
Course 221: Hilary Term 2007
Section 6: The Extended Real Number System

David R. Wilkins

Copyright c© David R. Wilkins 1997–2007

Contents

6 The Extended Real Number System 2
6.1 The Extended Real Line . . . . . . . . . . . . . . . . . . . . . 2
6.2 Summation over Countable Sets . . . . . . . . . . . . . . . . . 4
6.3 Summable Functions . . . . . . . . . . . . . . . . . . . . . . . 10

1



6 The Extended Real Number System

6.1 The Extended Real Line

It is often convenient to make use of the extended real line [−∞,+∞]. This
is the set R ∪ {−∞,+∞} obtained on adjoining to the real line R two ex-
tra elements +∞ and −∞ that represent points at ‘positive infinity’ and
‘negative infinity’ respectively. We define

c+ (+∞) = (+∞) + c = +∞

and
c+ (−∞) = (−∞) + c = −∞

for all real numbers c. We also define products of non-zero real numbers with
these extra elements ±∞ so that

c× (+∞) = (+∞)× c = +∞ when c > 0,

c× (−∞) = (−∞)× c = −∞ when c > 0,

c× (+∞) = (+∞)× c = −∞ when c < 0,

c× (−∞) = (−∞)× c = +∞ when c < 0,

We also define

0× (+∞) = (+∞)× 0 = 0× (−∞) = (−∞)× 0 = 0,

and
(+∞)× (+∞) = (−∞)× (−∞) = +∞,
(+∞)× (−∞) = (−∞)× (+∞) = −∞.

The sum of +∞ and −∞ is not defined. We define −(+∞) = −∞ and
−(−∞) = +∞). The difference p− q of two extended real numbers is then
defined by the formula p−q = p+(−q), unless p = q = +∞ or p = q = −∞,
in which cases the difference of the extended real numbers p and q is not
defined.

We extend the definition of inequalities to the extended real line in the
obvious fashion, so that c < +∞ and c > −∞ for all real numbers c, and
−∞ < +∞.

Given any real number c, we define

[c,+∞] = [c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p ≥ c},
(c,+∞] = (c,+∞) ∪ {+∞} = {p ∈ [−∞,∞] : p > c},
[−∞, c] = (−∞, c] ∪ {−∞} = {p ∈ [−∞,∞] : p ≤ c},
[−∞, c) = (−∞, c) ∪ {−∞} = {p ∈ [−∞,∞] : p < c}.
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There is an order-preserving bijective function ϕ: [−∞,+∞] → [−1, 1]
from the extended real line [−∞,+∞] to the closed interval [−1, 1] which is

defined such that ϕ(+∞) = 1, ϕ(−∞) = −1, and ϕ(c) =
c

1 + |c|
for all real

numbers c. Let us define ρ(p, q) = |ϕ(q) − ϕ(p)| for all extended real num-
bers p and q. Then the set [−∞,+∞] becomes a metric space with distance
function ρ. Moreover the function ϕ: [−∞,+∞] → [−1, 1] is a homeomor-
phism from this metric space to the closed interval [−1, 1]. It follows directly
from this that [−∞,+∞] is a compact metric space. Moreover an infinite
sequence (pj : j ∈ N) of extended real numbers is convergent if and only if
the corresponding sequence (ϕ(pj) : j ∈ N) of real numbers is convergent.

Given any non-empty set S of extended real numbers, we can define supS
to be the least extended real number p with the property that s ≤ p for all
s ∈ S. If the set S does not contain the extended real number +∞, and
if there exists some real number B such that s ≤ B for all s ∈ S, then
supS < +∞; otherwise supS = +∞. Similarly we define inf S to be the
greatest extended real number p with the property that s ≥ p for all s ∈ S.
If the set S does not contain the extended real number −∞, and if there
exists some real number A such that s ≥ A for all s ∈ S, then inf S > +∞;
otherwise inf S = −∞. Moreover

ϕ(supS) = supϕ(S) and ϕ(inf S) = inf ϕ(S),

where ϕ: [−∞,+∞] → [−1, 1] is the homeomorphism defined such that
ϕ(+∞) = 1, ϕ(−∞) = −1 and ϕ(c) = c(1 + |c|)−1 for all real numbers c.

Given any sequence (pj : j ∈ N) of extended real numbers, we define the
upper limit lim sup

j→+∞
pj and the lower limit lim sup

j→+∞
pj of the sequence so that

lim sup
j→+∞

pj = lim
j→+∞

sup{pk : k ≥ j}, lim inf
j→+∞

pj = lim
j→+∞

inf{pk : k ≥ j}.

Every sequence of extended real numbers has both an upper limit and a lower
limit. Moreover an infinite sequence of extended real numbers converges to
some extended real number if and only if the upper and lower limits of
the sequence are equal. (These results follow easily from the corresponding
results for bounded sequences of real numbers, on using the identities

ϕ(lim sup
j→+∞

pj) = lim sup
j→+∞

ϕ(pj), ϕ(lim inf
j→+∞

pj) = lim inf
j→+∞

ϕ(pj),

where ϕ: [−∞,+∞]→ [−1, 1] is the homeomorphism defined above.)
The function that sends a pair (p, q) of extended real numbers to the

extended real number p + q is not defined when p = +∞ and q = −∞, or
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when p = −∞ and q = +∞ but is continuous elsewhere. The function that
sends a pair (p, q) of extended real numbers to the extended real number pq
is defined everywhere. This function is discontinuous when p = ±∞ and
q = 0, and when p = 0 and q = ±∞. It is continuous for all other values of
the extended real numbers p and q.

Let a1, a2, a3, . . . be an infinite sequence of extended real numbers which
does not include both the values +∞ and −∞, and let pk =

∑k
j=0 aj for

all natural numbers k. If the infinite sequence p1, p2, p3, . . . of extended real
numbers converges in the extended real line [−∞,+∞] to some extended
real number p, then this value p is said to be the sum of the infinite series
+∞∑
j=1

aj, and we write
+∞∑
j=1

aj = p.

It follows easily from this definition that if +∞ is one of the values of

the infinite series a1, a2, a3, . . ., then
+∞∑
j=1

aj = +∞. Similarly if −∞ is one of

the values of this infinite series then then
+∞∑
j=1

aj = −∞. Suppose that the

members of the sequence a1, a2, a3, . . . are all real numbers. Then
+∞∑
j=1

an =

+∞ if and only if, given any real number B, there exists some real number N

such that
k∑
j=1

an > B whenever k ≥ N . Similarly
+∞∑
j=1

aj = −∞ if and only

if, given any real number A, there exists some real number N such that
k∑
j=1

aj < A whenever k ≥ N .

6.2 Summation over Countable Sets

Let S be a countable set, and let λ:S → [0,+∞] be a function on the set S
that takes values in the set [0,+∞] of non-negative extended real numbers.
We define ∑

s∈S

λ(s) = sup

{∑
s∈F

λ(s) : F is finite and F ⊂ S

}
.

We define
∑

s∈S λ(s) = 0 when S = ∅.
If the set S is finite and non-empty, then there exist distinct elements

s1, s2, . . . , sm of S such that S = {s1, s2, . . . , sm}. Then∑
s∈S

λ(s) = λ(s1) + λ(s2) + · · ·+ λ(sm).
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Proposition 6.1 Let S be a countable infinite set, let λ:S → [0,+∞] be a
function on S with values in the set [0,+∞] of non-negative extended real
numbers, and let ϕ:N → S be a bijective function mapping the set N of
natural numbers onto S. Then∑

s∈S

λ(s) =
+∞∑
j=1

λ(ϕ(j)).

Thus if s1, s2, s3, . . . be an infinite sequence of distinct elements of S that
includes every element of S, then

∑
s∈S

λ(s) =
+∞∑
j=1

λ(sj).

Proof Given any finite subset F of S, there exists some natural number N
such that F ⊂ {ϕ(j) : j ∈ N and j ≤ N}. Then

∑
s∈F

λ(s) ≤
N∑
j=1

λ(ϕ(j)) ≤
+∞∑
j=1

λ(ϕ(j)).

It follows that∑
s∈S

λ(s) = sup

{∑
s∈F

λ(s) : F is finite and F ⊂ S

}
≤

+∞∑
j=1

λ(ϕ(j)).

But
N∑
j=1

λ(ϕ(j)) ≤
∑
s∈S

λ(s)

for all natural numbers N , and therefore

+∞∑
j=1

λ(ϕ(j)) = lim
N→+∞

N∑
j=1

λ(ϕ(j)) ≤
∑
s∈S

λ(s).

It follows that
∑
s∈S

λ(s) =
+∞∑
j=1

λ(ϕ(j)), as required.

Corollary 6.2 Let a1, a2, a3, . . . be an infinite sequence of non-negative real
numbers, and let ϕ:N → N be a permutation of the set of natural numbers.

Then
+∞∑
j=1

aj =
+∞∑
j=1

aϕ(j). Thus the sum of any infinite series of non-negative

real numbers has a value which is independent of the order of summation.
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Proof Let λ:N → R be the function defined such that λ(j) = aj for all
natural numbers j. It follows immediately from Proposition 6.1 that

+∞∑
j=1

aϕ(j) =
+∞∑
j=1

λ(ϕ(j)) =
∑
j∈N

λ(j).

Thus the sum of the infinite series
+∞∑
j=1

aϕ(j) has a value that is the same for

all permutations ϕ:N→ N of the set N of natural numbers, and is therefore

equal to
+∞∑
j=1

aj.

Let C be a collection of sets. We say that the sets in this collection are
pairwise disjoint if and only if the intersection of any two distinct sets in the
collection is the empty set.

Proposition 6.3 Let C be a countable collection of countable sets, let V be
the union

⋃
S∈C S of the sets belonging to the collection C, and let λ:V →

[0,+∞] be a function on V taking values in the set [0,+∞] of non-negative
extended real numbers. Suppose that the sets in the collection C are pairwise
disjoint. Then ∑

s∈V

λ(s) =
∑
S∈C

(∑
s∈S

λ(s)

)
.

Proof The result follows immediately if C = ∅. It suffices therefore to prove
the result when the collection C is non-empty.

First we prove that

∑
s∈V

λ(s) ≤
∑
S∈C

(∑
s∈S

λ(s)

)
.

Let F be a finite subset of V . Then the number of sets in the collection C
which have non-empty intersection with F is finite. (Indeed the number of
such sets cannot exceed the number of elements in the finite set F .) Let the
number of such sets be m, and let these sets be S1, S2, . . . , Sm. Then the sets
S1, S2, . . . , Sm are pairwise disjoint (so that Si∩Sj = ∅ whenever i 6= j), and

F =
m⋃
j=1

(F ∩ Sj), and therefore

∑
s∈F

λ(s) =
m∑
j=1

 ∑
s∈F∩Sj

λ(s)

 ≤ m∑
j=1

∑
s∈Sj

λ(s)

 ≤∑
S∈C

(∑
s∈S

λ(s)

)
.

6



It follows from this that∑
s∈V

λ(s) = sup

{∑
s∈F

λ(s) : F is finite and F ⊂ V

}
≤
∑
S∈C

(∑
s∈S

λ(s)

)
.

We now prove the reverse inequality

∑
S∈C

(∑
s∈S

λ(s)

)
≤
∑
s∈V

λ(s).

If
∑

s∈V λ(s) = +∞ there is nothing to prove. Suppose that
∑

s∈V λ(s) <
+∞. Then

∑
s∈S λ(s) ≤

∑
s∈V λ(s) < +∞ for all S ∈ C. Let S1, S2, . . . , Sr

be distinct sets belonging to the collection C, and let ε be some positive
real number. Then, for each integer j between 1 and r, there exists a finite
subset Fj of Sj such that ∑

s∈Sj

λ(s)− ε

r
<
∑
s∈Fj

λ(s).

(Indeed
∑

s∈Sj λ(s) is by definition the least upper bound of the sums of the
values of the function λ taken over finite subsets of Sj, and may therefore
be approximated to within an error of ε/r by the sum taken over some
sufficiently large finite subset of Sj.) Let F = F1 ∪ F2 ∪ . . . ∪ Fr. Now
the sets S1, S2, . . . , Sr are pairwise disjoint, and therefore so are the sets
F1, F2, . . . , Fr. It follows that

r∑
j=1

∑
s∈Sj

λ(s)

− ε < r∑
j=1

∑
s∈Fj

λ(s)

 =
∑
s∈F

λ(s) ≤
∑
s∈V

λ(s).

