Course 221: Michaelmas Term 2007. Assignment I.

To be handed in by Wednesday, December 5, 2007. Please include both name and student number on any work handed in.

- 1. For each of the following subsets of \mathbb{R}^3 , determine whether or not that subset is an open set in \mathbb{R}^3 , and also determine whether or not the subset is a closed set in \mathbb{R}^3 :
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : (x 1)^2 + (y 2)^2 + z^2 < 9 \text{ and } z > 1\};$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : (x 1)^2 + (y 2)^2 + z^2 < 9 \text{ and } z \ge 1\};$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : (x 1)^2 + (y 2)^2 + z^2 \ge 9 \text{ and } z \ge 1\}.$
- 2. Let X be a metric space with distance function d, and let $d^*(x, y) = q(d(x, y))$ for all $x, y \in X$, where q is a real-valued function defined on the set $[0, +\infty)$ of non-negative real numbers which satisfies the following properties:
 - (i) $q(u) \ge 0$ for all non-negative real numbers u;
 - (ii) $q(u) \leq q(v)$ for all non-negative real numbers u and v satisfying $u \leq v$;
 - (iii) $q(u+v) \le q(u) + q(v)$ for all non-negative real numbers u and v;
 - (iv) q(u) = 0 if and only if u = 0.

Prove that the function d^* satisfies the axioms required of a distance function on a metric space, so that X can be considered as a metric space with distance function d^* .

3. Let the set X, the function q and the distance functions d and d^{*} be as in the previous question (so that $d^*(x, y) = q(d(x, y))$ for all $x, y \in X$, where q is a function satisfying properties (i), (ii), (iii) and (iv) above). Let V be a subset of X. Prove that if V is an open set in X when X is considered as a metric space with distance function d, then V is also an open set in X when X is considered as a metric space with distance function d^* .