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3 Complete Metric Spaces, Normed Vector

Spaces and Banach Spaces

3.1 The Least Upper Bound Principle

A set S of real numbers is said to be bounded above if there exists some real
number B such x ≤ B for all x ∈ S. Similarly a set S of real numbers is
said to be bounded below if there exists some real number A such that x ≥ A
for all x ∈ S. A set S of real numbers is said to be bounded if it is bounded
above and below. Thus a set S of real numbers is bounded if and only if
there exist real numbers A and B such that A ≤ x ≤ B for all x ∈ S.

Any bounded non-decreasing sequence of real numbers is convergent. This
result can be proved using the Least Upper Bound Principle. The Least
Upper Bound Principle expresses a basic property of the real number system.
It states that, given any non-empty set S of real numbers that is bounded
above, there exists a least upper bound (or supremum) for the set S. We
shall denote the least upper bound of such a set S by supS. It is the least
real number with the property that s ≤ supS for all s ∈ S.

The Least Upper Bound Principle also guarantees that, given any non-
empty set S of real numbers that is bounded below, there exists a greatest
lower bound (or infimum) for the set S. We shall denote the greatest lower
bound of such a set S by inf S. It is the greatest real number with the
property that s ≥ inf S for all s ∈ S. One can readily verify that

inf S = − sup{x ∈ R : −x ∈ S}

for any set S of real numbers that is bounded below.

3.2 Monotonic Sequences of Real Numbers

An infinite sequence a1, a2, a3, . . . of real numbers is said to be bounded above
if the corresponding set {a1, a2, a3, . . .} of values of the sequence is bounded
above. Similarly an infinite sequence a1, a2, a3, . . . of real numbers is said
to be bounded below if the set {a1, a2, a3, . . .} is bounded below. An infinite
sequence is said to be bounded if it is bounded above and below. Thus an
infinite sequence a1, a2, a3, . . . of real numbers is bounded if and only if there
exist real numbers A and B such that A ≤ aj ≤ B for all positive integers j.

An infinite sequence a1, a2, a3, . . . is said to be non-decreasing if aj+1 ≥ aj

for all positive integers j. Similarly an infinite sequence a1, a2, a3, . . . is said
to be non-increasing if aj+1 ≤ aj for all positive integers j. A sequence is
said to be monotonic if it is non-increasing, or it is non-decreasing.
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Theorem 3.1 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let a1, a2, a3, . . . be a non-decreasing sequence of real numbers that is
bounded above. It follows from the Least Upper Bound Principle that there
exists a least upper bound l for the set {aj : j ∈ N}. We claim that the
sequence converges to l.

Let ε > 0 be given. We must show that there exists some positive inte-
ger N such that |aj − l| < ε whenever j ≥ N . Now l − ε is not an upper
bound for the set {aj : j ∈ N} (since l is the least upper bound), and there-
fore there must exist some positive integer N such that aN > l− ε. But then
l − ε < aj ≤ l whenever j ≥ N , since the sequence is non-decreasing and
bounded above by l. Thus |aj − l| < ε whenever j ≥ N . Therefore aj → l as
j → +∞, as required.

If the sequence a1, a2, a3, . . . is non-increasing and bounded below then
the sequence −a1,−a2,−a3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence a1, a2, a3, . . . is also
convergent.

3.3 Upper and Lower Limits of Bounded Sequences of
Real Numbers

Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers, and, for
each positive integer j, let

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

The sets S1, S2, S3, . . . are all bounded. It follows that there exist well-defined
infinite sequences u1, u2, u3, . . . and l1, l2, l3, . . . of real numbers, where uj =
supSj and lj = inf Sj for all positive integers j. Now Sj+1 is a subset of Sj for
each positive integer j, and therefore uj+1 ≤ uj and lj+1 ≥ lj for each positive
integer j. It follows that the bounded infinite sequence (uj : j ∈ N) is a non-
increasing sequence, and is therefore convergent (Theorem 3.1). Similarly
the bounded infinite sequence (lj : j ∈ N) is a non-decreasing sequence, and
is therefore convergent. We define

lim sup
j→+∞

aj = lim
j→+∞

uj = lim
j→+∞

sup{aj, aj+1, aj+2, . . .},

lim inf
j→+∞

aj = lim
j→+∞

lj = lim
j→+∞

inf{aj, aj+1, aj+2, . . .}.
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The quantity lim sup
j→+∞

aj is referred to as the upper limit of the sequence

a1, a2, a3, . . .. The quantity lim inf
j→+∞

aj is referred to as the lower limit of the

sequence a1, a2, a3, . . ..
Note that every bounded infinite sequence a1, a2, a3, . . .. of real num-

bers has a well-defined upper limit lim sup
j→+∞

aj and a well-defined lower limit

lim inf
j→+∞

aj.

Proposition 3.2 A bounded infinite sequence a1, a2, a3, . . .. of real numbers
is convergent if and only if lim inf

j→+∞
aj = lim sup

j→+∞
aj, in which case the limit of

the sequence is equal to the common value of its upper and lower limits.

Proof For each positive integer j, let uj = supSj and lj = inf Sj, where

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

Then lim inf
j→+∞

aj = lim
j→+∞

lj and lim sup
j→+∞

aj = lim
j→+∞

uj.

Suppose that lim inf
j→+∞

aj = lim sup
j→+∞

aj = c for some real number c. Then,

given any positive real number ε, there exist natural numbers N1 and N2

such that c − ε < lj ≤ c whenever j ≥ N1, and c ≤ uj ≤ c + ε whenever
j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then aj ∈ SN , and
therefore

c− ε < lN ≤ aj ≤ uN < c+ ε.

Thus |aj − c| < ε whenever j ≥ N . This proves that the infinite sequence
a1, a2, a3, . . . converges to the limit c.

Conversely let a1, a2, a3, . . . be a bounded sequence of real numbers that
converges to some value c. Let ε > 0 be given. Then there exists some
natural number N such that c− 1

2
ε < aj < c+ 1

2
ε whenever j ≥ N . It follows

that Sj ⊂ (c− 1
2
ε, c+ 1

2
ε) whenever j ≥ N . But then

c− 1
2
ε ≤ lj ≤ uj ≤ c+ 1

2
ε

whenever j ≥ N , where uj = supSj and lj = inf Sj. We see from this that,
given any positive real number ε, there exists some natural number N such
that |lj − c| < ε and |uj − c| < ε whenever j ≥ N . It follows from this that

lim sup
j→+∞

aj = lim
j→+∞

uj = c and lim inf
j→+∞

aj = lim
j→+∞

lj = c,

as required.
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3.4 Convergence of Sequences in Euclidean Space

Lemma 3.3 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let xji and pi denote the ith components of xj and p. Then |xji−pi| ≤
|xj − p| for all j. It follows directly from the definition of convergence that
if xj → p as j → +∞ then xji → pi as j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist natural numbers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√
n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N

then

|xj − p|2 =
n∑

i=1

(xji − pi)
2 < n(ε/

√
n)2 = ε2,

so that xj → p as j → +∞.

