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5 Compact Spaces

5.1 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 5.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) sup S for the set S.

Theorem 5.2 (Heine-Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.

Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to U , and let s = sup S. Now
s ∈ W for some open set W belonging to U . Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to U .
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Let t ∈ [a, b] satisfy τ ≤ t < s + δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s + δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to U , as required.

Lemma 5.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 5.1 that A is compact, as required.

Lemma 5.4 Let f : X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

Lemma 5.5 Let f : X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof The range f(X) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m, m), where m ∈ N, since f(X)
is compact (Lemma 5.4) and R is covered by the collection of all intervals of
this form. It follows that f(X) ⊂ (−M, M), where (−M, M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on X, as required.

Proposition 5.6 Let f : X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 5.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 5.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

Proposition 5.7 Let A be a compact subset of a metric space X. Then A
is closed in X.

Proof Let p be a point of X that does not belong to A, and let f(x) =
d(x, p), where d is the distance function on X. It follows from Proposition 5.6
that there is a point q of A such that f(a) ≥ f(q) for all a ∈ A, since A is
compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then the
open ball of radius δ about the point p is contained in the complement of
A, since f(x) < f(q) for all points x of this open ball. It follows that the
complement of A is an open set in X, and thus A itself is closed in X.

Proposition 5.8 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point y ∈ K there exist open sets Vx,y and Wx,y such that
x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But
then there exists a finite set {y1, y2, . . . , yr} of points of K such that K is
contained in Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr , since K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then V and W are open sets, x ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 5.9 A compact subset of a Hausdorff topological space is closed.

Proof Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 5.8 that, for each x ∈ X \ K, there
exists an open set Vx such that x ∈ Vx and Vx ∩K = ∅. But then X \K is
equal to the union of the open sets Vx as x ranges over all points of X \K,
and any set that is a union of open sets is itself an open set. We conclude
that X \K is open, and thus K is closed.
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Proposition 5.10 Let X be a Hausdorff topological space, and let K1 and
K2 be compact subsets of X, where K1 ∩K2 = ∅. Then there exist open sets
U1 and U2 such that K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅.

Proof It follows from Proposition 5.8 that, for each point x of K1, there
exist open sets Vx and Wx such that x ∈ Vx, K2 ⊂ Wx and Vx∩Wx = ∅. But
then there exists a finite set {x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr ,

since K1 is compact. Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr , U2 = Wx1 ∩Wx2 ∩ · · · ∩Wxr .

Then U1 and U2 are open sets, K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅, as
required.

Lemma 5.11 Let f : X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then f(K) is closed in Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 5.3), and there-
fore f(K) is compact (Lemma 5.4). But any compact subset of a Hausdorff
space is closed (Corollary 5.9). Thus f(K) is closed in Y , as required.

Remark If the Hausdorff space Y in Lemma 5.11 is a metric space, then
Proposition 5.7 may be used in place of Corollary 5.9 in the proof of the
lemma.

Theorem 5.12 A continuous bijection f : X → Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof Let g: Y → X be the inverse of the bijection f : X → Y . If U is
open in X then X \ U is closed in X, and hence f(X \ U) is closed in Y ,
by Lemma 5.11. But f(X \ U) = g−1(X \ U) = Y \ g−1(U). It follows that
g−1(U) is open in Y for every open set U in X. Therefore g: Y → X is
continuous, and thus f : X → Y is a homeomorphism.

We recall that a function f : X → Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and
satisfies the following condition: a subset U of Y is open in Y if and only if
f−1(U) is open in X.
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Proposition 5.13 A continuous surjection f : X → Y from a compact topo-
logical space X to a Hausdorff space Y is an identification map.

Proof Let U be a subset of Y . We claim that Y \ U = f(K), where K =
X \ f−1(U). Clearly f(K) ⊂ Y \ U . Also, given any y ∈ Y \ U , there exists
x ∈ X satisfying y = f(x), since f : X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if and only if f−1(U) is open
in X. First suppose that f−1(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y , by Lemma 5.11. It follows that U is open in Y .
Conversely if U is open in Y then f−1(Y ) is open in X, since f : X → Y is
continuous. Thus the surjection f : X → Y is an identification map.

Example Let S1 be the unit circle in R2, defined by S1 = {(x, y) ∈ R2 :
x2 + y2 = 1}, and let q: [0, 1] → S1 be defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. It has been shown that the map q is an identification map.
This also follows directly from the fact that q: [0, 1] → S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.

We shall show that a finite Cartesian product of compact spaces is com-
pact. To prove this, we apply the following result, known as the Tube Lemma.