The inequality
r∑
j=1

∑
s∈Sj

λ(s)

− ε <∑
s∈V

λ(s).

therefore holds for any positive value of ε, no matter how small. It follows
that

r∑
j=1

∑
s∈Sj

λ(s)

 ≤∑
s∈V

λ(s).

Thus ∑
S∈F

(∑
s∈S

λ(s)

)
≤
∑
s∈V

λ(s)
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for any finite collection F of sets whose members belong to C, and therefore

∑
S∈C

(∑
s∈S

λ(s)

)
= sup

{∑
S∈F

(∑
s∈S

λ(s)

)
: F is finite and F ⊂ C

}
≤

∑
s∈V

λ(s).

But we have already shown that
∑
s∈V

λ(s) ≤
∑
S∈C

(∑
s∈S

λ(s)

)
. Therefore

∑
s∈V

λ(s) =
∑
S∈C

(∑
s∈S

λ(s)

)
,

as required.

Corollary 6.4 Let S and T be countable sets, and let λ:S×T → [0,+∞] be
a function on S×T taking values in the set [0,+∞] of non-negative extended
real numbers. Then∑

s∈S

(∑
t∈T

λ(s, t)

)
=

∑
(s,t)∈S×T

λ(s, t) =
∑
t∈T

(∑
s∈S

λ(s, t)

)
.

Proof For each s ∈ S, let Ts = {(s, t) : t ∈ T . Then the Cartesian product
S×T is the disjoint union of the sets Ts as s ranges over the elements of the
countable set S. It follows from Proposition 6.3 that

∑
s∈S

(∑
t∈T

λ(s, t)

)
=
∑
s∈S

 ∑
(s,t)∈Ts

λ(s, t)

 =

 ∑
(s,t)∈S×T

λ(s, t)

 .

Similarly ∑
t∈T

(∑
s∈S

λ(s, t)

)
=

 ∑
(s,t)∈S×T

λ(s, t)

 ,

as required.

Lemma 6.5 Let S be a countable set, and let λ:S → [0,+∞] and µ:S →
[0,+∞] be functions on S taking values in the set [0,+∞] of non-negative
extended real numbers. Then∑

s∈S

(λ(s) + µ(s)) =
∑
s∈S

λ(s) +
∑
s∈S

µ(s).
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Proof Let F be a finite subset of S. Then∑
s∈F

(λ(s) + µ(s)) =
∑
s∈F

λ(s) +
∑
s∈F

µ(s) ≤
∑
s∈S

λ(s) +
∑
s∈S

µ(s).

Now
∑

s∈S(λ(s) + µ(s)) is by definition the supremum of the quantities∑
s∈F

(λ(s) + µ(s))

as F ranges over all finite subsets of S. It follows that∑
s∈S

(λ(s) + µ(s)) ≤
∑
s∈S

λ(s) +
∑
s∈S

µ(s).

It remains therefore to show that the reverse inequality is also valid.
Suppose that

∑
s∈S(λ(s) + µ(s)) < +∞. Then

∑
s∈S λ(s) < +∞ and∑

s∈S µ(s) < +∞. Let ε be some given positive real number. Then there
exist finite subsets F1 and F2 of S such that∑

s∈F1

λ(s) >
∑
s∈S

λ(s)− 1
2
ε and

∑
s∈F2

µ(s) >
∑
s∈S

µ(s)− 1
2
ε.

Let F = F1 ∪ F2. Then∑
s∈S

(λ(s) + µ(s)) ≥
∑
s∈F

(λ(s) + µ(s)) =
∑
s∈F

λ(s) +
∑
s∈F

µ(s)

≥
∑
s∈F1

λ(s) +
∑
s∈F2

µ(s) >
∑
s∈S

λ(s) +
∑
s∈S

µ(s)− ε.

The inequality ∑
s∈S

(λ(s) + µ(s)) >
∑
s∈S

λ(s) +
∑
s∈S

µ(s)− ε

therefore holds, irrespective of the value of the positive real quantity ε. It
follows that ∑

s∈S

(λ(s) + µ(s)) ≥
∑
s∈S

λ(s) +
∑
s∈S

µ(s),

when
∑

s∈S(λ(s) + µ(s)) < +∞. This inequality obviously holds also when
the sum on the left hand side has the value +∞. Therefore∑

s∈S

(λ(s) + µ(s)) =
∑
s∈S

λ(s) +
∑
s∈S

µ(s),

as required.
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6.3 Summable Functions

Definition Let f :S → C be a function defined on a countable set S and
taking values in the field C of complex numbers. The function f is said to
be summable if the set S, provided that∑

s∈S

|f(s)| < +∞.

