Course 221: Trinity Term 2007. Assignment II.

To be handed in by Monday 7 May, 2007. Please include both name and student number on any work handed in.

(a) Let X be a connected subset of [-1, 1], let a = inf X and b = sup X, and let c be a real number satisfying a < c < b. Prove that c ∈ X.
[Hint: were it the case that c ∉ X, you could define a function on X which takes the value 0 for all x ∈ X satisfying x < c and takes the value 1 for all x ∈ X satisfying x > c. The existence of such a function would lead to a contradiction if X is connected. Why?]

(b) It follows from (a) that every connected subset of [-1, 1] is an interval. Show that the connected open subsets of [-1, 1] (in the subspace topology) are the intervals of the form (a, b), where $a, b \in [-1, 1]$, the intervals of the form (a, 1], where $a \in [-1, 1)$, and the intervals of the form [-1, b), where $b \in (-1, 1]$.

2. The set $[-\infty, +\infty]$ of extended real numbers is a topological space. Moreover every open subset of $[-\infty, +\infty]$ can be represented as a countable union of open intervals, the open intervals in $[-\infty, \infty]$ being sets of the form (a, b) where $a, b \in [-\infty, +\infty]$, sets of the form $(a, +\infty]$, where $a \in [-\infty, +\infty)$, and sets of the form $[-\infty, b)$, where $b \in (-\infty, +\infty]$.

Let X be a set, let \mathcal{A} be a σ -algebra of subsets of X, and let $f: X \to [-\infty, +\infty]$ be a function mapping X into the set $[-\infty, +\infty]$ of extended real numbers.

(a) Prove that the function f is measurable with respect to the σ algebra \mathcal{A} if and only if $f^{-1}(U) \in \mathcal{A}$ for all open sets U in $[-\infty, +\infty]$. [Hint: you will probably need to make use of results described above.]

(b) Let $g: [-\infty, +\infty] \to [-\infty, +\infty]$ be a function mapping the set $[-\infty, +\infty]$ of extended real numbers to itself. Suppose that the function f is measurable and that the function g is continuous. Prove that the composition function $g \circ f$ is measurable. [Note: it is possible to prove this with a handful of well-chosen sentences.]

Note

[This is not part of the assignment.]

The open sets in $[-\infty, +\infty]$ correspond to those in [-1, 1] under the homeomorphism $\varphi: [-\infty, +\infty] \to [-1, 1]$ from $[-\infty, \infty]$ to [-1, 1] defined such that $\varphi(+\infty) = 1$, $\varphi(-\infty) = -1$ and $\varphi(x) = x(1 + |x|)^{-1}$ for all $x \in \mathbb{R}$. In particular the open intervals in $[-\infty, +\infty]$ correspond, under φ , to the intervals in [-1, 1] that are open with respect to the subspace topology on [-1, 1]. This enables us to characterize the collection of open intervals in $[-\infty, +\infty]$ as described in question 2.

Let X be a subset of [-1, 1] which is open with respect to the subspace topology on [-1, 1], let X_0 be a connected component of X, and let $s \in X$. If $s \in (-1, 1)$ then there exists $\delta > 0$ such that $(s - \delta, s + \delta) \subset X$. But the interval $(s - \delta, s + \delta)$ is a connected set containing s. It follows from the definition of connected components that $(s - \delta, s + \delta) \subset X_0$. Similarly if s = 1 then there exists $\delta > 0$ such that $(1 - \delta, 1] \subset X_0$, and if s = -1then there exists $\delta > 0$ such that $[-1, -1 + \delta) \subset X_0$. This shows that every connected component of X is open with respect to the subspace topology on [-1, 1]. Such a connected component is therefore an interval of the sort described in 1(b). It follows from this that every component of X contains rational numbers.

Any topological space is the disjoint union of its connected components. Thus, in particular, every subset X of [-1, 1] that is open with respect to the subspace topology on [-1, 1] is a disjoint union of its connected components, and these connected components are intervals of the sort described in 1(b). Moreover the number of such connected components is countable. Indeed let S be the set of connected components of S, let B be the set of rational numbers belonging to X, and let $f: B \to S$ be the function that sends each rational number in B to the connected component to which it belongs. Then B is a countable set, $f: B \to S$ is a surjection, and therefore S is a countable set. We deduce from this that every connected subset [-1, 1] that is open with respect to the subspace topology can be represented as a countable union of intervals of the sort described in question 1(b). It follows from this that every subset of $[-\infty, \infty]$ can be represented as a countable union of intervals of the sort described in question 2.