Lemma 5.14 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V = {x ∈ X : {x} × K ⊂ U}.
Then V is an open set in X.

Proof Let x ∈ V . For each y ∈ K there exist open subsets Dy and Ey

of X and Y respectively such that (x, y) ∈ Dy × Ey and Dy × Ey ⊂ U .
Now there exists a finite set {y1, y2, . . . , yk} of points of K such that K ⊂
Ey1 ∪ Ey2 ∪ · · · ∪ Eyk

, since K is compact. Set Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk
.

Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃

i=1

(Nx × Eyi
) ⊂

k⋃
i=1

(Dyi
× Eyi

) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem 5.15 A Cartesian product of a finite number of compact spaces is
itself compact.
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Proof It suffices to prove that the product of two compact topological spaces
X and Y is compact, since the general result then follows easily by induction
on the number of compact spaces in the product.

Let U be an open cover of X × Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x}×Y is a compact subset of X×Y , since
it is the image of the compact space Y under the continuous map from Y to
X×Y which sends y ∈ Y to (x, y), and the image of any compact set under a
continuous map is itself compact (Lemma 5.4). Therefore there exists a finite
collection U1, U2, . . . , Ur of open sets belonging to the open cover U such that
{x}×Y is contained in U1∪U2∪ · · · ∪Ur. Let Vx denote the set of all points
x′ of X for which {x′} × Y is contained in U1 ∪ U2 ∪ · · · ∪ Ur. Then x ∈ Vx,
and Lemma 5.14 ensures that Vx is an open set in X. Note that Vx × Y is
covered by finitely many of the open sets belonging to the open cover U .

Now {Vx : x ∈ X} is an open cover of the space X. It follows from the
compactness of X that there exists a finite set {x1, x2, . . . , xr} of points of X
such that X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr . Now X × Y is the union of the sets
Vxj

× Y for j = 1, 2, . . . , r, and each of these sets can be covered by a finite
collection of open sets belonging to the open cover U . On combining these
finite collections, we obtain a finite collection of open sets belonging to U
which covers X × Y . This shows that X × Y is compact.

Theorem 5.16 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 5.9). For
each natural number m, let Bm be the open ball of radius m about the origin,
given by Bm = {x ∈ Rn : |x| < m}. Then {Bm : m ∈ N} is an open cover of
Rn. It follows from the compactness of K that there exist natural numbers
m1, m2, . . . ,mk such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk

. But then K ⊂ BM ,
where M is the maximum of m1, m2, . . . ,mk, and thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.
Now the closed interval [−L, L] is compact by the Heine-Borel Theorem
(Theorem 5.2), and C is the Cartesian product of n copies of the compact
set [−L, L]. It follows from Theorem 5.15 that C is compact. But K is a
closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 5.3. Thus K is compact, as required.
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5.2 Compact Metric Spaces

We recall that a metric or topological space is said to be compact if every
open cover of the space has a finite subcover. We shall obtain some equivalent
characterizations of compactness for metric spaces (Theorem 5.22); these
characterizations do not generalize to arbitrary topological spaces.

Proposition 5.17 Every sequence of points in a compact metric space has
a convergent subsequence.

Proof Let X be a compact metric space, and let x1, x2, x3, . . . be a sequence
of points of X. We must show that this sequence has a convergent subse-
quence. Let Fn denote the closure of {xn, xn+1, xn+2, . . .}. We claim that
the intersection of the sets F1, F2, F3, . . . is non-empty. For suppose that
this intersection were the empty set. Then X would be the union of the
sets V1, V2, V3, . . ., where Vn = X \ Fn for all n. But V1 ⊂ V2 ⊂ V3 ⊂ · · ·,
and each set Vn is open. It would therefore follow from the compactness of
X that X would be covered by finitely many of the sets V1, V2, V3, . . ., and
therefore X = Vn for some sufficiently large n. But this is impossible, since
Fn is non-empty for all natural numbers n. Thus the intersection of the sets
F1, F2, F3, . . . is non-empty, as claimed, and therefore there exists a point p
of X which belongs to Fn for all natural numbers n.

We now obtain, by induction on n, a subsequence xn1 , xn2 , xn3 , . . . which
satisfies d(xnj

, p) < 1/j for all natural numbers j. Now p belongs to the
closure F1 of the set {x1, x2, x3, . . .}. Therefore there exists some natural
number n1 such that d(xn1 , p) < 1. Suppose that xnj

has been chosen so
that d(xnj

, p) < 1/j. The point p belongs to the closure Fnj+1 of the set
{xn : n > nj}. Therefore there exists some natural number nj+1 such that
nj+1 > nj and d(xnj+1

, p) < 1/(j + 1). The subsequence xn1 , xn2 , xn3 , . . .
constructed in this manner converges to the point p, as required.