We shall show that we can attach a well-defined value to the sum∑
s∈S

f(s)

of the values of a summable function defined on a countable set S. This
result is equivalent to the well-known theorem of analysis which states that
an infinite series of real or complex numbers has a sum which is independent
of the order of summation, provided that the infinite series is absolutely
convergent.

Let S be a countable set, and let f :S → C be a function on S with values
in the field of complex numbers. We can write

f(s) = x+(s)− x−(s) + iy+(s)− iy−(s),

where

x+(s) = max(Re[f(s)], 0), x−(s) = max(−Re[f(s)], 0),

y+(s) = max(Im[f(s)], 0), y−(s) = max(− Im[f(s)], 0).

Then x+, x−, y+ and y− are functions on S with values in the set of non-
negative real numbers. We can therefore sum these functions over the set S
to obtain well-defined extended real numbers∑

s∈S

x+(s),
∑
s∈S

x−(s),
∑
s∈S

y+(s), and
∑
s∈S

y−(s)

(which may be finite or infinite). Now

x+(s) ≤ |f(s)|, x−(s) ≤ |f(s)|, y+(s) ≤ |f(s)|, and y−(s) ≤ |f(s)|

and
|f(s)| ≤ x+(s) + x−(s) + y+(s) + y−(s)

for all s ∈ S. It follows that
∑
s∈S
|f(s)| < +∞ if and only if

∑
s∈S

x+(s) < +∞,
∑
s∈S

x−(s) < +∞,
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∑
s∈S

y+(s) < +∞, and
∑
s∈S

y−(s) < +∞.

Definition Let S be a countable set, and let f :S → C be a summable
function on S. We define∑

s∈S

f(s) =
∑
s∈S

x+(s)−
∑
s∈S

x−(s) + i
∑
s∈S

y+(s)− i
∑
s∈S

y−(s),

where

x+(s) = max(Re[f(s)], 0), x−(s) = max(−Re[f(s)], 0),

y+(s) = max(Im[f(s)], 0), y−(s) = max(− Im[f(s)], 0).

The following result follows immediately from this definition.

Lemma 6.6 Let S be a countable set, and let f :S → C be a summable
function on S. Then∑

s∈S

f(s) =
∑
s∈S

Re[f(s)] + i
∑
s∈S

Im[f(s)].

Lemma 6.7 Let S be a countable set, and let f :S → R be a summable real-
valued function on S. Suppose that f(s) = p(s) − q(s) for all s ∈ S, where
p(s) ≥ 0 and q(s) ≥ 0 for all s ∈ S. Suppose also that

∑
s∈S

p(s) < +∞ and∑
s∈S

q(s) < +∞. Then

∑
s∈S

f(s) =
∑
s∈S

p(s)−
∑
s∈S

q(s).

Proof It follows from the definition of
∑

s∈S f(s) that∑
s∈S

f(s) =
∑
s∈S

x+(s)−
∑
s∈S

x−(s),

where

x+(s) = max(Re[f(s)], 0), x−(s) = max(−Re[f(s)], 0).

Then f(s) = x+(s) − x−(s) = p(s) − q(s), and therefore x+(s) + q(s) =
x−(s) + p(s) for all s ∈ S. It follows from Lemma 6.5 that∑

s∈S

x+(s) +
∑
s∈S

q(s) =
∑
s∈S

x−(s) +
∑
s∈S

p(s).
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Therefore ∑
s∈S

f(s) =
∑
s∈S

x+(s)−
∑
s∈S

x−(s) =
∑
s∈S

p(s)−
∑
s∈S

q(s),

as required.

Proposition 6.8 Let S be a countable set, and let f :S → C and g:S → C

be summable functions on S. Then∑
s∈S

(f(s) + g(s)) =
∑
s∈S

f(s) +
∑
s∈S

g(s).

Proof Let

x+(s) = max(Re[f(s)], 0), x−(s) = max(−Re[f(s)], 0),

y+(s) = max(Im[f(s)], 0), y−(s) = max(− Im[f(s)], 0),

u+(s) = max(Re[g(s)], 0), u−(s) = max(−Re[g(s)], 0),

v+(s) = max(Im[g(s)], 0), v−(s) = max(− Im[g(s)], 0).