3.5 Cauchy’s Criterion for Convergence

Definition An infinite sequence a1, a2, a3, . . . of real numbers said to be
a Cauchy sequence if, given any positive real number ε, there exists some
positive integer N such that |aj − ak| < ε for all j and k satisfying j ≥ N
and k ≥ N .

Theorem 3.4 (Cauchy’s Criterion for Convergence) A sequence of real num-
bers is convergent if and only if it is a Cauchy sequence.

Proof Let a1, a2, a3, . . . be a sequence of real numbers. Suppose that this
sequence converges to some limit c. Let some positive real number ε be given.
Then there exists some natural number N such that |aj − c| < 1

2
ε whenever

j ≥ N . If j and k are positive integers satisfying j ≥ N and k ≥ N then

|aj − ak| ≤ |aj − c|+ |c− ak| < 1
2
ε+ 1

2
ε = ε.

This shows that any convergent sequence of real numbers is a Cauchy se-
quence.

Next let a1, a2, a3, . . . be a Cauchy sequence of real numbers. We must
prove that this sequence is convergent. First we show that it is bounded. Now
there exists some natural number M such that |aj − ak| < 1 for all positive
integers j and k satisfying j > M and k > M . Let R be the maximum of
the real numbers

|a1|, |a2|, . . . , |aM−1|, |aM |+ 1.
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It is clear that |aj| ≤ R when j < M . If j ≥ M then |aj − aM | < 1, and
therefore |aj| < |aM |+ 1 ≤ R. Thus |aj| ≤ R for all positive integers j. This
proves that the Cauchy sequence is bounded.

For each positive integer j, let

uj = sup{ak : k ≥ j} and lj = inf{ak : k ≥ j}.

Then u1, u2, u3, . . . is a non-increasing sequence which converges to lim sup
j→+∞

aj,

and l1, l2, l3, . . . is a non-decreasing sequence which converges to lim inf
j→+∞

aj.

Let ε be some given positive real number. Then there exists some natural
number N such that |aj − ak| < ε for all positive integers j and k satisfying
j ≥ N and k ≥ N . It follows from this that aN − ε < aj < aN + ε for all
positive integers j satisfying j ≥ N . It then follow from the definitions of
uN and lN that aN − ε ≤ lN ≤ uN ≤ aN + ε. Now 0 ≤ uj − lj ≤ uN − lN
whenever j ≥ N . It follows that

lim sup
j→+∞

aj − lim inf
j→+∞

aj = lim
j→+∞

(uj − lj) ≤ uN − lN ≤ 2ε.

Thus if d = lim sup
j→+∞

aj − lim inf
j→+∞

aj then 0 ≤ d ≤ 2ε for all positive real

numbers ε. It must therefore be the case that d = 0. Thus lim sup
j→+∞

aj =

lim inf
j→+∞

aj. It now follows from Proposition 3.2 that the Cauchy sequence

a1, a2, a3, . . . is convergent, as required.

An infinite sequence x1,x2,x3, . . . of points of n-dimensional Euclidean
space Rn is said to be a Cauchy sequence if, given any positive real number ε,
there exists some positive integer N such that |xj − xk| < ε for all j and k
satisfying j ≥ N and k ≥ N .

Corollary 3.5 Every Cauchy sequence of points of n-dimensional Euclidean
space Rn is convergent.

Proof If an infinite sequence x1,x2,x2, . . . of points in Rn is a Cauchy se-
quence, then, for each integer i between 1 and n, the ith components of those
points constitute a Cauchy sequence of real numbers. But every Cauchy
sequence of real numbers is convergent (Theorem 3.4). Therefore the ith
components of the sequence x1,x2,x2, . . . converge. It then follows from
Lemma 3.3 that the Cauchy sequence x1,x2,x3, . . . converges to some point
of Rn, as required.
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3.6 The Bolzano-Weierstrass Theorem

Let a1, a2, a3, . . . be an infinite sequence of real numbers. A subsequence
of this sequence is a sequence that is of the form am1 , am2 , am3 , . . ., where
m1,m2,m3, . . . are positive integers satisfying m1 < m2 < m3 < · · · . Thus,
for example, a2, a4, a6, . . . and a1, a4, a9, . . . are subsequences of the given
sequence.

Lemma 3.6 Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers,
and let c be a real number satisfying c < lim sup

j→+∞
aj. Then there exist infinitely

many positive integers j such that aj > c.

Proof Let N be a positive integer. Then

c < lim sup
j→+∞

aj ≤ sup{aj : j ≥ N},

It follows that c is not an upper bound for the set {aj : j ≥ N}, and therefore
there exists some positive integer satisfying j ≥ N for which aj > c. We
conclude from this that there does not exist any positive integer N with the
property that aj ≤ c whenever j ≥ N . Therefore {j ∈ N : aj > c} is not a
finite set. The result follows.

Proposition 3.7 Any bounded infinite sequence a1, a2, a3, . . . of real num-
bers has a subsequence which converges to the upper limit lim sup

j→+∞
aj of the

given sequence.

Proof Let s = lim sup
j→+∞

aj, and let

uN = sup{aN , aN+1, aN+2, . . .} = sup{aj : j ≥ N}

for all positive integers N . The upper limit s of the sequence a1, a2, a3, . . . is
then the limit of the non-increasing sequence u1, u2, u3, . . ..

Let ε be positive real number. The convergence of the infinite sequence
u1, u2, u3, . . . to s ensures that there exists some positive integer N such that
uN < s + ε. But then aj < s + ε whenever j ≥ N . It follows that the
number of positive integers j for which aj ≥ s + ε is finite. Also it follows
from Lemma 3.6 that the number of positive integers j for which aj > s− ε
is infinite. Putting these two facts together, we see that the number of
positive integers j for which s − ε < aj < s + ε is infinite. (Indeed let
S1 = {j ∈ N : aj > s − ε} and S2 = {j ∈ N : aj ≥ s + ε}. Then S1 is an
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infinite set, S2 is a finite set, and therefore S1 \S2 is an infinite set. Moreover
s− ε < aj < s+ ε for all j ∈ S1 \ S2.)

Now given any positive integer j, and given any positive number mj

such that |amj
− s| < j−1, there exists some positive integer mj+1 such that

mj+1 > mj and |amj+1
− s| < (j + 1)−1. It follow from this that there exists

a subsequence am1 , am2 , am3 , . . . of the infinite sequence a1, a2, a3, . . ., where
m1 < m2 < m3 < · · ·, which has the property that |amj

− s| < j−1 for all
positive integers j. This subsequence converges to s as required.

The following theorem, known as the Bolzano-Weierstrass Theorem, is
an immediate consequence of Proposition 3.7.

Theorem 3.8 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

The following result is the analogue of the Bolzano-Weierstrass Theorem
for sequences in n-dimensional Euclidean space.

Corollary 3.9 Every bounded sequence of points in Rn has a convergent
subsequence.

Proof Let x1,x2,x3, . . . be a bounded sequence of points in Rn. Let us
denote by x

(i)
j the ith component of the point xj, so that

xj = (x
(1)
j , x

(2)
j , . . . , x

(n)
j )

for all positive integers j. Suppose that, for some integer s between 1 and
n − 1, the sequence x1,x2,x3, . . . has a subsequence xp1 ,xp2 ,xp3 , . . . with
the property that, for each integer i satisfying 1 ≤ i ≤ s, the ith compo-
nents of the members of this subsequence constitute a convergent sequence
x

(i)
p1 , x

(i)
p2 , x

(i)
p3 , . . . of real numbers. Let aj = x

(s+1)
pj for each positive integer j.

Then a1, a2, a3, . . . is a bounded sequence of real numbers. It follows from
the Bolzano-Weierstrass Theorem (Theorem 3.8) that this sequence has a
convergent subsequence am1 , am2 , am3 , . . ., where m1 < m2 < m3 < · · ·. Let
qj = pmj

for each positive integer j. Then xq1 ,xq2 ,xq3 , . . . is a subsequence of
the original bounded sequence x1,x2,x3, . . . which has the property that, for
each integer i satisfying 1 ≤ i ≤ s + 1, the ith components of the members
of the subsequence constitute a convergent sequence x

(i)
q1 , x

(i)
q2 , x

(i)
q3 , . . . of real

numbers.
Repeated applications of this result show that the bounded sequence

x1,x2,x3, . . . has a subsequence xr1 ,xr2 ,xr3 , . . . with the property that, for
each integer i satisfying 1 ≤ i ≤ n, the ith components of the members
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of the subsequence constitute a convergent sequence of real numbers. Let
z = (z1, z2, . . . , zn) where, for each value of i between 1 and n, the ith com-

ponent zi of z is the limit of the sequence x
(i)
r1 , x

(i)
r2 , x

(i)
r3 , . . . of ith components

of the members of the subsequence xr1 ,xr2 ,xr3 , . . . . Then this subsequence
converges to the point z, as required.

3.7 Complete Metric Spaces

Definition Let X be a metric space with distance function d. A sequence
x1, x2, x3, . . . of points ofX is said to be a Cauchy sequence inX if and only if,
given any ε > 0, there exists some positive integer N such that d(xj, xk) < ε
for all j and k satisfying j ≥ N and k ≥ N .

Every convergent sequence in a metric space is a Cauchy sequence. Indeed
let X be a metric space with distance function d, and let x1, x2, x3, . . . be
a sequence of points in X which converges to some point p of X. Given
any positive real number ε, there exists some positive integer N such that
d(xn, p) < ε/2 whenever n ≥ N . But then it follows from the Triangle
Inequality that

d(xj, xk) ≤ d(xj, p) + d(p, xk) <
1
2
ε+ 1

2
ε = ε

whenever j ≥ N and k ≥ N .

Definition A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges to some point of X.

The spaces R and C are complete metric spaces with respect to the dis-
tance function given by d(z, w) = |z − w|. Indeed this result is Cauchy’s
Criterion for Convergence. However the space Q of rational numbers (with
distance function d(q, r) = |q− r|) is not complete. Indeed one can construct
an infinite sequence q1, q2, q3, . . . of rational numbers which converges (in R)
to
√

2. Such a sequence of rational numbers is a Cauchy sequence in both R
and Q. However this Cauchy sequence does not converge to an point of the
metric space Q (since

√
2 is an irrational number). Thus the metric space Q

is not complete.
It follows immediately from Corollary 3.5 that n-dimensional Euclidean

space Rn is a complete metric space.

Lemma 3.10 Let X be a complete metric space, and let A be a subset of X.
Then A is complete if and only if A is closed in X.
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Proof Suppose that A is closed inX. Let a1, a2, a3, . . . be a Cauchy sequence
in A. This Cauchy sequence must converge to some point p of X, since X is
complete. But the limit of every sequence of points of A must belong to A,
since A is closed. In particular p ∈ A. We deduce that A is complete.

Conversely, suppose that A is complete. Suppose that A were not closed.
Then the complement X \ A of A would not be open, and therefore there
would exist a point p of X \ A with the property that BX(p, δ) ∩ A is non-
empty for all δ > 0, where BX(p, δ) denotes the open ball in X of radius δ
centred at p. We could then find a sequence a1, a2, a3, . . . of points of A
satisfying d(aj, p) < 1/j for all positive integers j. This sequence would be a
Cauchy sequence in A which did not converge to a point of A, contradicting
the completeness of A. Thus A must be closed, as required.

Theorem 3.11 The metric space Rn (with the Euclidean distance function)
is a complete metric space.

Proof Let p1,p2,p3, . . . be a Cauchy sequence in Rn. Then for each inte-
ger m between 1 and n, the sequence (p1)m, (p2)m, (p3)m, . . . is a Cauchy
sequence of real numbers, where (pj)m denotes the mth component of pj.
But every Cauchy sequence of real numbers is convergent (Cauchy’s crite-
rion for convergence). Let qm = lim

j→+∞
(pj)m for m = 1, 2, . . . , n, and let

q = (q1, q2, . . . , qn). We claim that pj → q as j → +∞.
Let ε > 0 be given. Then there exist positive integers N1, N2, . . . , Nn such

that |(pj)m − qm| < ε/
√
n whenever j ≥ Nm (where m = 1, 2, . . . , n). Let N

be the maximum of N1, N2, . . . , Nn. If j ≥ N then

|pj − q|2 =
n∑

m=1

((pj)m − qm)2 < ε2.

Thus pj → q as j → +∞. Thus every Cauchy sequence in Rn is convergent,
as required.

The following result follows directly from Lemma 3.10 and Theorem 3.11.

Corollary 3.12 A subset X of Rn is complete if and only if it is closed.

Example The n-sphere Sn (with the chordal distance function given by
d(x,y) = |x− y|) is a complete metric space, where

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.
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3.8 Normed Vector Spaces

A set X is a vector space over some field F if

• given any x, y ∈ X and λ ∈ F, there are well-defined elements x + y
and λx of X,

• X is an Abelian group with respect to the operation + of addition,

• the identities

λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx,

(λµ)x = λ(µx), 1x = x

are satisfied for all x, y ∈ X and λ, µ ∈ F.

Elements of the field F are referred to as scalars. We consider here only real
vector spaces and complex vector spaces : these are vector spaces over the
fields of real numbers and complex numbers respectively.

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector spaceX,
together with a norm ‖.‖ on X.

Note that any normed complex vector space can also be regarded as a
normed real vector space.

Example The field R is a one-dimensional normed vector space over itself:
the norm |t| of t ∈ R is the absolute value of t.

Example The field C is a one-dimensional normed vector space over itself:
the norm |z| of z ∈ C is the modulus of z. The field C is also a two-
dimensional normed vector space over R.
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Example Let ‖.‖1, ‖.‖2 and ‖.‖∞ be the real-valued functions on Cn defined
by

‖z‖1 =
n∑

j=1

|zj|,

‖z‖2 =

(
n∑

j=1

|zj|2
) 1

2

,

‖z‖∞ = max(|z1|, |z2|, . . . , |zn|),

for each z ∈ Cn, where z = (z1, z2, . . . , zn). Then ‖.‖1, ‖.‖2 and ‖.‖∞ are
norms on Cn. In particular, if we regard Cn as a 2n-dimensional real vector
space naturally isomorphic to R2n (via the isomorphism

(z1, z2, . . . , zn) 7→ (x1, y1, x2, y2, . . . , xn, yn),

where xj and yj are the real and imaginary parts of zj for j = 1, 2, . . . , n) then
‖.‖2 represents the Euclidean norm on this space. The inequality ‖z+w‖2 ≤
‖z‖2 +‖w‖2 satisfied for all z,w ∈ Cn is therefore just the standard Triangle
Inequality for the Euclidean norm.

Example The space Rn is also an n-dimensional real normed vector space
with respect to the norms ‖.‖1, ‖.‖2 and ‖.‖∞ defined above. Note that ‖.‖2

is the standard Euclidean norm on Rn.

Example Let

`1 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|+ |z2|+ |z3|+ · · · converges},
`2 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|2 + |z2|2 + |z3|2 + · · · converges},
`∞ = {(z1, z2, z3, . . .) ∈ C∞ : the sequence |z1|, |z2|, |z3|, . . . is bounded}.

where C∞ denotes the set of all sequences (z1, z2, z3, . . .) of complex numbers.
Then `1, `2 and `∞ are infinite-dimensional normed vector spaces, with norms
‖.‖1, ‖.‖2 and ‖.‖∞ respectively, where

‖z‖1 =
+∞∑
j=1

|zj|,

‖z‖2 =

(
+∞∑
j=1

|zj|2
) 1

2

,

‖z‖∞ = sup{|z1|, |z2|, |z3|, . . .}.

12



(For example, to show that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2 for all z,w ∈ `2, we
note that(

n∑
j=1

|zj + wj|2
) 1

2

≤

(
n∑

j=1

|zj|2
) 1

2

+

(
n∑

j=1

|wj|2
) 1

2

≤ ‖z‖2 + ‖w‖2

for all positive integers n, by the Triangle Inequality in Cn. Taking limits as
n→ +∞, we deduce that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2, as required.)

If x1, x2, . . . , xm are elements of a normed vector space X then∥∥∥∥∥
m∑

k=1

xk

∥∥∥∥∥ ≤
m∑

k=1

‖xk‖,

where ‖.‖ denotes the norm on X. (This can be verified by induction on m,
using the inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.)

A norm ‖.‖ on a vector spaceX induces a corresponding distance function
on X: the distance d(x, y) between elements x and y of X is defined by
d(x, y) = ‖x − y‖. This distance function satisfies the metric space axioms.
Thus any vector space with a given norm can be regarded as a metric space.

Lemma 3.13 Let X be a normed vector space over the field F, where F =
R or C. Let (xj) and (yj) be convergent sequences in X, and let (λj) be
a convergent sequence in F. Then the sequences (xj + yj) and (λjxj) are
convergent in X, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj,

lim
j→+∞

(λjxj) =

(
lim

j→+∞
λj

)(
lim

j→+∞
xj

)
.

Proof First we prove that lim
j→+∞

(xj + yj) = x + y, where Let x = lim
j→+∞

xj,

y = lim
j→+∞

yj. Let ε > 0 be given. Then there exist natural numbers N1 and

N2 such that ‖xj − x‖ < 1
2
ε whenever j ≥ N1 and ‖yj − y‖ < 1

2
ε whenever

j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then

‖(xj + yj)− (x+ y)‖ ≤ ‖xj − x‖+ ‖yj − y‖ < ε.

It follows from this that lim
j→+∞

(xj + yj) = x+ y.

Next we prove that lim
j→+∞

(λjxj) = λx, where λ = lim
j→+∞

λj. Let ε > 0 be

given. Then there exist natural numbers N3 and N4 such that

‖xj − x‖ < ε

2(|λ|+ 1)

13



whenever j ≥ N3, and

|λj − λ| < ε

2(‖x‖+ 1)
and |λj − λ| < 1

whenever j ≥ N4. Let N be the maximum of N3 and N4. if j ≥ N then

‖λjxj − λx‖ = ‖λj(xj − x) + (λj − λ)x‖ ≤ |λj| ‖xj − x‖+ |λj − λ|‖x‖
≤ (|λ|+ 1) ‖xj − x‖+ |λj − λ|‖x‖ < ε.

It follows from this that lim
j→+∞

(λjxj) = λx, as required.

Let X be a normed vector space, and let x1, x2, x3, . . . be elements of X.

The infinite series
+∞∑
n=1

xn is said to converge to some element s of X if, given

any positive real number ε, there exists some positive integer N such that

‖s−
m∑

n=1

xn‖ < ε

for all m ≥ N (where ‖.‖ denotes the norm on X).
We say that a normed vector spaceX is complete A normed vector space is

complete if and only if every Cauchy sequence inX is convergent. A complete
normed vector space is referred to as a Banach space. (The basic theory of
such spaces was extensively developed by the famous Polish mathematician
Stefan Banach and his colleagues.)

Lemma 3.14 Let X be a Banach space, and let x1, x2, x3, . . . be elements of

X. Suppose that
+∞∑
n=1

‖xn‖ is convergent. Then
+∞∑
n=1

xn is convergent, and∥∥∥∥∥
+∞∑
n=1

xn

∥∥∥∥∥ ≤
+∞∑
n=1

‖xn‖.

Proof For each positive integer n, let

sn = x1 + x2 + · · ·+ xn.

Let ε > 0 be given. We can find N such that
+∞∑
n=N

‖xn‖ < ε, since
+∞∑
n=1

‖xn‖ is

convergent. Let sn = x1 + x2 + · · ·+ xn. If j ≥ N , k ≥ N and j < k then

‖sk − sj‖ =

∥∥∥∥∥
k∑

n=j+1

xn

∥∥∥∥∥ ≤
k∑

n=j+1

‖xn‖ ≤
+∞∑
n=N

‖xn‖ < ε.