We shall also prove the converse of Proposition 5.17: if X is a metric
space, and if every sequence of points of X has a convergent subsequence,
then X is compact (see Theorem 5.22 below).

Let X be a metric space with distance function d. A Cauchy sequence in
X is a sequence x1, x2, x3, . . . of points of X with the property that, given
any ε > 0, there exists some natural number N such that d(xj, xk) < ε for
all j and k satisfying j ≥ N and k ≥ N .

A metric space (X, d) is said to be complete if every Cauchy sequence
in X converges to some point of X.

Proposition 5.18 Let X be a metric space with the property that every
sequence of points of X has a convergent subsequence. Then X is complete.
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Proof Let x1, x2, x3, . . . be a Cauchy sequence in X. This sequence then has
a subsequence xn1 , xn2 , xn3 , . . . which converges to some point p of X. We
claim that the given Cauchy sequence also converges to p.

Let ε > 0 be given. Then there exists some natural number N such that
d(xm, xn) < 1

2
ε whenever m ≥ N and n ≥ N , since x1, x2, x3, . . . is a Cauchy

sequence. Moreover nj can be chosen large enough to ensure that nj ≥ N
and d(xnj

, p) < 1
2
ε. If n ≥ N then

d(xn, p) ≤ d(xn, xnj
) + d(xnj

, p) < 1
2
ε + 1

2
ε = ε.

This shows that the Cauchy sequence x1, x2, x3, . . . converges to the point p.
Thus X is complete, as required.

Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diam A.
(Note that diam A is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Let X be a metric space with distance function d, and let A be a subset of
X. The closure A of A is the intersection of all closed sets in X that contain
the set A: it can be regarded as the smallest closed set in X containing A.
Let x be a point of the closure A of A. Given any ε > 0, there exists some
point x′ of A such that d(x, x′) < ε. (Indeed the open ball in X of radius ε
about the point x must intersect the set A, since otherwise the complement
of this open ball would be a closed set in X containing the set A but not
including the point x, which is not possible if x belongs to the closure of A.)

Lemma 5.19 Let X be a metric space, and let A be a subset of X. Then
diam A = diam A, where A is the closure of A.

Proof Clearly diam A ≤ diam A. Let x and y be points of A. Then, given
any ε > 0, there exist points x′ and y′ of A satisfying d(x, x′) < ε and
d(y, y′) < ε. It follows from the Triangle Inequality that

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y) < diam A + 2ε.

Thus d(x, y) < diam A + 2ε for all ε > 0, and hence d(x, y) ≤ diam A. This
shows that diam A ≤ diam A, as required.

Definition A metric space X is said to be totally bounded if, given any
ε > 0, the set X can be expressed as a finite union of subsets of X, each of
which has diameter less than ε.
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A subset A of a totally bounded metric space X is itself totally bounded.
For if X is the union of the subsets B1, B2, . . . , Bk, where diam Bn < ε
for n = 1, 2, . . . , k, then A is the union of A ∩ Bn for n = 1, 2, . . . , k, and
diam A ∩Bn < ε.

Proposition 5.20 Let X be a metric space. Suppose that every sequence of
points of X has a convergent subsequence. Then X is totally bounded.

Proof Suppose that X were not totally bounded. Then there would exist
some ε > 0 with the property that no finite collection of subsets of X of
diameter less than 3ε covers the set X. There would then exist an infinite
sequence x1, x2, x3, . . . of points of X with the property that d(xm, xn) ≥ ε
whenever m 6= n. Indeed suppose that points x1, x2, . . . , xk−1 of X have
already been chosen satisfying d(xm, xn) ≥ ε whenever m < k, n < k and
m 6= n. The diameter of each open ball BX(xm, ε) is less than or equal to
2ε. Therefore X could not be covered by the sets BX(xm, ε) for m < k, and
thus there would exist a point xk of X which does not belong to B(xm, ε)
for any m < k. Then d(xm, xk) ≥ ε for all m < k. In this way we can
successively choose points x1, x2, x3, . . . to form an infinite sequence with
the required property. However such an infinite sequence would have no
convergent subsequence, which is impossible. This shows that X must be
totally bounded, as required.

Proposition 5.21 Every complete totally bounded metric space is compact.

Proof Let X be some totally bounded metric space. Suppose that there
exists an open cover V of X which has no finite subcover. We shall prove the
existence of a Cauchy sequence x1, x2, x3, . . . in X which cannot converge to
any point of X. (Thus if X is not compact, then X cannot be complete.)

Let ε > 0 be given. Then X can be covered by finitely many closed sets
whose diameter is less than ε, since X is totally bounded and every subset of
X has the same diameter as its closure (Lemma 5.19). At least one of these
closed sets cannot be covered by a finite collection of open sets belonging to
V (since if every one of these closed sets could be covered by a such a finite
collection of open sets, then we could combine these collections to obtain
a finite subcover of V). We conclude that, given any ε > 0, there exists a
closed subset of X of diameter less than ε which cannot be covered by any
finite collection of open sets belonging to V .

We claim that there exists a sequence F1, F2, F3, . . . of closed sets in X
satisfying F1 ⊃ F2 ⊃ F3 ⊃ · · · such that each closed set Fn has the following
properties: diam Fn < 1/2n, and no finite collection of open sets belonging
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to V covers Fn. For if Fn is a closed set with these properties then Fn is itself
totally bounded, and thus the above remarks (applied with Fn in place of
X) guarantee the existence of a closed subset Fn+1 of Fn with the required
properties. Thus the existence of the required sequence of closed sets follows
by induction on n.

Choose xn ∈ Fn for each natural number n. Then d(xm, xn) < 1/2n for
any m > n, since xm and xn belong to Fn and diam Fn < 1/2n. Therefore
the sequence x1, x2, x3, . . . is a Cauchy sequence. Suppose that this Cauchy
sequence were to converge to some point p of X. Then p ∈ Fn for each
natural number n, since Fn is closed and xm ∈ Fn for all m ≥ n. (If a
sequence of points belonging to a closed subset of a metric or topological
space is convergent then the limit of that sequence belongs to the closed set.)
Moreover p ∈ V for some open set V belonging to V , since V is an open
cover of X. But then there would exist δ > 0 such that BX(p, δ) ⊂ V , where
BX(p, δ) denotes the open ball of radius δ in X centred on p. Thus if n were
large enough to ensure that 1/2n < δ, then p ∈ Fn and diam Fn < δ, and
hence Fn ⊂ BX(p, δ) ⊂ V , contradicting the fact that no finite collection of
open sets belonging to V covers the set Fn. This contradiction shows that
the Cauchy sequence x1, x2, x3, . . . is not convergent.

We have thus shown that if X is a totally bounded metric space which is
not compact then X is not complete. Thus every complete totally bounded
metric space must be compact, as required.

Theorem 5.22 Let X be a metric space with distance function d. The fol-
lowing are equivalent:—

(i) X is compact,

(ii) every sequence of points of X has a convergent subsequence,

(iii) X is complete and totally bounded,

Proof Propositions 5.17, 5.18 5.20 and 5.21 show that (i) implies (ii), (ii)
implies (iii), and (iii) implies (i). It follows that (i), (ii) and (iii) are all
equivalent to one another.

Remark A subset K of Rn is complete if and only if it is closed in Rn. Also
it is easy to see that K is totally bounded if and only if K is a bounded
subset of Rn. Thus Theorem 5.22 is a generalization of the theorem which
states that a subset K of Rn is compact if and only if it is both closed and
bounded (Theorem 5.16).
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5.3 The Lebesgue Lemma and Uniform Continuity

Lemma 5.23 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let
U be an open cover of X. Then there exists a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly within
one of the open sets belonging to the open cover U .

Proof Every point of X is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi
for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

Let X and Y be metric spaces with distance functions dX and dY respec-
tively, and let f : X → Y be a function from X to Y . The function f is said
to be uniformly continuous on X if and only if, given ε > 0, there exists some
δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X satisfying
dX(x, x′) < δ. (The value of δ should be independent of both x and x′.)

Theorem 5.24 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.
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Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f : X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 5.23) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f : X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 5.16
and Theorem 5.24 that any continuous function f : K → Rk is uniformly
continuous.

5.4 The Equivalence of Norms on a Finite-Dimensional
Vector Space

Let ‖.‖ and ‖.‖∗ be norms on a real or complex vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.

Lemma 5.25 Two norms ‖.‖ and ‖.‖∗ on a real or complex vector space X
are equivalent if and only if they induce the same topology on X.

13



Proof Suppose that the norms ‖.‖ and ‖.‖∗ induce the same topology on X.
Then there exists some δ > 0 such that

{x ∈ X : ‖x‖ < δ} ⊂ {x ∈ X : ‖x‖∗ < 1},

since the set {x ∈ X : ‖x‖∗ < 1} is open with respect to the topology on X
induced by both ‖.‖∗ and ‖.‖. Let C be any positive real number satisfying
Cδ > 1. Then ∥∥∥∥ 1

C‖x‖
x

∥∥∥∥ =
1

C
< δ,

and hence

‖x‖∗ = C‖x‖
∥∥∥∥ 1

C‖x‖
x

∥∥∥∥
∗

< C‖x‖.

for all non-zero elements x of X, and thus ‖x‖∗ ≤ C‖x‖ for all x ∈ X. On
interchanging the roles of the two norms, we deduce also that there exists a
positive real number c such that ‖x‖ ≤ (1/c)‖x‖∗ for all x ∈ X. But then
c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖ for all x ∈ X. We conclude that the norms ‖.‖ and
‖.‖∗ are equivalent.

Conversely suppose that the norms ‖.‖ and ‖.‖∗ are equivalent. Then
there exist constants c and C, where 0 < c ≤ C, such that c‖x‖ ≤ ‖x‖∗ ≤
C‖x‖ for all x ∈ X. Let U be a subset of X that is open with respect to the
topology on X induced by the norm ‖.‖∗, and let u ∈ U . Then there exists
some δ > 0 such that

{x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U.

But then

{x ∈ X : ‖x− u‖ < δ} ⊂ {x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U,

showing that U is open with respect to the topology induced by the norm ‖.‖.
Similarly any subset of X that is open with respect to the topology induced
by the norm ‖.‖ must also be open with respect to the topology induced by
‖.‖∗. Thus equivalent norms induce the same topology on X.

It follows immediately from Lemma 5.25 that if ‖.‖, ‖.‖∗ and ‖.‖] are
norms on a real (or complex) vector space X, if the norms ‖.‖ and ‖.‖∗ are
equivalent, and if the norms ‖.‖∗ and ‖.‖] are equivalent, then the norms ‖.‖
and ‖.‖] are also equivalent. This fact can easily be verified directly from the
definition of equivalence of norms.

We recall that the usual topology on Rn is that generated by the Euclidean
norm on Rn.
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Lemma 5.26 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is
continuous with respect to the usual topology on on Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).

Let x and y be points of Rn, given by

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Using Schwarz’ Inequality, we see that

‖x− y‖ =

∥∥∥∥∥
n∑

j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑

j=1

|xj − yj| ‖ej‖

≤

(
n∑

j=1

(xj − yj)
2

) 1
2
(

n∑
j=1

‖ej‖2

) 1
2

= C‖x− y‖2,

where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

and ‖x− y‖2 denotes the Euclidean norm of x− y, defined by

‖x− y‖2 =

(
n∑

j=1

(xj − yj)
2

) 1
2

.

Also |‖x‖ − ‖y‖| ≤ ‖x− y‖, since

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

We conclude therefore that

|‖x‖ − ‖y‖| ≤ C‖x− y‖2,

for all x,y ∈ Rn, and thus the function x 7→ ‖x‖ is continuous on Rn (with
respect to the usual topology on Rn).

Theorem 5.27 Any two norms on Rn are equivalent, and induce the usual
topology on Rn.
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Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm ‖.‖2. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : ‖x‖2 = 1},

and let f : Sn−1 → R be the real-valued function on Sn−1 defined such that
f(x) = ‖x‖ for all x ∈ Sn−1. Now the function f is a continuous function
on Sn−1 (Lemma 5.26). Also the function f is non-zero at each point of
Sn−1, and therefore the function sending x ∈ Sn−1 to 1/f(x) is continuous.
Now any continuous real-valued function on a closed bounded subset of Rn

is bounded on that set (Proposition ). It follows that there exist positive real
numbers C and D such that f(x) ≤ C and 1/f(x) ≤ D for all x ∈ Sn−1. Let
c = D−1. Then c ≤ ‖x‖ ≤ C for all x ∈ Sn−1.

Now
‖x‖
‖x‖2

= f
(
‖x‖−1

2 x
)

for all x ∈ Rn \ {0}. (This is an immediate consequence of the fact that
‖λx‖ = |λ| ‖x‖ for all x ∈ IRn and λ ∈ R.) It follows that c‖x‖2 ≤ ‖x‖ ≤
C‖x‖2 for all x ∈ Rn \ {0}. These inequalities also hold when x = 0. The
result follows.

16