Then ∑
s∈S

f(s) =
∑
s∈S

x+(s)−
∑
s∈S

x−(s) + i
∑
s∈S

y+(s)− i
∑
s∈S

y−(s)

and ∑
s∈S

g(s) =
∑
s∈S

u+(s)−
∑
s∈S

u−(s) + i
∑
s∈S

v+(s)− i
∑
s∈S

y−(s).

Now
Re[f(s) + g(s)] = x+(s) + u+(s)− (x−(s) + u−(s))

for all s ∈ S. It follows from Lemma 6.5, Lemma 6.6 and Lemma 6.7 that

Re

[∑
s∈S

(f(s) + g(s))

]
=

∑
s∈S

Re[f(s) + g(s)]

=
∑
s∈S

(x+(s) + u+(s))−
∑
s∈S

(x−(s) + u−(s))

=
∑
s∈S

x+(s) +
∑
s∈S

u+(s)−
∑
s∈S

x−(s)−
∑
s∈S

u−(s)

=
∑
s∈S

Re[f(s)] +
∑
s∈S

Re[g(s)]

= Re

[∑
s∈S

f(s) +
∑
s∈S

g(s)

]
.
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Similarly

Im

[∑
s∈S

(f(s) + g(s))

]
= Im

[∑
s∈S

f(s) +
∑
s∈S

g(s)

]
.

Therefore ∑
s∈S

(f(s) + g(s)) =
∑
s∈S

f(s) +
∑
s∈S

g(s),

as required.

Corollary 6.9 Let S be a countable set, and let f :S → C be a summable
function on S. Then ∑

s∈S

cf(s) = c
∑
s∈S

f(s)

for all complex numbers c.

Proof Let f(s) = x(s) + iy(s) for all s ∈ S, where x(s) ∈ R and y(s) ∈ R,
and let c = a+ib, where a, b ∈ R. Then cf(s) = ax(s)−by(s)+i(ay(s)+bx(s))
for all s ∈ S. Now ∑

s∈S

x(s) =
∑
s∈S

x+(s)−
∑
s∈S

x−(s)

and ∑
s∈S

ax(s) =
∑
s∈S

ax+(s)−
∑
s∈S

ax−(s).

(This last identity follows directly from the definition of the sum of a real-
valued function over a countable set, on considering separately the cases
when a ≥ 0 and when a ≤ 0.) It follows that∑

s∈S

ax(s) = a
∑
s∈S

x(s).

Similarly∑
s∈S

bx(s) = b
∑
s∈S

x(s),
∑
s∈S

ay(s) = a
∑
s∈S

y(s),
∑
s∈S

by(s) = b
∑
s∈S

y(s).

It follows that∑
s∈S

cf(s) =
∑
s∈S

ax(s)−
∑
s∈S

by(s) + i

(∑
s∈S

ay(s) +
∑
s∈S

bx(s)

)

= a
∑
s∈S

x(s)− b
∑
s∈S

y(s) + i

(
a
∑
s∈S

y(s) + b
∑
s∈S

x(s)

)

= (a+ ib)

(∑
s∈S

x(s) + i
∑
s∈S

y(s)

)
= c

∑
s∈S

f(s),
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as required.

Corollary 6.10 Let S be a countable set, and let f :S → C be a summable
function on S. Then ∣∣∣∣∣∑

s∈S

f(s)

∣∣∣∣∣ ≤∑
s∈S

|f(s)|.

Proof There exists a complex number c satisfying |c| = 1 for which∣∣∣∣∣∑
s∈S

f(s)

∣∣∣∣∣ = c
∑
s∈S

f(s)

Then ∣∣∣∣∣∑
s∈S

f(s)

∣∣∣∣∣ =
∑
s∈S

Re[cf(s)] ≤
∑
s∈S

|f(s)|,

as required.

Proposition 6.11 Let C be a countable collection of countable sets, let V be
the union

⋃
S∈C S of the sets belonging to the collection C, and let f :V →

[0,+∞] be a function on V taking values in the set [0,+∞] of non-negative
extended real numbers. Suppose that the sets in the collection C are pairwise

disjoint, and that either
∑
s∈V

|f(s)| < +∞ or
∑
S∈C

(∑
s∈S

|f(s)|

)
<∞. Then

∑
s∈V

f(s) =
∑
S∈C

(∑
s∈S

f(s)

)

Proof We set

f(s) = x+(s)− x−(s) + iy+(s)− iy−(s),

for all (s) ∈ S × T , where

x+(s) = max(Re[f(s)], 0), x−(s) = max(−Re[f(s)], 0),

y+(s) = max(Im[f(s)], 0), y−(s) = max(− Im[f(s)], 0).

It follows from Corollary 6.4 that

∑
s∈V

λ(s) =
∑
S∈C

(∑
s∈S

λ(s)

)
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in the cases when λ(s) = |f(s)|, λ(s) = x+(s), λ(s) = x−(s), λ(s) = y+(s)
and λ(s) = y−(s). Thus if at least one of the quantities

∑
s∈V
|f(s)| and∑

S∈C

(∑
s∈S |f(s)|

)
is finite then

∑
s∈V

x+(s) < +∞,
∑
s∈V

x−(s) < +∞,

∑
s∈V

y+(s) < +∞ and
∑
s∈V

y−(s) < +∞.

But then∑
v∈W

f(s) =
∑
v∈W

x+(s)−
∑
v∈W

x−(s) + i
∑
v∈W

y+(s)− i
∑
v∈W

y−(s)

for any subset W of V . The result therefore follows on applying Corollary 6.4
to the functions that send s ∈ V to x+(s), x−(s), y+(s) and y−(s).

The following result now follows directly from Proposition 6.11.

Corollary 6.12 Let S and T be countable sets, and let f :S × T → [0,+∞]
be a complex-valued function on S × T . Suppose that at least one of the
quantities

∑
s∈S

(∑
t∈T

|f(s, t)|

)
,

∑
(s,t)∈S×T

|f(s, t)|,
∑
t∈T

(∑
s∈S

|f(s, t)|

)

is finite. Then all these quantities are finite, and

∑
s∈S

(∑
t∈T

f(s, t)

)
=

∑
(s,t)∈S×T

f(s, t) =
∑
t∈T

(∑
s∈S

f(s, t)

)
.

Example The exponential function of complex analysis is defined such that

exp z =
+∞∑
n=0

zn

n!
for all complex numbers z.

Let z and w be complex numbers, let P be the set of non-negative integers,
and let f :P → P be the function defined such that

f(j, k) =
zjzk

j!k!
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for all non-negative integers j and k. Now

∑
j∈P

(∑
k∈P

|f(j, k)|

)
=

∑
j∈P

(
|z|j

j!

∑
k∈P

|w|k

k!

)
=
∑
j∈P

(
|zj|
j!

exp |w|
)

= exp |z| exp |w|,

Thus f is a summable function on P × P . Moreover it follows from Corol-
lary 6.12 that

∑
(j,k)∈P×P

f(j, k) =
∑
j∈P

(∑
k∈P

f(j, k)

)
=
∑
j∈P

(
zj

j!

∑
k∈P

wk

k!

)

=
∑
j∈P

(
zj

j!
exp(w)

)
= exp z expw.

Now P × P is the disjoint union of the sets D0, D1, D2, D3, . . ., where

Dn = {(j, k) ∈ P × P : j + k = n}

for each non-negative integer n. It follows from Proposition 6.11 that

∑
(j,k)∈P×P

f(j, k) =
+∞∑
n=0

 ∑
(j,k)∈Dn

f(j, k)

 .

But k = n− j for all (j, k) ∈ Dn, and therefore∑
(j,k)∈Dn

f(j, k) =
n∑
j=0

f(j, n− j) =
n∑
j=0

zjwn−j

j!k!
=

1

n!

n∑
j=0

(
n

j

)
zjwn−j

=
(z + w)n

n!
.

Therefore

exp z expw =
∑

(j,k)∈P×P

f(j, k) =
+∞∑
n=0

 ∑
(j,k)∈Dn

f(j, k)

 =
+∞∑
n=0

(z + w)n

n!

= exp(z + w).

Thus this standard identity for the exponential function is a consequence of
the basic theory of summable functions on countable sets developed above, as
is the more general result involving Cauchy products of absolutely convergent
infinite series.
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