14



Thus s1, s2, s3, . . . is a Cauchy sequence in X, and therefore converges to

some element s of X, since X is complete. But then s =
+∞∑
j=1

xj. Moreover,

on choosing m large enough to ensure that ‖s− sm‖ < ε, we deduce that

‖s‖ ≤

∥∥∥∥∥
m∑

n=1

xn

∥∥∥∥∥+

∥∥∥∥∥s−
m∑

n=1

xn

∥∥∥∥∥ ≤
m∑

n=1

‖xn‖+

∥∥∥∥∥s−
m∑

n=1

xn

∥∥∥∥∥ <
+∞∑
n=1

‖xn‖+ ε.

Since this inequality holds for all ε > 0, we conclude that

‖s‖ ≤
+∞∑
n=1

‖xn‖,

as required.

3.9 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function T :X → Y is said
to be a linear transformation if T (x + y) = Tx + Ty and T (λx) = λTx for
all elements x and y of X and scalars λ. A linear transformation mapping
X into itself is referred to as a linear operator on X.

Definition Let X and Y be normed vector spaces. A linear transformation
T :X → Y is said to be bounded if there exists some non-negative real num-
ber C with the property that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. If T is bounded,
then the smallest non-negative real number C with this property is referred
to as the operator norm of T , and is denoted by ‖T‖.

Lemma 3.15 Let X and Y be normed vector spaces, and let S:X → Y
and T :X → Y be bounded linear transformations. Then S + T and λS are
bounded linear transformations for all scalars λ, and

‖S + T‖ ≤ ‖S‖+ ‖T‖, ‖λS‖ = |λ|‖S‖.

Moreover ‖S‖ = 0 if and only if S = 0. Thus the vector space B(X, Y ) of
bounded linear transformations from X to Y is a normed vector space (with
respect to the operator norm).

Proof ‖(S+T )x‖ ≤ ‖Sx‖+‖Tx‖ ≤ (‖S‖+‖T‖)‖x‖ for all x ∈ X. Therefore
S+T is bounded, and ‖S+T‖ ≤ ‖S‖+‖T‖. Using the fact that ‖(λS)x‖ =
|λ| ‖Sx‖ for all x ∈ X, we see that λS is bounded, and ‖λS‖ = |λ| ‖S‖. If
S = 0 then ‖S‖ = 0. Conversely if ‖S‖ = 0 then ‖Sx‖ ≤ ‖S‖ ‖x‖ = 0 for all
x ∈ X, and hence S = 0. The result follows.
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Lemma 3.16 Let X, Y and Z be normed vector spaces, and let S:X → Y
and T :Y → Z be bounded linear transformations. Then the composition TS
of S and T is also bounded, and ‖TS‖ ≤ ‖T‖ ‖S‖.

Proof ‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖ for all x ∈ X. The result fol-
lows.

Proposition 3.17 Let X and Y be normed vector spaces, and let T :X → Y
be a linear transformation from X to Y . Then the following conditions are
equivalent:—

(i) T :X → Y is continuous,

(ii) T :X → Y is continuous at 0,

(iii) T :X → Y is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii)
implies (i). The equivalence of the three conditions then follows immediately.

Suppose that T :X → Y is continuous at 0. Then there exists δ > 0 such
that ‖Tx‖ < 1 for all x ∈ X satisfying ‖x‖ < δ. Let C be any positive real
number satisfying C > 1/δ. If x is any non-zero element of X then ‖λx‖ < δ,
where λ = 1/(C‖x‖), and hence

‖Tx‖ = C‖x‖ ‖λTx‖ = C‖x‖ ‖T (λx)‖ < C‖x‖.

Thus ‖Tx‖ ≤ C‖x‖ for all x ∈ X, and hence T :X → Y is bounded. Thus
(ii) implies (iii).

Finally suppose that T :X → Y is bounded. Let x be a point of X, and
let ε > 0 be given. Choose δ > 0 satisfying ‖T‖δ < ε. If x′ ∈ X satisfies
‖x′ − x‖ < δ then

‖Tx′ − Tx‖ = ‖T (x′ − x)‖ ≤ ‖T‖ ‖x′ − x‖ < ‖T‖δ < ε.

Thus T :X → Y is continuous. Thus (iii) implies (i), as required.

Proposition 3.18 Let X be a normed vector space and let Y be a Banach
space. Then the space B(X, Y ) of bounded linear transformations from X to
Y is also a Banach space.

Proof We have already shown that B(X, Y ) is a normed vector space (see
Lemma 3.15). Thus it only remains to show that B(X, Y ) is complete.

Let S1, S2, S3, . . . be a Cauchy sequence in B(X, Y ). Let x ∈ X. We
claim that S1x, S2x, S3x, . . . is a Cauchy sequence in Y . This result is trivial
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if x = 0. If x 6= 0, and if ε > 0 is given then there exists some positive
integer N such that ‖Sj − Sk‖ < ε/‖x‖ whenever j ≥ N and k ≥ N . But
then ‖Sjx − Skx‖ ≤ ‖Sj − Sk‖ ‖x‖ < ε whenever j ≥ N and k ≥ N .
This shows that S1x, S2x, S3x, . . . is indeed a Cauchy sequence. It therefore
converges to some element of Y , since Y is a Banach space.

Let the function S:X → Y be defined by Sx = lim
n→+∞

Snx. Then

S(x+ y) = lim
n→+∞

(Snx+ Sny) = lim
n→+∞

Snx+ lim
n→+∞

Sny = Sx+ Sy,

(see Lemma 3.13), and

S(λx) = lim
n→+∞

Sn(λx) = λ lim
n→+∞

Snx = λSx,

Thus S:X → Y is a linear transformation.
Next we show that Sn → S in B(X, Y ) as n→ +∞. Let ε > 0 be given.

Then there exists some positive integer N such that ‖Sj−Sn‖ < 1
2
ε whenever

j ≥ N and n ≥ N , since the sequence S1, S2, S3, . . . is a Cauchy sequence in
B(X, Y ). But then ‖Sjx−Snx‖ ≤ 1

2
ε‖x‖ for all j ≥ N and n ≥ N , and thus

‖Sx− Snx‖ =

∥∥∥∥ lim
j→+∞

(Sjx− Snx)

∥∥∥∥ ≤ lim
j→+∞

‖Sjx− Snx‖

≤ lim
j→+∞

‖Sj − Sn‖ ‖x‖ ≤ 1
2
ε‖x‖

for all n ≥ N (since the norm is a continuous function on Y ). But then

‖Sx‖ ≤ ‖Snx‖+ ‖Sx− Snx‖ ≤
(
‖Sn‖+ 1

2
ε
)
‖x‖

for any n ≥ N , showing that S:X → Y is a bounded linear transformation,
and ‖S − Sn‖ ≤ 1

2
ε < ε for all n ≥ N , showing that Sn → S in B(X, Y ) as

n→ +∞. Thus the Cauchy sequence S1, S2, S3, . . . is convergent in B(X, Y ),
as required.

