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1 Basic Theorems of Real Analysis

1.1 The Least Upper Bound Principle

A widely-used basic principle of analysis, from which many important theo-
rems ultimately derive, is the Least Upper Bound Principle.

Let D be a subset of the set R of real numbers. A real number u is said
to be an upper bound of the set D of x ≤ u for all x ∈ D. The set D is said
to be bounded above if such an upper bound exists.

Definition Let D be some set of real numbers which is bounded above.
A real number s is said to be the least upper bound (or supremum) of D
(denoted by supD) if s is an upper bound of D and s ≤ u for all upper
bounds u of D.

Example The real number 2 is the least upper bound of the sets {x ∈ R :
x ≤ 2} and {x ∈ R : x < 2}. Note that the first of these sets contains its
least upper bound, whereas the second set does not.

The Least Upper Bound Principle may be stated as follows:

if D is any non-empty subset of R which is bounded above then
there exists a least upper bound supD for the set D.

A lower bound of a set D of real numbers is a real number l with the
property that l ≤ x for all x ∈ D. A set D of real numbers is said to be
bounded below if such a lower bound exists. If D is bounded below, then
there exists a greatest lower bound (or infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.

1.2 Monotonic Sequences

An infinite sequence a1, a2, a3, . . . of real numbers is said to be strictly in-
creasing if an+1 > an for all n, strictly decreasing if an+1 < an for all n,
non-decreasing if an+1 ≥ an for all n, or non-increasing if an+1 ≤ an for all n.
A sequence satisfying any one of these conditions is said to be monotonic;
thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem 1.1 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.
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Proof Let a1, a2, a3, . . . be a non-decreasing sequence of real numbers that is
bounded above. It follows from the Least Upper Bound Principle that there
exists a least upper bound l for the set {an : n ∈ N}. We claim that the
sequence converges to l.

Let ε > 0 be given. We must show that there exists some natural num-
ber N such that |an − l| < ε whenever n ≥ N . Now l − ε is not an upper
bound for the set {an : n ∈ N} (since l is the least upper bound), and there-
fore there must exist some natural number N such that aN > l−ε. But then
l − ε < an ≤ l whenever n ≥ N , since the sequence is non-decreasing and
bounded above by l. Thus |an − l| < ε whenever n ≥ N . Therefore an → l
as n→ +∞, as required.

If the sequence a1, a2, a3, . . . is non-increasing and bounded below then
the sequence −a1,−a2,−a3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence a1, a2, a3, . . . is also
convergent.

1.3 Upper and Lower Limits of Bounded Sequences of
Real Numbers

Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers, and, for
each positive integer j, let

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

The sets S1, S2, S3, . . . are all bounded. It follows that there exist well-defined
infinite sequences u1, u2, u3, . . . and l1, l2, l3, . . . of real numbers, where uj =
supSj and lj = inf Sj for all positive integers j. Now Sj+1 is a subset of Sj for
each positive integer j, and therefore uj+1 ≤ uj and lj+1 ≥ lj for each positive
integer j. It follows that the bounded infinite sequence (uj : j ∈ N) is a non-
increasing sequence, and is therefore convergent (Theorem 1.1). Similarly
the bounded infinite sequence (lj : j ∈ N) is a non-decreasing sequence, and
is therefore convergent. We define

lim sup
j→+∞

aj = lim
j→+∞

uj = lim
j→+∞

sup{aj, aj+1, aj+2, . . .},

lim inf
j→+∞

aj = lim
j→+∞

lj = lim
j→+∞

inf{aj, aj+1, aj+2, . . .}.

The quantity lim sup
j→+∞

aj is referred to as the upper limit of the sequence

a1, a2, a3, . . .. The quantity lim inf
j→+∞

aj is referred to as the lower limit of the

sequence a1, a2, a3, . . ..
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Note that every bounded infinite sequence a1, a2, a3, . . .. of real num-
bers has a well-defined upper limit lim sup

j→+∞
aj and a well-defined lower limit

lim inf
j→+∞

aj.

Proposition 1.2 A bounded infinite sequence a1, a2, a3, . . .. of real numbers
is convergent if and only if lim inf

j→+∞
aj = lim sup

j→+∞
aj, in which case the limit of

the sequence is equal to the common value of its upper and lower limits.

Proof For each positive integer j, let uj = supSj and lj = inf Sj, where

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

Then lim inf
j→+∞

aj = lim
j→+∞

lj and lim sup
j→+∞

aj = lim
j→+∞

uj.

Suppose that lim inf
j→+∞

aj = lim sup
j→+∞

aj = c for some real number c. Then,

given any positive real number ε, there exist natural numbers N1 and N2

such that c − ε < lj ≤ c whenever j ≥ N1, and c ≤ uj ≤ c + ε whenever
j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then aj ∈ SN , and
therefore

c− ε < lN ≤ aj ≤ uN < c+ ε.

Thus |aj − c| < ε whenever j ≥ N . This proves that the infinite sequence
a1, a2, a3, . . . converges to the limit c.

Conversely let a1, a2, a3, . . . be a bounded sequence of real numbers that
converges to some value c. Let ε > 0 be given. Then there exists some
natural number N such that c− 1

2
ε < aj < c+ 1

2
ε whenever j ≥ N . It follows

that Sj ⊂ (c− 1
2
ε, c+ 1

2
ε) whenever j ≥ N . But then

c− 1
2
ε ≤ lj ≤ uj ≤ c+ 1

2
ε

whenever j ≥ N , where uj = supSj and lj = inf Sj. We see from this that,
given any positive real number ε, there exists some natural number N such
that |lj − c| < ε and |uj − c| < ε whenever j ≥ N . It follows from this that

lim sup
j→+∞

aj = lim
j→+∞

uj = c and lim inf
j→+∞

aj = lim
j→+∞

lj = c,

as required.
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1.4 Cauchy’s Criterion for Convergence

Definition An infinite sequence a1, a2, a3, . . . of real numbers said to be
a Cauchy sequence if, given any positive real number ε, there exists some
positive integer N such that |aj − ak| < ε for all j and k satisfying j ≥ N
and k ≥ N .

Theorem 1.3 (Cauchy’s Criterion for Convergence) A sequence of real num-
bers is convergent if and only if it is a Cauchy sequence.

Proof Let a1, a2, a3, . . . be a sequence of real numbers. Suppose that this
sequence converges to some limit c. Let some positive real number ε be given.
Then there exists some natural number N such that |aj − c| < 1

2
ε whenever

j ≥ N . If j and k are positive integers satisfying j ≥ N and k ≥ N then

|aj − ak| ≤ |aj − c|+ |c− ak| < 1
2
ε+ 1

2
ε = ε.

This shows that any convergent sequence of real numbers is a Cauchy se-
quence.

Next let a1, a2, a3, . . . be a Cauchy sequence of real numbers. We must
prove that this sequence is convergent. First we show that it is bounded. Now
there exists some natural number M such that |aj − ak| < 1 for all positive
integers j and k satisfying j > M and k > M . Let R be the maximum of
the real numbers

|a1|, |a2|, . . . , |aM−1|, |aM |+ 1.

It is clear that |aj| ≤ R when j < M . If j ≥ M then |aj − aM | < 1, and
therefore |aj| < |aM |+ 1 ≤ R. Thus |aj| ≤ R for all positive integers j. This
proves that the Cauchy sequence is bounded.

For each positive integer j, let

uj = sup{ak : k ≥ j} and lj = inf{ak : k ≥ j}.

Then u1, u2, u3, . . . is a non-increasing sequence which converges to lim sup
j→+∞

aj,

and l1, l2, l3, . . . is a non-decreasing sequence which converges to lim inf
j→+∞

aj.

Let ε be some given positive real number. Then there exists some natural
number N such that |aj − ak| < ε for all positive integers j and k satisfying
j ≥ N and k ≥ N . It follows from this that aN − ε < aj < aN + ε for all
positive integers j satisfying j ≥ N . It then follow from the definitions of
uN and lN that aN − ε ≤ lN ≤ uN ≤ aN + ε. Now 0 ≤ uj − lj ≤ uN − lN
whenever j ≥ N . It follows that

lim sup
j→+∞

aj − lim inf
j→+∞

aj = lim
j→+∞

(uj − lj) ≤ uN − lN ≤ 2ε.
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Thus if d = lim sup
j→+∞

aj − lim inf
j→+∞

aj then 0 ≤ d ≤ 2ε for all positive real

numbers ε. It must therefore be the case that d = 0. Thus lim sup
j→+∞

aj =

lim inf
j→+∞

aj. It now follows from Proposition 1.2 that the Cauchy sequence

a1, a2, a3, . . . is convergent, as required.

1.5 The Bolzano-Weierstrass Theorem

Let a1, a2, a3, . . . be an infinite sequence of real numbers. A subsequence
of this sequence is a sequence that is of the form am1 , am2 , am3 , . . ., where
m1,m2,m3, . . . are positive integers satisfying m1 < m2 < m3 < · · · . Thus,
for example, a2, a4, a6, . . . and a1, a4, a9, . . . are subsequences of the given
sequence.

Lemma 1.4 Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers,
and let c be a real number satisfying c < lim sup

j→+∞
aj. Then there exist infinitely

many positive integers j such that aj > c.

Proof Let N be a positive integer. Then

c < lim sup
j→+∞

aj ≤ sup{aj : j ≥ N},

It follows that c is not an upper bound for the set {aj : j ≥ N}, and therefore
there exists some positive integer satisfying j ≥ N for which aj > c. We
conclude from this that there does not exist any positive integer N with the
property that aj ≤ c whenever j ≥ N . Therefore {j ∈ N : aj > c} is not a
finite set. The result follows.

Proposition 1.5 Any bounded infinite sequence a1, a2, a3, . . . of real num-
bers has a subsequence which converges to the upper limit lim sup

j→+∞
aj of the

given sequence.

Proof Let s = lim sup
j→+∞

aj, and let

uN = sup{aN , aN+1, aN+2, . . .} = sup{aj : j ≥ N}

for all positive integers N . The upper limit s of the sequence a1, a2, a3, . . . is
then the limit of the non-increasing sequence u1, u2, u3, . . ..

Let ε be positive real number. The convergence of the infinite sequence
u1, u2, u3, . . . to s ensures that there exists some positive integer N such that
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uN < s + ε. But then aj < s + ε whenever j ≥ N . It follows that the
number of positive integers j for which aj ≥ s + ε is finite. Also it follows
from Lemma 1.4 that the number of positive integers j for which aj > s− ε
is infinite. Putting these two facts together, we see that the number of
positive integers j for which s − ε < aj < s + ε is infinite. (Indeed let
S1 = {j ∈ N : aj > s − ε} and S2 = {j ∈ N : aj ≥ s + ε}. Then S1 is an
infinite set, S2 is a finite set, and therefore S1 \S2 is an infinite set. Moreover
s− ε < aj < s+ ε for all j ∈ S1 \ S2.)

Now given any positive integer j, and given any positive number mj

such that |amj − s| < j−1, there exists some positive integer mj+1 such that
mj+1 > mj and |amj+1

− s| < (j + 1)−1. It follow from this that there exists
a subsequence am1 , am2 , am3 , . . . of the infinite sequence a1, a2, a3, . . ., where
m1 < m2 < m3 < · · ·, which has the property that |amj − s| < j−1 for all
positive integers j. This subsequence converges to s as required.

The following theorem, known as the Bolzano-Weierstrass Theorem, is
an immediate consequence of Proposition 1.5.

Theorem 1.6 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

1.6 The Intermediate Value Theorem

Proposition 1.7 Let f : [a, b] → Z continuous integer-valued function de-
fined on a closed interval [a, b]. Then the function f is constant.

Proof Let

S = {x ∈ [a, b] : f is constant on the interval [a, x]},

and let s = supS. Now s ∈ [a, b], and therefore the function f is continuous
at s. Therefore there exists some real number δ satisfying δ > 0 such that
|f(x)− f(s)| < 1

2
for all x ∈ [a, b] satisfying |x− s| < δ. But the function f

is integer-valued. It follows that f(x) = f(s) for all x ∈ [a, b] satisfying
|x − s| < δ. Now s − δ is not an upper bound for the set S. Therefore
there exists some element x0 of S satisfying s − δ < x0 ≤ s. But then
f(s) = f(x0) = f(a), and therefore the function f is constant on the interval
[a, x] for all x ∈ [a, b] satisfying s ≤ x < s+δ. Thus x ∈ [a, b]∩ [s, s+δ) ⊂ S.
In particular s ∈ S. Now S cannot contain any elements x of [a, b] satisfying
x > s. Therefore [a, b] ∩ [s, s + δ) = {s}, and therefore s = b. This shows
that b ∈ S, and thus the function f is constant on the interval [a, b], as
required.
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Theorem 1.8 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof Let c be a real number which lies between f(a) and f(b), and let
gc:R \ {c} → Z be the continuous integer-valued function on R \ {c} de-
fined such that gc(x) = 0 whenever x < c and gc(x) = 1 if x > c. Suppose
that c were not in the range of the function f . Then the composition func-
tion gc ◦ f : [a, b]→ R would be a continuous integer-valued function defined
throughout the interval [a, b]. This function would not be constant, since
gc(f(a)) 6= gc(f(b)). But every continuous integer-valued function on the in-
terval [a, b] is constant (Proposition 1.7). It follows that every real number c
lying between f(a) and f(b) must belong to the range of the function f , as
required.

Corollary 1.9 Let f : [a, b]→ [c, d] be a strictly increasing continuous func-
tion mapping an interval [a, b] into an interval [c, d], where a, b, c and d are
real numbers satisfying a < b and c < d. Suppose that f(a) = c and f(b) = d.
Then the function f has a continuous inverse f−1: [c, d]→ [a, b].

Proof Let x1 and x2 be distinct real numbers belonging to the interval [a, b]
then either x1 < x2, in which case f(x1) < f(x2) or x1 > x2, in which
case f(x1) > f(x2). Thus f(x1) 6= f(x2) whenever x1 6= x2. It follows that
the function f is injective. The Intermediate Value Theorem (Theorem 1.8)
ensures that f is surjective. It follows that the function f has a well-defined
inverse f−1: [c, d]→ [a, b]. It only remains to show that this inverse function
is continuous.

Let y be a real number satisfying c < y < d, and let x be the unique real
number such that a < x < b and f(x) = y. Let ε > 0 be given. We can then
choose x1, x2 ∈ [a, b] such that x− ε < x1 < x < x2 < x+ ε. Let y1 = f(x1)
and y2 = f(x2). Then y1 < y < y2. Choose δ > 0 such that δ < y − y1

and δ < y2 − y. If v ∈ [c, d] satisfies |v − y| < δ then y1 < v < y2 and
therefore x1 < f−1(v) < x2. But then |f−1(v) − f−1(y)| < ε. We conclude
that the function f−1: [c, d]→ [a, b] is continuous at all points in the interior
of the interval [a, b]. A similar argument shows that it is continuous at the
endpoints of this interval. Thus the function f has a continuous inverse, as
required.
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2 Analysis in Euclidean Spaces

2.1 Euclidean Spaces

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
R
n, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√
x2

1 + x2
2 + · · ·+ x2

n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Lemma 2.1 (Schwarz’ Inequality) Let x and y be elements of Rn. Then
|x · y| ≤ |x||y|.

Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.
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It follows easily from Schwarz’ Inequality that |x + y| ≤ |x| + |y| for all
x,y ∈ Rn. For

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

It follows that
|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality is known as the
Triangle Inequality. It expresses the geometric fact the the length of any
triangle in a Euclidean space is less than or equal to the sum of the lengths
of the other two sides.

2.2 Convergence of Sequences in Euclidean Spaces

Definition Let n be a positive integer, and let p1,p2,p3, . . . be an infinite
sequence of points in n-dimensional Euclidean space Rn. This sequence of
points is said to converge to some point r of Rn if, given any real number ε
satisfying ε > 0, there exists some positive integer N such that |pj − r| < ε
whenever j ≥ N .

Lemma 2.2 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let xji and pi denote the ith components of xj and p. Then |xji−pi| ≤
|xj − p| for all j. It follows directly from the definition of convergence that
if xj → p as j → +∞ then xji → pi as j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist natural numbers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√
n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N

then

|xj − p|2 =
n∑
i=1

(xji − pi)2 < n(ε/
√
n)2 = ε2,

so that xj → p as j → +∞.

The following result is the analogue of the Bolzano-Weierstrass Theorem
for sequences in n-dimensional Euclidean space.

Theorem 2.3 Every bounded sequence of points in Rn has a convergent sub-
sequence.
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Proof Let x1,x2,x3, . . . be a bounded sequence of points in Rn. Let us
denote by x

(i)
j the ith component of the point xj, so that

xj = (x
(1)
j , x

(2)
j , . . . , x

(n)
j )

for all positive integers j. Suppose that, for some integer s between 1 and
n − 1, the sequence x1,x2,x3, . . . has a subsequence xp1 ,xp2 ,xp3 , . . . with
the property that, for each integer i satisfying 1 ≤ i ≤ s, the ith compo-
nents of the members of this subsequence constitute a convergent sequence
x

(i)
p1 , x

(i)
p2 , x

(i)
p3 , . . . of real numbers. Let aj = x

(s+1)
pj for each positive integer j.

Then a1, a2, a3, . . . is a bounded sequence of real numbers. It follows from
the Bolzano-Weierstrass Theorem (Theorem 1.6) that this sequence has a
convergent subsequence am1 , am2 , am3 , . . ., where m1 < m2 < m3 < · · ·. Let
qj = pmj for each positive integer j. Then xq1 ,xq2 ,xq3 , . . . is a subsequence of
the original bounded sequence x1,x2,x3, . . . which has the property that, for
each integer i satisfying 1 ≤ i ≤ s + 1, the ith components of the members
of the subsequence constitute a convergent sequence x

(i)
q1 , x

(i)
q2 , x

(i)
q3 , . . . of real

numbers.
Repeated applications of this result show that the bounded sequence

x1,x2,x3, . . . has a subsequence xr1 ,xr2 ,xr3 , . . . with the property that, for
each integer i satisfying 1 ≤ i ≤ n, the ith components of the members
of the subsequence constitute a convergent sequence of real numbers. Let
z = (z1, z2, . . . , zn) where, for each value of i between 1 and n, the ith com-

ponent zi of z is the limit of the sequence x
(i)
r1 , x

(i)
r2 , x

(i)
r3 , . . . of ith components

of the members of the subsequence xr1 ,xr2 ,xr3 , . . . . Then this subsequence
converges to the point z, as required.

2.3 Cauchy Sequences of Points in Euclidean Spaces

Definition A sequence x1,x2,x3, . . . of points in a Euclidean space is said to
be a Cauchy sequence if, given any ε > 0, there exists some natural number N
such that |xj − xk| < ε for all integers j and k satisfying j ≥ N and k ≥ N .

Lemma 2.4 Every convergent sequence in a Euclidean space is a Cauchy
sequence.

Proof Let x1,x2,x3, . . . be a sequence of points in a Euclidean space Rn

which converges to some point p of Rn. Given any ε > 0, there exists some
natural number N such that |xj − p| < ε/2 whenever j ≥ N . But then it
follows from the Triangle Inequality that

|xj − xk| ≤ |xj − p|+ |p− xk| <
ε

2
+
ε

2
= ε

10



whenever j ≥ N and k ≥ N .

Theorem 2.5 Every Cauchy sequence in Rn converges to some point of Rn.

Proof Let p1,p2,p3, . . . be a Cauchy sequence in Rn. Then, given any real
number ε satisfying ε > 0, there exists some natural number N such that
|pj − pk| < ε whenever j ≥ N and k ≥ N . In particular, there exists some
natural number L such that |pj − pk| < 1 whenever j ≥ L and k ≥ L. Let
R be the maximum of the numbers |p1|, |p2|, . . . , |pL−1| and |pL|+ 1. Then
|pj| ≤ R whenever j < L. Moreover if j ≥ L then

|pj| ≤ |pL|+ |pj − pL| < |pL|+ 1 ≤ R.

Thus |pj| ≤ R for all positive integers j. We conclude that the Cauchy
sequence (pj : j ∈ N) is bounded.

Now every bounded sequence of points in a Euclidean space has a con-
vergent subsequence (Theorem 2.3). In particular, the Cauchy sequence
(pj : j ∈ N) has a convergent subsequence (pkj : j ∈ N), where k1, k2, k3, . . .
are positive integers satisfying k1 < k2 < k3 < · · ·. Let the point q of Rn be
the limit of this subsequence. Then, given any positive number ε satisfying
ε > 0, there exists some positive integer M such that |pkm−q| < 1

2
ε whenever

m ≥ M . Also there exists some positive integer N such that |pj − pk| < 1
2
ε

whenever j ≥ N and k ≥ N . Choose m large enough to ensure that m ≥M
and km ≥ N . If j ≥ N then

|pj − q| ≤ |pj − pkm|+ |pkm − q| < 1
2
ε+ 1

2
ε = ε.

It follows that the Cauchy sequence (pj : j ∈ N) converges to the point q.
Thus every Cauchy sequence is convergent, as required.

2.4 Continuity

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f :X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some δ >
0 such that |f(x) − f(p)| < ε for all points x of X satisfying
|x− p| < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

11



Lemma 2.6 The functions s:R2 → R and p:R2 → R defined by s(x, y) =
x+ y and p(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s:R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x+ y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s:R2 → R is continuous at (u, v).
Next we show that p:R2 → R is continuous at (u, v). Now

p(x, y)− p(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |p(x, y) − p(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 is given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ < (1 + |u|+ |v|)δ < ε, and thus
|p(x, y)− p(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v) is
less than δ. This shows that p:R2 → R is continuous at (u, v).

Lemma 2.7 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, let
f :X → Y be a function mapping X into Y , and let g:Y → Z be a function
mapping Y into Z. Let p be a point of X. Suppose that f is continuous at
p and g is continuous at f(p). Then the composition function g ◦ f :X → Z
is continuous at p.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 2.7 guarantees that a composition of continuous functions be-
tween subsets of Euclidean spaces is continuous.

2.5 Convergent Sequences and Continuous Functions

Lemma 2.8 Let X and Y be a subsets of Rm and Rn respectively, and let
f :X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

12



Proof Let ε > 0 be given. Then there exists some δ > 0 such that
|f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the func-
tion f is continuous at p. Also there exists some natural number N such
that |xj − p| < δ whenever j ≥ N , since the sequence x1,x2,x3, . . . con-
verges to p. Thus if j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

Proposition 2.9 Let a1, a2, a3, . . . and b1, b2, b3, . . . be convergent infinite se-
quences of real numbers. Then the sum, difference and product of these se-
quences are convergent, and

lim
j→+∞

(aj + bj) = lim
j→+∞

aj + lim
j→+∞

bj,

lim
j→+∞

(aj − bj) = lim
j→+∞

aj − lim
j→+∞

bj,

lim
j→+∞

(ajbj) =

(
lim

j→+∞
aj

)(
lim

j→+∞
bj

)
.

If in addition bj 6= 0 for all n and lim
j→+∞

bj 6= 0, then the quotient of the

sequences (aj) and (bj) is convergent, and

lim
j→+∞

aj
bj

=
lim

j→+∞
aj

lim
j→+∞

bj
.

Proof Throughout this proof let l = lim
j→+∞

aj and m = lim
j→+∞

bj.

Now aj+bj = s(aj, bj) and ajbj = p(aj, bj) for all positive integers j, where
s:R×R→ R and p:R×R→ R are the functions given by s(x, y) = x+y and
p(x, y) = xy for all real numbers x and y. Also the sequence ((aj, bj) : j ∈ N)
is a sequence of points in R2 which converges to the point (l,m), since its
components are sequences of real numbers converging to the limits l and m
(Lemma 2.2). Moreover the functions s and p are continuous (Lemma 2.6).
It now follows from Lemma 2.8 that

lim
j→+∞

(aj + bj) = lim
j→+∞

s(aj, bj) = s

(
lim

j→+∞
(aj, bj)

)
= s(l,m) = l +m,

and

lim
j→+∞

(ajbj) = lim
j→+∞

p(aj, bj) = p

(
lim

j→+∞
(aj, bj)

)
= p(l,m) = lm.

Also the sequence (−bj : j ∈ N) converges to −m, and therefore lim
j→+∞

(aj −
bj) = l − m. Now the reciprocal function r:R \ {0} → R is continuous on

13



R \ {0}, where r(x) = 1/x for all non-zero real numbers x. It follows from
Lemma 2.8 that if bj 6= 0 for all positive integers j then 1/bj converges to
1/m as j → +∞. But then lim

j→+∞
(aj/bj) = l/m. This completes the proof of

Proposition 2.9.

2.6 Components of Continuous Functions

Let f :X → R
n be a function mapping a mapping a set X into n-dimensional

Euclidean space Rn. Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .

Proposition 2.10 Let X be a subset of some Euclidean space, and let p be
a point of X. A function f :X → R

n mapping X into the Euclidean space
R
n is continuous at p if and only if its components are continuous at p.

Proof Note that the ith component fi of f is given by fi = pi ◦ f , where
pi:R

n → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn onto
its ith coordinate yi. It therefore follows immediately from Lemma 2.7 that
if f is continuous the point p, then so are the components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑
i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Proposition 2.11 Let f :X → R and g:X → R be real-valued functions
defined on some subset X of a Euclidean space, and let p be a point of X.
Suppose that the functions f and g are continuous at the point p. Then so
are the functions f + g, f − g and f · g. If in addition g(x) 6= 0 for all x ∈ X
then the quotient function f/g is continuous at p.

14



Proof Note that f + g = s ◦ h and f · g = p ◦ h, where h:X → R
2,

s:R2 → R and p:R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and p(u, v) = uv for all x ∈ X and u, v ∈ R. If the functions f and g are
continuous at p then so is the function h (Proposition 2.10). The functions
s and p are continuous on R2. It therefore follows from Lemma 2.7 that the
composition functions s◦h and p◦h are continuous at p. Thus the functions
f + g and f · g are continuous at p. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r:R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. It now follows on applying Lemma 2.7
that the function 1/g is continuous at p. The function f/g, being the product
of the functions f and 1/g is therefore continuous at p.

2.7 Limits of Functions

Let X be a subset of some Euclidean space Rn, and let p be a point of Rn.
We say that the point p is a limit point of X if, given any real number δ
satisfying δ > 0, there exists a point x of X satisfying 0 < |x − p| < δ. It
follows easily from this that a point p of Rn is a limit point of X if and only
if there exists a sequence of points of X \{p} which converges to the point p.

Definition Let X be a subset of a Euclidean space Rm, let f :X → R
n

mapping X into a Euclidean space Rn, let p be a limit point of X, and let
q be a point of Rn. We say that q is the limit of f(x) as x tends to p in X
if, given any real number ε satisfying ε > 0, there exists some real number δ
satisfying δ > 0 such that |f(x) − q| < ε for all points x of X satisfying
0 < |x−p| < δ. If the point q is the limit of f(x) as x tends to p in X, then
we denote this fact by writing: q = lim

x→p
f(x).

Lemma 2.12 Let X and Y be subsets of Euclidean spaces, let f :X → Y be
a function from X to Y , and let p be a point of X that is also limit point of
X. Then the function f is continuous at p if and only if lim

x→p
f(x) = f(p).

Proof The result follows immediately on comparing the definitions of con-
vergence and of limits of functions.

Let X be a subset of some Euclidean space. A point p of X is said to be
an isolated point of X if it is not a limit point of X. A point p of X is an
isolated point of X if and only if there exists some real number δ satisfying
δ > 0 such that the only point of X whose distance from p is less than δ is the
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point p itself. It follows directly from the definition of continuity that any
function between subsets of Euclidean space is continuous at all the isolated
points of its domain.

Lemma 2.13 Let X, Y and Z be subsets of Euclidean spaces, let p be a
limit point of X, and let f :X → Y and g:Y → Z be functions. Suppose that
lim
x→p

f(x) = q. Suppose also that the function g is defined and is continuous

at q. Then lim
x→p

g(f(x)) = g(q).

Proof The function g is continuous at q. Therefore there exists some η > 0
such that |g(y) − g(q)| < ε for all y ∈ Y satisfying |y − q| < η. But then
there exists some δ > 0 such that |f(x) − q| < η for all x ∈ X satisfying
0 < |x − p| < δ. Thus |g(f(x)) − g(q)| < ε for all x ∈ X satisfying
0 < |x− p| < δ, showing that lim

x→p
g(f(x)) = g(q), as required.

Let X be a subset of some Euclidean space, let f :X → R
n be a function

mapping X into n-dimensional Euclidean space Rn, let p be a limit point of
the set X, and let q be a point in Rn. Let f̃ :X ∪ {p} → R

n be the function
on X ∪ {p} defined such that

f̃(x) =

{
f(x) if x ∈ X \ {p};
q if x = p.

Then lim
x→p

f(x) = q if and only if the function f̃ is continuous at p. This

enables one to deduce basic results concerning limits of functions from the
corresponding results concerning continuity of functions.

The following result is thus a conseqence of Proposition 2.10.

Proposition 2.14 Let X be a subset of some Euclidean space, let f :X → R
n

be a function mapping X into n-dimensional Euclidean space Rn, let p be
a limit point of the set X, and let q be a point in Rn. Let the real-valued
functions f1, f2, . . . , fn be the components of f , so that

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, and let q = (q1, q2, . . . , qn). Then lim
x→p

f(x) = q if and only if

lim
x→p

fi(x) = qi for i = 1, 2, . . . , n.

The following result is a consequence of Proposition 2.11.
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Proposition 2.15 Let X be a subset of some Euclidean space, let p be a
limit point of X, and let f :X → R

n and g:X → R
n be functions on X

taking values in some Euclidean space Rn. Suppose that the limits lim
x→p

f(x)

and lim
x→p

g(x) exist. Then

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) =

(
lim
x→p

f(x)

)(
lim
x→p

g(x)

)
.

If moreover lim
x→p

g(x) 6= 0 and the function g is non-zero throughout its do-

main X then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

2.8 Uniform Convergence

Definition Let X be a subset of some Euclidean spaces, and let f1, f2, f3, . . .
be a sequence of functions mapping X into some Euclidean space Rn. The
sequence (fj) is said to converge uniformly to a function f :X → R

n on X
as j → +∞ if, given any real number ε satisfying ε > 0, there exists some
positive integer N such that |fj(x) − f(x)| < ε for all x ∈ X and for all
integers j satisfying j ≥ N (where the value of N is independent of x).

Theorem 2.16 Let f1, f2, f3, . . . be a sequence of continuous functions map-
ping some subset X of a Euclidean space into Rn. Suppose that this sequence
converges uniformly on X to some function f :X → R

n. Then this limit
function f is continuous.

Proof Let p be an element of X, and let ε > 0 be given. If j is chosen
sufficiently large then |f(x) − fj(x)| < 1

3
ε for all x ∈ X, since fj → f

uniformly on X as j → +∞. It then follows from the continuity of fj that
there exists some δ > 0 such that |fj(x)−fj(p)| < 1

3
ε for all x ∈ X satisfying

|x− p| < δ. But then

|f(x)− f(p)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(p)|+ |fj(p)− f(p)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−p| < δ. Thus the function f is continuous at p, as required.
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2.9 Open Sets in Euclidean Spaces

Given a point p of Rn and a non-negative real number r, the open ball B(p, r)
of radius r about p is defined to be the subset of Rn given by

B(p, r) ≡ {x ∈ Rn : |x− p| < r}.

(Thus B(p, r) is the set consisting of all points of Rn that lie within a sphere
of radius r centred on the point p.)

Definition A subset V of Rn is said to be open in Rn if and only if, given
any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of Rn.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
ThenH is an open set in R3. Indeed let p be a point ofH. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}, {(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Lemma 2.17 Let p be a point of n-dimensional Euclidean space Rn. Then,
for any positive real number r, the open ball B(p, r) of radius r about p is
an open set in Rn.

Proof Let x be an element of B(p, r). We must show that there exists some
δ > 0 such that B(x, δ) ⊂ B(p, r). Let δ = r − |x − p|. Then δ > 0, since
|x− p| < r. Moreover if y ∈ B(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ B(p, r). Thus B(x, δ) ⊂ B(p, r).
This shows that B(p, r) is an open set, as required.

Lemma 2.18 Let p be a point of n-dimensional Euclidean space Rn. Then,
for any non-negative real number r, the set {x ∈ Rn : |x−p| > r} is an open
set in Rn.
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Proof Let x be a point of Rn satisfying |x− p| > r, and let y be any point
of Rn satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus B(x, δ) is contained in the given set. The result follows.

Proposition 2.19 The collection of open sets in n-dimensional Euclidean
space Rn has the following properties:—

(i) the empty set ∅ and the whole space Rn are both open in Rn;

(ii) the union of any collection of open sets in Rn is itself open in Rn;

(iii) the intersection of any finite collection of open sets in Rn is itself open
in Rn.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole space Rn. This proves (i).

Let A be any collection of open sets in Rn, and let U denote the union
of all the open sets belonging to A. We must show that U is itself open in
R
n. Let x ∈ U . Then x ∈ V for some set V belonging to the collection A.

It follows that there exists some δ > 0 such that B(x, δ) ⊂ V . But V ⊂ U ,
and thus B(x, δ) ⊂ U . This shows that U is open in Rn. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of Rn that
are open in Rn, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that B(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now B(x, δ) ⊂ B(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus B(x, δ) ⊂ V . Thus
the intersection V of the sets V1, V2, . . . , Vk is itself open in Rn. This proves
(iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.
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Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each natural number k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all natural
numbers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
natural numbers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.

Lemma 2.20 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
natural number N such that xj ∈ U for all j satisfying j ≥ N .

Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some natural number N such
that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 2.17. Therefore there exists some
natural number N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of Rn that satisfy |x− p| < ε.
But there exists some natural number N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

2.10 Open Sets in Subsets of Euclidean Spaces

Let X be a subset of Rn. Given a point p of X and a non-negative real
number r, the open ball BX(p, r) in X of radius r about p is defined to be
the subset of X given by

BX(p, r) ≡ {x ∈ X : |x− p| < r}.

(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)
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Definition Let X be a subset of Rn. A subset V of X is said to be open
in X if and only if, given any point p of V , there exists some δ > 0 such that
BX(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3 of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .

2.11 Closed Sets in Euclidean Spaces

Definition A subset F of n-dimensional Euclidean space Rn is said to be
closed in Rn if and only if its complement Rn \F in Rn is open in Rn. (Recall
that Rn \ F = {x ∈ Rn : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let p be a point of n-dimensional Euclidean space Rn. Then the
sets {x ∈ X : |x − p| ≤ r} and {x ∈ X : |x − p| ≥ r} are closed for
each non-negative real number r. In particular, the set {p} consisting of the
single point p is a closed set in X. (These results follow immediately using
Lemma 2.17 and Lemma 2.18 and the definition of closed sets.)
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Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 2.19.

Proposition 2.21 The collection of closed sets in n-dimensional Euclidean
space Rn has the following properties:—

(i) the empty set ∅ and the whole space Rn are both closed in Rn;

(ii) the intersection of any collection of closed sets in Rn is itself closed in
R
n;

(iii) the union of any finite collection of closed sets in Rn is itself closed in
R
n.

Lemma 2.22 Let F be a closed subset of n-dimensional Euclidean space Rn,
and let x1,x2,x3, . . . be a sequence of points of F which converges to a point p
of Rn. Then p ∈ F .

Proof The complement Rn \ F of F in Rn is open, since F is closed. Sup-
pose that p were a point belonging to Rn \ F . It would then follow from
Lemma 2.20 that xj ∈ Rn \ F for all values of j greater than some positive
integer N , contradicting the fact that xj ∈ F for all j. This contradiction
shows that p must belong to F , as required.

Lemma 2.23 Let F be a closed bounded set in Rn, and let U be an open set
in Rn. Suppose that F ⊂ U . Then there exists positive real number δ such
that |x− y| ≥ δ > 0 for all x ∈ F and y ∈ Rn \ U .

Proof Suppose that such a positive real number δ did not exist. Then
there would exist an infinite sequence (xj : j ∈ N) of points of F and a
correspondinding infinite sequence (yj : j ∈ N) of points of Rn \ U such
that |xj − yj| < 1/j for all positive integers j. The sequence (xj : j ∈ N)
would be a bounded sequence of points of Rn, and would therefore have a
convergent subsequence (xmj : j ∈ N) (Theorem 2.3). Let p = lim

j→+∞
xmj .

Then p = lim
j→+∞

ymj , because lim
j→+∞

(xmj − ymj) = 0. But then p ∈ F and

p ∈ Rn \ U , because the sets F and Rn \ U are closed (Lemma 2.22). But
this is impossible, as F ⊂ U . It follows that there must exist some positive
real number δ with the required properties.
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3 Metric Spaces

3.1 Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d:X ×X → [0,+∞) on X satisfying the following axioms:

(i) d(x, y) ≥ 0 for all x, y ∈ X,

(ii) d(x, y) = d(y, x) for all x, y ∈ X,

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X,

(iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(x, z) ≤ d(x, y)+d(y, z) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.

Note that if X is a metric space with distance function d and if A is a
subset of X then the restriction d|A× A of d to pairs of points of A defines
a distance function on A satisfying the axioms for a metric space.

The set R of real numbers becomes a metric space with distance function d
given by d(x, y) = |x − y| for all x, y ∈ R. Similarly the set C of complex
numbers becomes a metric space with distance function d given by d(z, w) =
|z − w| for all z, w ∈ C, and n-dimensional Euclidean space Rn is a metric
space with with respect to the Euclidean distance function d, given by

d(x,y) = |x− y| =

√√√√ n∑
i=1

(xi − yi)2

for all x,y ∈ Rn. Any subset X of R, C or Rn may be regarded as a metric
space whose distance function is the restriction to X of the distance function
on R, C or Rn defined above.

Example The n-sphere Sn is defined to be the subset of (n+1)-dimensional
Euclidean space Rn+1 consisting of all elements x of Rn+1 for which |x| = 1.
Thus

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

(Note that S2 is the standard (2-dimensional) unit sphere in 3-dimensional
Euclidean space.) The chordal distance between two points x and y of Sn

is defined to be the length |x− y| of the line segment joining x and y. The
n-sphere Sn is a metric space with respect to the chordal distance function.
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3.2 Convergence of Sequences in a Metric Space

Definition Let X be a metric space with distance function d. A sequence
x1, x2, x3, . . . of points in X is said to converge to a point p in X if, given
any strictly positive real number ε, there exists some natural number N such
that d(xj, p) < ε whenever j ≥ N .

We refer to p as the limit lim
j→+∞

xj of the sequence x1, x2, x3, . . . .

This definition of convergence for infinite sequence of points in a metric
space generalizes the standard definition of convergence for sequences of real
numbers, and that for sequences of points in a Euclidean space.

If a sequence of points in a metric space is convergent then the limit of
that sequence is unique. Indeed let x1, x2, x3, . . . be a sequence of points in a
metric space (X, d) which converges to points p and p′ of X. We show that
p = p′. Now, given any ε > 0, there exist natural numbers N1 and N2 such
that d(xj, p) < ε whenever j ≥ N1 and d(xj, p

′) < ε whenever j ≥ N2. On
choosing j so that j ≥ N1 and j ≥ N2 we see that

0 ≤ d(p, p′) ≤ d(p, xj) + d(xj, p
′) < 2ε

by a straightforward application of the metric space axioms (i)–(iii). Thus
0 ≤ d(p, p′) < 2ε for every ε > 0, and hence d(p, p′) = 0, so that p = p′ by
Axiom (iv).

Lemma 3.1 Let (X, d) be a metric space, and let x1, x2, x3, . . . be a sequence
of points of X which converges to some point p of X. Then, for any point y
of X, d(xj, y)→ d(p, y) as j → +∞.

Proof Let ε > 0 be given. We must show that there exists some natural
number N such that |d(xj, y) − d(p, y)| < ε whenever j ≥ N . However N
can be chosen such that d(xj, p) < ε whenever j ≥ N . But

d(xj, y) ≤ d(xj, p) + d(p, y), d(p, y) ≤ d(p, xj) + d(xj, y)

for all j, hence

−d(xj, p) ≤ d(xj, y)− d(p, y) ≤ d(xj, p)

for all j, and hence |d(xj, y)− d(p, y)| < ε whenever j ≥ N , as required.
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3.3 Continuity of Functions between Metric Spaces

Definition Let X and Y be metric spaces with distance functions dX and
dY respectively. A function f :X → Y from X to Y is said to be continuous
at a point p of X if and only if the following criterion is satisfied:—

• given any strictly positive real number ε, there exists some strictly
positive real number δ such that dY (f(x), f(p)) < ε for all points x
of X satisfying dX(x, p) < δ.

The function f :X → Y is said to be continuous on X if and only if it is
continuous at p for every point p of X.

This definition of continuity for functions between metric spaces gener-
alizes the standard definition of continuity for functions between subsets of
Euclidean spaces.

Lemma 3.2 Let X, Y and Z be metric spaces, and let f :X → Y and g:Y →
Z be continuous functions. Then the composition function g ◦ f :X → Z is
continuous.

Proof We denote by dX , dY and dZ the distance functions on X, Y and Z
respectively. Let p be any point of X. We show that g ◦ f is continuous at p.
Let ε > 0 be given. Now the function g is continuous at f(p). Hence there
exists some η > 0 such that dZ(g(y), g(f(p))) < ε for all y ∈ Y satisfying
dY (y, f(p)) < η. But then there exists some δ > 0 such that dY (f(x), f(p)) <
η for all x ∈ X satisfying dX(x, p) < δ. Thus dZ(g(f(x)), g(f(p))) < ε for
all x ∈ X satisfying dX(x, p) < δ, showing that g ◦ f is continuous at p, as
required.

Lemma 3.3 Let f :X → Y be a continuous function between metric spaces
X and Y , and let x1, x2, x3, . . . be a sequence of points in X which converges
to some point p of X. Then the sequence f(x1), f(x2), f(x3), . . . converges to
f(p).

Proof We denote by dX and dY the distance functions on X and Y respec-
tively. Let ε > 0 be given. We must show that there exists some natural
number N such that dY (f(xn), f(p)) < ε whenever n ≥ N . However there
exists some δ > 0 such that dY (f(x), f(p)) < ε for all x ∈ X satisfying
dX(x, p) < δ, since the function f is continuous at p. Also there exists some
natural number N such that dX(xn, p) < δ whenever n ≥ N , since the se-
quence x1, x2, x3, . . . converges to p. Thus if n ≥ N then dY (f(xn), f(p)) < ε,
as required.
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3.4 Open Sets in Metric Spaces

Definition Let (X, d) be a metric space. Given a point p of X and r ≥ 0,
the open ball BX(p, r) of radius r about p in X is defined by

BX(x, r) = {x ∈ X : d(x, p) < r}.

Definition Let (X, d) be a metric space. A subset V of X is said to be an
open set if and only if the following condition is satisfied:

• given any point v of V there exists some δ > 0 such that BX(v, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in this case.)

Lemma 3.4 Let X be a metric space with distance function d, and let p be
a point of X. Then, for any r > 0, the open ball BX(p, r) of radius r about
p is an open set in X.

Proof Let q ∈ BX(p, r). We must show that there exists some δ > 0 such
that BX(q, δ) ⊂ BX(p, r). Now d(q, p) < r, and hence δ > 0, where δ =
r − d(q, p). Moreover if x ∈ BX(q, δ) then

d(x, p) ≤ d(x, q) + d(q, p) < δ + d(q, p) = r,

by the Triangle Inequality, hence x ∈ BX(p, r). Thus BX(q, δ) ⊂ BX(p, r),
showing that BX(p, r) is an open set, as required.

Lemma 3.5 Let X be a metric space with distance function d, and let p be
a point of X. Then, for any r ≥ 0, the set {x ∈ X : d(x, p) > r} is an open
set in X.

Proof Let q be a point of X satisfying d(q, p) > r, and let x be any point
of X satisfying d(x, q) < δ, where δ = d(q, p)− r. Then

d(q, p) ≤ d(q, x) + d(x, p),

by the Triangle Inequality, and therefore

d(x, p) ≥ d(q, p)− d(x, q) > d(q, p)− δ = r.

Thus BX(x, δ) ⊂ {x ∈ X : d(x, p) > r}, as required.

Proposition 3.6 Let X be a metric space. The collection of open sets in X
has the following properties:—
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(i) the empty set ∅ and the whole set X are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself an open set.
Let x ∈ U . Then x ∈ V for some open set V belonging to the collection A.
Therefore there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U , and
thus BX(x, δ) ⊂ U . This shows that U is open. Thus (ii) is satisfied.

Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in X, and let
V = V1 ∩ V2 ∩ · · · ∩ Vk. Let x ∈ V . Now x ∈ Vj for all j, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj
for j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0.
(This is where we need the fact that we are dealing with a finite collection
of open sets.) Moreover BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and
thus BX(x, δ) ⊂ V . This shows that the intersection V of the open sets
V1, V2, . . . , Vk is itself open. Thus (iii) is satisfied.

Lemma 3.7 Let X be a metric space. A sequence x1, x2, x3, . . . of points
in X converges to a point p if and only if, given any open set U which
contains p, there exists some natural number N such that xj ∈ U for all
j ≥ N .

Proof Let x1, x2, x3, . . . be a sequence satisfying the given criterion, and let
ε > 0 be given. The open ball BX(p, ε) of radius ε about p is an open set
(see Lemma 3.4). Therefore there exists some natural number N such that,
if j ≥ N , then xj ∈ BX(p, ε), and thus d(xj, p) < ε. Hence the sequence (xj)
converges to p.

Conversely, suppose that the sequence (xj) converges to p. Let U be
an open set which contains p. Then there exists some ε > 0 such that
BX(p, ε) ⊂ U . But xj → p as j → +∞, and therefore there exists some
natural number N such that d(xj, p) < ε for all j ≥ N . If j ≥ N then
xj ∈ BX(p, ε) and thus xj ∈ U , as required.

Definition Let (X, d) be a metric space, and let x be a point of X. A
subset N of X is said to be a neighbourhood of x (in X) if and only if there
exists some δ > 0 such that BX(x, δ) ⊂ N , where BX(x, δ) is the open ball
of radius δ about x.

It follows directly from the relevant definitions that a subset V of a metric
space X is an open set if and only if V is a neighbourhood of v for all v ∈ V .
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3.5 Closed Sets in a Metric Space

A subset F of a metric space X is said to be a closed set in X if and only
if its complement X \ F is open. (Recall that the complement X \ F of F
in X is, by definition, the set of all points of the metric space X that do not
belong to F .) The following result follows immediately from Lemma 3.4 and
Lemma 3.5.

Lemma 3.8 Let X be a metric space with distance function d, and let x0 ∈
X. Given any r ≥ 0, the sets

{x ∈ X : d(x, x0) ≤ r}, {x ∈ X : d(x, x0) ≥ r}

are closed. In particular, the set {x0} consisting of the single point x0 is a
closed set in X.

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets, so that the operation of taking complements converts
unions into intersections and intersections into unions). The following result
therefore follows directly from Proposition 3.6.

Proposition 3.9 Let X be a metric space. The collection of closed sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both closed sets;

(ii) the intersection of any collection of closed sets in X is itself a closed
set;

(iii) the union of any finite collection of closed sets in X is itself a closed
set.

Lemma 3.10 Let F be a closed set in a metric space X and let (xj : j ∈ N)
be a sequence of points of F . Suppose that xj → p as j → +∞. Then p also
belongs to F .
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Proof Suppose that the limit p of the sequence were to belong to the com-
plement X \ F of the closed set F . Now X \ F is open, and thus it would
follow from Lemma 3.7 that there would exist some natural number N such
that xj ∈ X \ F for all j ≥ N , contradicting the fact that xj ∈ F for all j.
This contradiction shows that p must belong to F , as required.

Definition Let A be a subset of a metric space X. The closure A of A is
the intersection of all closed subsets of X containing A.

Let A be a subset of the metric space X. Note that the closure A of A
is itself a closed set in X, since the intersection of any collection of closed
subsets of X is itself a closed subset of X (see Proposition 3.9). Moreover if
F is any closed subset of X, and if A ⊂ F , then A ⊂ F . Thus the closure A
of A is the smallest closed subset of X containing A.

Lemma 3.11 Let X be a metric space with distance function d, let A be a
subset of X, and let x be a point of X. Then x belongs to the closure A of
A if and only if, given any ε > 0, there exists some point a of A such that
d(x, a) < ε.

Proof Let x be a point of X with the property that, given any ε > 0, there
exists some a ∈ A satisfying d(x, a) < ε. Let F be any closed subset of X
containing A. If x did not belong to F then there would exist some ε > 0
with the property that BX(x, ε) ∩ F = ∅, where BX(x, ε) denotes the open
ball of radius ε about x. But this would contradict the fact that BX(x, ε)∩A
is non-empty for all ε > 0. Thus the point x belongs to every closed subset F
of X that contains A, and therefore x ∈ A, by definition of the closure A of
A.

Conversely let x ∈ A, and let ε > 0 be given. Let F be the complement
X \ BX(x, ε) of BX(x, ε). Then F is a closed subset of X, and the point x
does not belong to F . If BX(x, ε) ∩ A = ∅ then A would be contained in F ,
and hence x ∈ F , which is impossible. Therefore there exists a ∈ A satisfying
d(x, a) < ε, as required.

3.6 Continuous Functions and Open and Closed Sets

Let X and Y be metric spaces, and let f :X → Y be a function from X to Y .
We recall that the function f is continuous at a point p of X if and only
if, given any ε > 0, there exists some δ > 0 such that dY (f(x), f(p)) < ε
for all points x of X satisfying dX(x, p) < δ, where dX and dY denote the
distance functions on X and Y respectively. Expressed in terms of open
balls, this means that the function f :X → Y is continuous at p if and only
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if, given any ε > 0, there exists some δ > 0 such that f maps BX(p, δ) into
BY (f(p), ε) (where BX(p, δ) and BY (f(p), ε) denote the open balls of radius
δ and ε about p and f(p) respectively).

Let f :X → Y be a function from a set X to a set Y . Given any subset V
of Y , we denote by f−1(V ) the preimage of V under the map f , defined by

f−1(V ) = {x ∈ X : f(x) ∈ V }.

Proposition 3.12 Let X and Y be metric spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(V )
is an open set in X for every open set V of Y .

Proof Suppose that f :X → Y is continuous. Let V be an open set in Y . We
must show that f−1(V ) is open in X. Let p be a point belonging to f−1(V ).
We must show that there exists some δ > 0 with the property that BX(p, δ) ⊂
f−1(V ). Now f(p) belongs to V . But V is open, hence there exists some
ε > 0 with the property that BY (f(p), ε) ⊂ V . But f is continuous at p.
Therefore there exists some δ > 0 such that f maps the open ball BX(p, δ)
into BY (f(p), ε) (see the remarks above). Thus f(x) ∈ V for all x ∈ BX(p, δ),
showing that BX(p, δ) ⊂ f−1(V ). We have thus shown that if f :X → Y is
continuous then f−1(V ) is open in X for every open set V in Y .

Conversely suppose that f :X → Y has the property that f−1(V ) is open
in X for every open set V in Y . Let p be any point of X. We must show
that f is continuous at p. Let ε > 0 be given. The open ball BY (f(p), ε) is
an open set in Y , by Lemma 3.4, hence f−1 (BY (f(p), ε)) is an open set in X
which contains p. It follows that there exists some δ > 0 such that BX(p, δ) ⊂
f−1 (BY (f(p), ε)). We have thus shown that, given any ε > 0, there exists
some δ > 0 such that f maps the open ball BX(p, δ) into BY (f(p), ε). We
conclude that f is continuous at p, as required.

Let f :X → Y be a function between metric spaces X and Y . Then the
preimage f−1(Y \G) of the complement Y \G of any subset G of Y is equal
to the complement X \ f−1(G) of the preimage f−1(G) of G. Indeed

x ∈ f−1 (Y \G) ⇐⇒ f(x) ∈ Y \G ⇐⇒ f(x) 6∈ G ⇐⇒ x 6∈ f−1(G).

Also a subset of a metric space is closed if and only if its complement is open.
The following result therefore follows directly from Proposition 3.12.

Corollary 3.13 Let X and Y be metric spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(G)
is a closed set in X for every closed set G in Y .
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Let f :X → Y be a continuous function from a metric space X to a metric
space Y . Then, for any point y of Y , the set {x ∈ X : f(x) = y} is a closed
subset of X. This follows from Corollary 3.13, together with the fact that
the set {y} consisting of the single point y is a closed subset of the metric
space Y .

Let X be a metric space, and let f :X → R be a continuous function from
X to R. Then, given any real number c, the sets

{x ∈ X : f(x) > c}, {x ∈ X : f(x) < c}

are open subsets of X, and the sets

{x ∈ X : f(x) ≥ c}, {x ∈ X : f(x) ≤ c}, {x ∈ X : f(x) = c}

are closed subsets of X. Also, given real numbers a and b satisfying a < b,
the set

{x ∈ X : a < f(x) < b}

is an open subset of X, and the set

{x ∈ X : a ≤ f(x) ≤ b}

is a closed subset of X.
Similar results hold for continuous functions f :X → C from X to C.

Thus, for example,

{x ∈ X : |f(x)| < R}, {x ∈ X : |f(x)| > R}

are open subsets of X and

{x ∈ X : |f(x)| ≤ R}, {x ∈ X : |f(x)| ≥ R}, {x ∈ X : |f(x)| = R}

are closed subsets of X, for any non-negative real number R.

3.7 Homeomorphisms

Let X and Y be metric spaces. A function h:X → Y from X to Y is said to
be a homeomorphism if it is a bijection and both h:X → Y and its inverse
h−1:Y → X are continuous. If there exists a homeomorphism h:X → Y
from a metric space X to a metric space Y , then the metric spaces X and Y
are said to be homeomorphic.

The following result follows directly on applying Proposition 3.12 to
h:X → Y and to h−1:Y → X.
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Lemma 3.14 Any homeomorphism h:X → Y between metric spaces X and
Y induces a one-to-one correspondence between the open sets of X and the
open sets of Y : a subset V of Y is open in Y if and only if h−1(V ) is open
in X.

Let X and Y be metric spaces, and let h:X → Y be a homeomorphism.
A sequence x1, x2, x3, . . . of points in X is convergent in X if and only if
the corresponding sequence h(x1), h(x2), h(x3), . . . is convergent in Y . (This
follows directly on applying Lemma 3.3 to h:X → Y and its inverse h−1:Y →
X.) Let Z and W be metric spaces. A function f :Z → X is continuous if
and only if h◦f :Z → Y is continuous, and a function g:Y → W is continuous
if and only if g ◦ h:X → W is continuous.
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4 Complete Metric Spaces, Normed Vector

Spaces and Banach Spaces

4.1 Complete Metric Spaces

Definition Let X be a metric space with distance function d. A sequence
x1, x2, x3, . . . of points of X is said to be a Cauchy sequence in X if and only if,
given any ε > 0, there exists some positive integer N such that d(xj, xk) < ε
for all j and k satisfying j ≥ N and k ≥ N .

Every convergent sequence in a metric space is a Cauchy sequence. Indeed
let X be a metric space with distance function d, and let x1, x2, x3, . . . be
a sequence of points in X which converges to some point p of X. Given
any positive real number ε, there exists some positive integer N such that
d(xn, p) < ε/2 whenever n ≥ N . But then it follows from the Triangle
Inequality that

d(xj, xk) ≤ d(xj, p) + d(p, xk) <
1
2
ε+ 1

2
ε = ε

whenever j ≥ N and k ≥ N .

Definition A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges to some point of X.

It follows immediately from Theorem 2.5 that n-dimensional Euclidean
space Rn is a complete metric space. In particular, the set R of real numbers
is a complete metric space.

Example The space Q of rational numbers (with distance function d(q, r) =
|q − r|) is not complete. Indeed one can construct an infinite sequence
q1, q2, q3, . . . of rational numbers which converges (in R) to

√
2. Such a se-

quence of rational numbers is a Cauchy sequence in both R and Q. However
this Cauchy sequence does not converge to an point of the metric space Q
(since

√
2 is an irrational number). Thus the metric space Q is not complete.

Lemma 4.1 Let X be a complete metric space, and let A be a subset of X.
Then A is complete if and only if A is closed in X.

Proof Suppose that A is closed in X. Let a1, a2, a3, . . . be a Cauchy sequence
in A. This Cauchy sequence must converge to some point p of X, since X is
complete. But the limit of every sequence of points of A must belong to A,
since A is closed. In particular p ∈ A. We deduce that A is complete.
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Conversely, suppose that A is complete. Suppose that A were not closed.
Then the complement X \ A of A would not be open, and therefore there
would exist a point p of X \ A with the property that BX(p, δ) ∩ A is non-
empty for all δ > 0, where BX(p, δ) denotes the open ball in X of radius δ
centred at p. We could then find a sequence a1, a2, a3, . . . of points of A
satisfying d(aj, p) < 1/j for all positive integers j. This sequence would be a
Cauchy sequence in A which did not converge to a point of A, contradicting
the completeness of A. Thus A must be closed, as required.

The following result follows directly from Theorem 2.5 and Lemma 4.1.

Corollary 4.2 A subset X of Rn is complete if and only if it is closed.

Example The n-sphere Sn (with the chordal distance function given by
d(x,y) = |x− y|) is a complete metric space, where

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x2
1 + x2

2 + · · ·+ x2
n+1 = 1}.

4.2 Normed Vector Spaces

A set X is a vector space over some field F if

• given any x, y ∈ X and λ ∈ F, there are well-defined elements x + y
and λx of X,

• X is an Abelian group with respect to the operation + of addition,

• the identities

λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx,

(λµ)x = λ(µx), 1x = x

are satisfied for all x, y ∈ X and λ, µ ∈ F.

Elements of the field F are referred to as scalars. We consider here only real
vector spaces and complex vector spaces : these are vector spaces over the
fields of real numbers and complex numbers respectively.

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,
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(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector space X,
together with a norm ‖.‖ on X.

Note that any normed complex vector space can also be regarded as a
normed real vector space.

Example The field R is a one-dimensional normed vector space over itself:
the norm |t| of t ∈ R is the absolute value of t.

Example The field C is a one-dimensional normed vector space over itself:
the norm |z| of z ∈ C is the modulus of z. The field C is also a two-
dimensional normed vector space over R.

Example Let ‖.‖1, ‖.‖2 and ‖.‖∞ be the real-valued functions on Cn defined
by

‖z‖1 =
n∑
j=1

|zj|,

‖z‖2 =

(
n∑
j=1

|zj|2
) 1

2

,

‖z‖∞ = max(|z1|, |z2|, . . . , |zn|),

for each z ∈ Cn, where z = (z1, z2, . . . , zn). Then ‖.‖1, ‖.‖2 and ‖.‖∞ are
norms on Cn. In particular, if we regard Cn as a 2n-dimensional real vector
space naturally isomorphic to R2n (via the isomorphism

(z1, z2, . . . , zn) 7→ (x1, y1, x2, y2, . . . , xn, yn),

where xj and yj are the real and imaginary parts of zj for j = 1, 2, . . . , n) then
‖.‖2 represents the Euclidean norm on this space. The inequality ‖z+w‖2 ≤
‖z‖2 +‖w‖2 satisfied for all z,w ∈ Cn is therefore just the standard Triangle
Inequality for the Euclidean norm.

Example The space Rn is also an n-dimensional real normed vector space
with respect to the norms ‖.‖1, ‖.‖2 and ‖.‖∞ defined above. Note that ‖.‖2

is the standard Euclidean norm on Rn.
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Example Let

`1 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|+ |z2|+ |z3|+ · · · converges},
`2 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|2 + |z2|2 + |z3|2 + · · · converges},
`∞ = {(z1, z2, z3, . . .) ∈ C∞ : the sequence |z1|, |z2|, |z3|, . . . is bounded}.

where C∞ denotes the set of all sequences (z1, z2, z3, . . .) of complex numbers.
Then `1, `2 and `∞ are infinite-dimensional normed vector spaces, with norms
‖.‖1, ‖.‖2 and ‖.‖∞ respectively, where

‖z‖1 =
+∞∑
j=1

|zj|,

‖z‖2 =

(
+∞∑
j=1

|zj|2
) 1

2

,

‖z‖∞ = sup{|z1|, |z2|, |z3|, . . .}.

(For example, to show that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2 for all z,w ∈ `2, we
note that(

n∑
j=1

|zj + wj|2
) 1

2

≤

(
n∑
j=1

|zj|2
) 1

2

+

(
n∑
j=1

|wj|2
) 1

2

≤ ‖z‖2 + ‖w‖2

for all positive integers n, by the Triangle Inequality in Cn. Taking limits as
n→ +∞, we deduce that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2, as required.)

If x1, x2, . . . , xm are elements of a normed vector space X then∥∥∥∥∥
m∑
k=1

xk

∥∥∥∥∥ ≤
m∑
k=1

‖xk‖,

where ‖.‖ denotes the norm on X. (This can be verified by induction on m,
using the inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.)

A norm ‖.‖ on a vector space X induces a corresponding distance function
on X: the distance d(x, y) between elements x and y of X is defined by
d(x, y) = ‖x − y‖. This distance function satisfies the metric space axioms.
Thus any vector space with a given norm can be regarded as a metric space.

Lemma 4.3 Let X be a normed vector space over the field F, where F =
R or C. Let (xj) and (yj) be convergent sequences in X, and let (λj) be
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a convergent sequence in F. Then the sequences (xj + yj) and (λjxj) are
convergent in X, and

lim
j→+∞

(xj + yj) = lim
j→+∞

xj + lim
j→+∞

yj,

lim
j→+∞

(λjxj) =

(
lim

j→+∞
λj

)(
lim

j→+∞
xj

)
.

Proof First we prove that lim
j→+∞

(xj + yj) = x + y, where Let x = lim
j→+∞

xj,

y = lim
j→+∞

yj. Let ε > 0 be given. Then there exist natural numbers N1 and

N2 such that ‖xj − x‖ < 1
2
ε whenever j ≥ N1 and ‖yj − y‖ < 1

2
ε whenever

j ≥ N2. Let N be the maximum of N1 and N2. If j ≥ N then

‖(xj + yj)− (x+ y)‖ ≤ ‖xj − x‖+ ‖yj − y‖ < ε.

It follows from this that lim
j→+∞

(xj + yj) = x+ y.

Next we prove that lim
j→+∞

(λjxj) = λx, where λ = lim
j→+∞

λj. Let ε > 0 be

given. Then there exist natural numbers N3 and N4 such that

‖xj − x‖ <
ε

2(|λ|+ 1)

whenever j ≥ N3, and

|λj − λ| <
ε

2(‖x‖+ 1)
and |λj − λ| < 1

whenever j ≥ N4. Let N be the maximum of N3 and N4. if j ≥ N then

‖λjxj − λx‖ = ‖λj(xj − x) + (λj − λ)x‖ ≤ |λj| ‖xj − x‖+ |λj − λ|‖x‖
≤ (|λ|+ 1) ‖xj − x‖+ |λj − λ|‖x‖ < ε.

It follows from this that lim
j→+∞

(λjxj) = λx, as required.

Let X be a normed vector space, and let x1, x2, x3, . . . be elements of X.

The infinite series
+∞∑
n=1

xn is said to converge to some element s of X if, given

any positive real number ε, there exists some positive integer N such that

‖s−
m∑
n=1

xn‖ < ε

for all m ≥ N (where ‖.‖ denotes the norm on X).
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We say that a normed vector spaceX is complete A normed vector space is
complete if and only if every Cauchy sequence in X is convergent. A complete
normed vector space is referred to as a Banach space. (The basic theory of
such spaces was extensively developed by the famous Polish mathematician
Stefan Banach and his colleagues.)

Lemma 4.4 Let X be a Banach space, and let x1, x2, x3, . . . be elements of

X. Suppose that
+∞∑
n=1

‖xn‖ is convergent. Then
+∞∑
n=1

xn is convergent, and

∥∥∥∥∥
+∞∑
n=1

xn

∥∥∥∥∥ ≤
+∞∑
n=1

‖xn‖.

Proof For each positive integer n, let

sn = x1 + x2 + · · ·+ xn.

Let ε > 0 be given. We can find N such that
+∞∑
n=N

‖xn‖ < ε, since
+∞∑
n=1

‖xn‖ is

convergent. Let sn = x1 + x2 + · · ·+ xn. If j ≥ N , k ≥ N and j < k then

‖sk − sj‖ =

∥∥∥∥∥
k∑

n=j+1

xn

∥∥∥∥∥ ≤
k∑

n=j+1

‖xn‖ ≤
+∞∑
n=N

‖xn‖ < ε.

Thus s1, s2, s3, . . . is a Cauchy sequence in X, and therefore converges to

some element s of X, since X is complete. But then s =
+∞∑
j=1

xj. Moreover,

on choosing m large enough to ensure that ‖s− sm‖ < ε, we deduce that

‖s‖ ≤

∥∥∥∥∥
m∑
n=1

xn

∥∥∥∥∥+

∥∥∥∥∥s−
m∑
n=1

xn

∥∥∥∥∥ ≤
m∑
n=1

‖xn‖+

∥∥∥∥∥s−
m∑
n=1

xn

∥∥∥∥∥ <
+∞∑
n=1

‖xn‖+ ε.

Since this inequality holds for all ε > 0, we conclude that

‖s‖ ≤
+∞∑
n=1

‖xn‖,

as required.
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4.3 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function T :X → Y is said
to be a linear transformation if T (x + y) = Tx + Ty and T (λx) = λTx for
all elements x and y of X and scalars λ. A linear transformation mapping
X into itself is referred to as a linear operator on X.

Definition Let X and Y be normed vector spaces. A linear transformation
T :X → Y is said to be bounded if there exists some non-negative real num-
ber C with the property that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. If T is bounded,
then the smallest non-negative real number C with this property is referred
to as the operator norm of T , and is denoted by ‖T‖.

Lemma 4.5 Let X and Y be normed vector spaces, and let S:X → Y and
T :X → Y be bounded linear transformations. Then S + T and λS are
bounded linear transformations for all scalars λ, and

‖S + T‖ ≤ ‖S‖+ ‖T‖, ‖λS‖ = |λ|‖S‖.

Moreover ‖S‖ = 0 if and only if S = 0. Thus the vector space B(X, Y ) of
bounded linear transformations from X to Y is a normed vector space (with
respect to the operator norm).

Proof ‖(S+T )x‖ ≤ ