩ F ) + µ(F \ E))

= µ(E) + µ(F ).

Now let E and F be measurable subsets of X that satisfy F ⊂ E. Then
µ(E) = µ(F ) + µ(E \ F ), and µ(E \ F ) ≥ 0. It follows that µ(F ) ≤ µ(E).
Moreover µ(E \ F ) = µ(E)− µ(F ), provided that µ(E) < +∞.

Lemma 7.20 Let (X,A, µ) be a measure space, and let E1, E2, E3, . . . be an
infinite sequence of measurable subsets of X. Suppose that Ej ⊂ Ej+1 for all
positive integers j. Then

µ

(
+∞⋃
j=1

Ej

)
= lim

j→+∞
µ(Ej).
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Proof Let E =
+∞⋃
j=1

Ej, let F1 = E1, and let Fj = Ej \
j−1⋃
k=1

Ek for all integers j

satisfying j > 1. Then the sets F1, F2, F3, . . . are pairwise disjoint, the set Ej
is the disjoint union of the sets Fk for which 1 ≤ k ≤ j, and the set E is the
disjoint union of all of the sets Fk. It therefore follows from the countable
(and finite) additivity of the measure µ that

µ(E) =
+∞∑
k=1

µ(Fk), µ(Ej) =

j∑
k=1

µ(Fk).

But then

µ(E) =
+∞∑
k=1

µ(Fk) = lim
j→+∞

j∑
k=1

µ(Fk) = lim
j→+∞

µ(Ej),

as required.

Lemma 7.21 Let (X,A, µ) be a measure space, and let E1, E2, E3, . . . be an
infinite sequence of measurable subsets of X. Suppose that Ej+1 ⊂ Ej for all
positive integers j, and that µ(E1) < +∞. Then

µ

(
+∞⋂
j=1

Ej

)
= lim

j→+∞
µ(Ej).

Proof Let Gj = E1 \ Ej for all positive integers j, let E =
+∞⋂
j=1

Ej, and let

let G =
+∞⋃
j=1

Gj. It then follows from Lemma 7.20 that µ(G) = lim
j→+∞

µ(Gj).

Now Ej = E1 \ Gj for all positive integers j, and µ(E1) < ∞. It follows
that µ(Ej) = µ(E1) − µ(Gj) for all positive integers j. Also E = E1 \ G.
Therefore

µ(E) = µ(E1)− µ(G) = µ(E1)− lim
j→+∞

µ(Gj) = lim
j→+∞

µ(Ej),

as required.
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