Corollary 3.19 Let X and Y be Banach spaces, and let T1, T2, T3, . . . be

bounded linear transformations from X to Y . Suppose that
+∞∑
n=0

‖Tn‖ is con-

vergent. Then
+∞∑
n=0

Tn is convergent, and

∥∥∥∥∥
+∞∑
n=0

Tn

∥∥∥∥∥ ≤
+∞∑
n=0

‖Tn‖.

17



Proof The space B(X, Y ) of bounded linear maps from X to Y is a Ba-
nach space by Proposition 3.18. The result therefore follows immediately on
applying Lemma 3.14.

Example Let T be a bounded linear operator on a Banach space X (i.e., a
bounded linear transformation from X to itself). The infinite series

+∞∑
n=0

‖T‖n

n!

converges to exp(‖T‖). It follows immediately from Lemma 3.16 (using in-
duction on n) that ‖T n‖ ≤ ‖T‖n for all n ≥ 0 (where T 0 is the identity
operator on X). It therefore follows from Corollary 3.19 that there is a
well-defined bounded linear operator expT on X, defined by

expT =
+∞∑
n=0

1

n!
T n

(where T 0 is the identity operator I on X).

Proposition 3.20 Let T be a bounded linear operator on a Banach space X.
Suppose that ‖T‖ < 1. Then the operator I − T has a bounded inverse
(I − T )−1 (where I denotes the identity operator on X). Moreover

(I − T )−1 = I + T + T 2 + T 3 + · · · .

Proof ‖T n‖ ≤ ‖T‖n for all n, and the geometric series

1 + ‖T‖+ ‖T‖2 + ‖T‖3 + · · ·

is convergent (since ‖T‖ < 1). It follows from Corollary 3.19 that the infinite
series

I + T + T 2 + T 3 + · · ·

converges to some bounded linear operator S on X. Now

(I − T )S = lim
n→+∞

(I − T )(I + T + T 2 + · · ·+ T n) = lim
n→+∞

(I − T n+1)

= I − lim
n→+∞

T n+1 = I,

since ‖T‖n+1 → 0 and therefore T n+1 → 0 as n→ +∞. Similarly S(I−T ) =
I. This shows that I − T is invertible, with inverse S, as required.
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3.10 Spaces of Bounded Continuous Functions on a
Metric Space

Let X be a metric space. We say that a function f :X → Rn from X to Rn is
bounded if there exists some non-negative constant K such that |f(x)| ≤ K
for all x ∈ X. If f and g are bounded continuous functions from X to Rn,
then so is f + g. Also λf is bounded and continuous for any real number λ.
It follows from this that the space C(X,Rn) of bounded continuous functions
from X to Rn is a vector space over R. Given f ∈ C(X,Rn), we define the
supremum norm ‖f‖ of f by the formula

‖f‖ = sup
x∈X

|f(x)|.

One can readily verify that ‖.‖ is a norm on the vector space C(X,Rn). We
shall show that C(X,Rn), with the supremum norm, is a Banach space (i.e.,
the supremum norm on C(X,Rn) is complete). The proof of this result will
make use of the following characterization of continuity for functions whose
range is Rn.

Theorem 3.21 The normed vector space C(X,Rn) of all bounded continu-
ous functions from some metric space X to Rn, with the supremum norm, is
a Banach space.

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,Rn). Then, for each
x ∈ X, the sequence f1(x), f2(x), f3(x), . . . is a Cauchy sequence in Rn (since
|fj(x)−fk(x)| ≤ ‖fj−fk‖ for all positive integers j and k), and Rn is a com-
plete metric space. Thus, for each x ∈ X, the sequence f1(x), f2(x), f3(x), . . .
converges to some point f(x) of Rn. We must show that the limit function f
defined in this way is bounded and continuous.

Let ε > 0 be given. Then there exists some positive integer N with the
property that ‖fj − fk‖ < 1

3
ε for all j ≥ N and k ≥ N , since f1, f2, f3, . . .

is a Cauchy sequence in C(X,Rn). But then, on taking the limit of the left
hand side of the inequality |fj(x)− fk(x)| < 1

3
ε as k → +∞, we deduce that

|fj(x)−f(x)| ≤ 1
3
ε for all x ∈ X and j ≥ N . In particular |fN(x)−f(x)| ≤ 1

3
ε

for all x ∈ X. It follows that |f(x)| ≤ ‖fN‖+ 1
3
ε for all x ∈ X, showing that

the limit function f is bounded.
Next we show that the limit function f is continuous. Let p ∈ X and ε > 0

be given. Let N be chosen large enough to ensure that |fN(x)−f(x)| ≤ 1
3
ε for

all x ∈ X. Now fN is continuous. It follows from the definition of continuity
for functions between metric spaces that there exists some real number δ
satisfying δ > 0 such that |fN(x) − fN(p)| < 1

3
ε for all elements x of X
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satisfying dX(x, p) < δ, where dX denotes the distance function on X. Thus
if x ∈ X satisfies dX(x, p) < δ then

|f(x)− f(p)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(p)|+ |fN(p)− f(p)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε.

Therefore the limit function f is continuous. Thus f ∈ C(X,Rn).
Finally we observe that fj → f in C(X,Rn) as j → +∞. Indeed we have

already seen that, given ε > 0 there exists some positive integer N such that
|fj(x)− f(x)| ≤ 1

3
ε for all x ∈ X and for all j ≥ N . Thus ‖fj − f‖ ≤ 1

3
ε < ε

for all j ≥ N , showing that fj → f in C(X,Rn) as j → +∞. This shows
that C(X,Rn) is a complete metric space, as required.

Corollary 3.22 Let X be a metric space and let F be a closed subset of Rn.
Then the space C(X,F ) of bounded continuous functions from X to F is a
complete metric space with respect to the distance function ρ, where

ρ(f, g) = ‖f − g‖ = sup
x∈X

|f(x)− g(x)|

for all f, g ∈ C(X,F ).

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,F ). Then f1, f2, f3, . . .
is a Cauchy sequence in C(X,Rn) and therefore converges in C(X,Rn) to
some function f :X → Rn. Let x be some point of X. Then fj(x) → f(x) as
j → +∞. But then f(x) ∈ F , since fj(x) ∈ F for all j, and F is closed in Rn.
This shows that f ∈ C(X,F ), and thus the Cauchy sequence f1, f2, f3, . . .
converges in C(X,F ). We conclude that C(X,F ) is a complete metric space,
as required.

3.11 The Contraction Mapping Theorem and Picard’s
Theorem

Let X be a metric space with distance function d. A function T :X → X
mapping X to itself is said to be a contraction mapping if there exists some
constant λ satisfying 0 ≤ λ < 1 with the property that d(T (x), T (x′)) ≤
λd(x, x′) for all x, x′ ∈ X.

One can readily check that any contraction map T :X → X on a metric
space (X, d) is continuous. Indeed let x be a point of X, and let ε > 0 be
given. Then d(T (x), T (x′)) < ε for all points x′ of X satisfying d(x, x′) < ε.

Theorem 3.23 (Contraction Mapping Theorem) Let X be a complete met-
ric space, and let T :X → X be a contraction mapping defined on X. Then
T has a unique fixed point in X (i.e., there exists a unique point x of X for
which T (x) = x).

20



Proof Let λ be chosen such that 0 ≤ λ < 1 and d(T (u), T (u′)) ≤ λd(u, u′)
for all u, u′ ∈ X, where d is the distance function on X. First we show
the existence of the fixed point x. Let x0 be any point of X, and de-
fine a sequence x0, x1, x2, x3, x4, . . . of points of X by the condition that
xn = T (xn−1) for all positive integers n. It follows by induction on n that
d(xn+1, xn) ≤ λnd(x1, x0). Using the Triangle Inequality, we deduce that if j
and k are positive integers satisfying k > j then

d(xk, xj) ≤
k−1∑
n=j

d(xn+1, xn) ≤ λj − λk

1− λ
d(x1, x0) ≤

λj

1− λ
d(x1, x0).

(Here we have used the identity

λj + λj+1 + · · ·+ λk−1 =
λj − λk

1− λ
.)

Using the fact that 0 ≤ λ < 1, we deduce that the sequence (xn) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then we see that

T (x) = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn) = lim

n→+∞
xn+1 = x,

since T :X → X is a continuous function, and thus x is a fixed point of T .
If x′ were another fixed point of T then we would have

d(x′, x) = d(T (x′), T (x)) ≤ λd(x′, x).

But this is impossible unless x′ = x, since λ < 1. Thus the fixed point x of
the contraction map T is unique.

We use the Contraction Mapping Theorem in order to prove the following
existence theorem for solutions of ordinary differential equations.

Theorem 3.24 (Picard’s Theorem) Let F :U → R be a continuous function
defined over some open set U in the plane R2, and let (x0, t0) be an element
of U . Suppose that there exists some non-negative constant M such that

|F (u, t)− F (v, t)| ≤M |u− v| for all (u, t) ∈ U and (v, t) ∈ U .

Then there exists a continuous function ϕ: [t0 − δ, t0 + δ] → R defined on the
interval [t0 − δ, t0 + δ] for some δ > 0 such that x = ϕ(t) is a solution to the
differential equation

dx(t)

dt
= F (x(t), t)

with initial condition x(t0) = x0.
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Proof Solving the differential equation with the initial condition x(t0) = x0

is equivalent to finding a continuous function ϕ: I → R satisfying the integral
equation

ϕ(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

where I denotes the closed interval [t0− δ, t0 + δ]. (Note that any continuous
function ϕ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)

Let K = |F (x0, t0)|+ 1. Using the continuity of the function F , together
with the fact that U is open in R2, one can find some δ0 > 0 such that the
open disk of radius δ0 about (x0, t0) is contained in U and |F (x, t)| ≤ K for
all points (x, t) in this open disk. Now choose δ > 0 such that

δ
√

1 +K2 < δ0 and Mδ < 1.

Note that if |t − t0| ≤ δ and |x − x0| ≤ Kδ then (x, t) belongs to the open
disk of radius δ0 about (x0, t0), and hence (x, t) ∈ U and |F (x, t)| ≤ K.

Let J denote the closed interval [x0 − Kδ, x0 + Kδ]. The space C(I, J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 3.22. Define T :C(I, J) → C(I, J) by

T (ϕ)(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

We claim that T does indeed map C(I, J) into itself and is a contraction
mapping.

Let ϕ: I → J be an element of C(I, J). Note that if |t− t0| ≤ δ then

|(ϕ(t), t)− (x0, t0)|2 = (ϕ(t)− x0)
2 + (t− t0)

2 ≤ δ2 +K2δ2 < δ2
0,

hence |F (ϕ(t), t)| ≤ K. It follows from this that

|T (ϕ)(t)− x0| ≤ Kδ

for all t satisfying |t − t0| < δ. The function T (ϕ) is continuous, and is
therefore a well-defined element of C(I, J) for all ϕ ∈ C(I, J).

We now show that T is a contraction mapping on C(I, J). Let ϕ and ψ
be elements of C(I, J). The hypotheses of the theorem ensure that

|F (ϕ(t), t)− F (ψ(t), t)| ≤M |ϕ(t)− ψ(t)| ≤Mρ(ϕ, ψ)

for all t ∈ I, where ρ(ϕ, ψ) = supt∈I |ϕ(t)− ψ(t)|. Therefore

|T (ϕ)(t)− T (ψ)(t)| =

∣∣∣∣∫ t

t0

(F (ϕ(s), s)− F (ψ(s), s)) ds

∣∣∣∣
≤ M |t− t0|ρ(ϕ, ψ)
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for all t satisfying |t − t0| ≤ δ. Therefore ρ(T (ϕ), T (ψ)) ≤ Mδρ(ϕ, ψ) for
all ϕ, ψ ∈ C(I, J). But δ has been chosen such that Mδ < 1. This shows
that T :C(I, J) → C(I, J) is a contraction mapping on C(I, J). It follows
from the Contraction Mapping Theorem (Theorem 3.23) that there exists a
unique element ϕ of C(I, J) satisfying T (ϕ) = ϕ. This function ϕ is the
required solution to the differential equation.

A straightforward, but somewhat technical, least upper bound argument
can be used to show that if x = ψ(t) is any other continuous solution to the
differential equation

dx

dt
= F (x, t)

on the interval [t0− δ, t0 + δ] satisfying the initial condition ψ(t0) = x0, then
|ψ(t)− x0| ≤ Kδ for all t satisfying |t− t0| ≤ δ. Thus such a solution to the
differential equation must belong to the space C(I, J) defined in the proof of
Theorem 3.24. The uniqueness of the fixed point of the contraction mapping
T :C(I, J) → C(I, J) then shows that ψ = ϕ, where ϕ: [t0 − δ, t0 + δ] → R
is the solution to the differential equation whose existence was proved in
Theorem 3.24. This shows that the solution to the differential equation is in
fact unique on the interval [t0 − δ, t0 + δ].

3.12 The Completion of a Metric Space

We describe below a construction whereby any metric space can be embedded
in a complete metric space.

Lemma 3.25 Let X be a metric space with distance function d, let (xj) and
(yj) be Cauchy sequences of points in X, and let dj = d(xj, yj) for all positive
integers j. Then (dj) is a Cauchy sequence of real numbers.

Proof It follows from the Triangle Inequality that

dj ≤ d(xj, xk) + dk + d(yk, yj)

and thus dj − dk ≤ d(xj, xk) + d(yj, yk) for all integers j and k. Similarly
dk − dj ≤ d(xj, xk) + d(yj, yk). It follows that

|dj − dk| ≤ d(xj, xk) + d(yj, yk)

for all integers j and k.
Let ε > 0 be given. Then there exists some positive integer N such that

d(xj, xk) <
1
2
ε and d(yj, yk) <

1
2
ε whenever j ≥ N and k ≥ N , since the

sequences (xj) and (yj) are Cauchy sequences in X. But then |dj − dk| < ε
whenever j ≥ N and k ≥ N . Thus the sequence (dj) is a Cauchy sequence
of real numbers, as required.
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LetX be a metric space with distance function d. It follows from Cauchy’s
Criterion for Convergence and Lemma 3.25 that lim

j→+∞
d(xj, yj) exists for all

Cauchy sequences (xj) and (yj) in X.

Lemma 3.26 Let X be a metric space with distance function d, and let (xj),
(yj) and (zj) be Cauchy sequences of points in X. Then

0 ≤ lim
j→+∞

d(xj, zj) ≤ lim
j→+∞

d(xj, yj) + lim
j→+∞

d(yj, zj).

Proof This follows immediately on taking limits of both sides of the Triangle
Inequality.

Lemma 3.27 Let X be a metric space with distance function d, and let (xj),
(yj) and (zj) be Cauchy sequences of points in X. Suppose that

lim
j→+∞

d(xj, yj) = 0 and lim
j→+∞

d(yj, zj) = 0.

Then lim
j→+∞

d(xj, zj) = 0.

Proof This is an immediate consequence of Lemma 3.26.

Lemma 3.28 Let X be a metric space with distance function d, and let (xj),
(x′j), (yj) and (y′j) be Cauchy sequences of points in X. Suppose that

lim
j→+∞

d(xj, x
′
j) = 0 and lim

j→+∞
d(yj, y

′
j) = 0.

Then lim
j→+∞

d(xj, yj) = lim
j→+∞

d(x′j, y
′
j).

Proof It follows from Lemma 3.26 that

lim
j→+∞

d(xj, yj) ≤ lim
j→+∞

d(xj, x
′
j) + lim

j→+∞
d(x′j, y

′
j) + lim

j→+∞
d(y′j, yj)

= lim
j→+∞

d(x′j, y
′
j).

Similarly lim
j→+∞

d(x′j, y
′
j) ≤ lim

j→+∞
d(xj, yj). It follows that lim

j→+∞
d(xj, yj) =

lim
j→+∞

d(x′j, y
′
j), as required.

Let X be a metric space with distance function d. Then there is an
equivalence relation on the set of Cauchy sequences of points in X, where
two Cauchy sequences (xj) and (x′j) in X are equivalent if and only if
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lim
j→+∞

d(xj, x
′
j) = 0. Let X̃ denote the set of equivalence classes of Cauchy

sequences in X with respect to this equivalence relation. Let x̃ and ỹ be
elements of X̃, and let (xj) and (yj) be Cauchy sequences belonging to the
equivalence classes represented by x̃ and ỹ. We define

d(x̃, ỹ) = lim
j→+∞

d(xj, yj).

It follows from Lemma 3.28 that the value of d(x̃, ỹ) does not depend on the
choice of Cauchy sequences (xj) and (yj) representing x̃ and ỹ. We obtain
in this way a distance function on the set X̃. This distance function satisfies
the Triangle Inequality (Lemma 3.26) and the other metric space axioms.
Therefore X̃ with this distance function is a metric space. We refer to the
space X̃ as the completion of the metric space X.

We can regard the metric space X as being embedded in its completion
X̃, where a point x of X is represented in X̃ by the equivalence class of the
constant sequence x, x, x, . . ..

Example The completion of the space Q of rational numbers is the space R
of real numbers.

Theorem 3.29 The completion X̃ of a metric space X is a complete metric
space.

Proof Let x̃1, x̃2, x̃3, . . . be a Cauchy sequence in the completion X̃ of X.
For each positive integer m let xm,1, xm,2, xm,3, . . . be a Cauchy sequence in X
belonging to the equivalence class that represents the element x̃m of X̃. Then,
for each positive integer m there exists a positive integer N(m) such that
d(xm,j, xm,k) < 1/m whenever j ≥ N(m) and k ≥ N(m). Let ym = xm,N(m).
We claim that the sequence y1, y2, y3, . . . is a Cauchy sequence in X, and that
the element ỹ of X̃ corresponding to this Cauchy sequence is the limit in X̃
of the sequence x̃1, x̃2, x̃3, . . ..

Let ε > 0 be given. Then there exists some positive integer M such that
M > 3/ε and d(x̃p, x̃q) <

1
3
ε whenever p ≥ M and q ≥ M . It follows from

the definition of the distance function on X̃ that if p ≥ M and q ≥ M then
d(xp,k, xq,k) <

1
3
ε for all sufficiently large positive integers k. If p ≥ M and

k ≥ N(p) then

d(yp, xp,k) = d(xp,N(p), xp,k) < 1/p ≤ 1/M < 1
3
ε

It follows that if p ≥ M and q ≥ M , and if k is sufficiently large, then
d(yp, xp,k) <

1
3
ε, d(yq, xq,k) <

1
3
ε, and d(xp,k, xq,k) <

1
3
ε, and hence d(yp, yq) <
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ε. We conclude that the sequence y1, y2, y3, . . . of points of X is indeed a
Cauchy sequence.

Let ỹ be the element of X̃ which is represented by the Cauchy sequence
y1, y2, y3, . . . of points of X, and, for each positive integer m, let ỹm be the
element of X̃ represented by the constant sequence ym, ym, ym, . . . in X. Now

d(ỹ, ỹm) = lim
p→+∞

d(yp, ym),

and therefore d(ỹ, ỹm) → 0 as m→ +∞. Also

d(ỹm, x̃m) = lim
j→+∞

d(xm,N(m), xm,j) ≤
1

m

and hence d(ỹm, x̃m) → 0 as m→ +∞. It follows from this that d(ỹ, x̃m) → 0
as m→ +∞, and therefore the Cauchy sequence x̃1, x̃2, x̃3, . . . in X̃ converges
to the point ỹ of X̃. We conclude that X̃ is a complete metric space, since
we have shown that every Cauchy sequence in X̃ is convergent.

Remark In a paper published in 1872, Cantor gave a construction of the real
number system in which real numbers are represented as Cauchy sequences
of rational numbers. The real numbers represented by two Cauchy sequences
of rational numbers are equal if and only if the difference of the Cauchy
sequences converges to zero. Thus the construction of the completion of
a metric space, described above, generalizes Cantor’s construction of the
system of real numbers from the system of rational numbers.
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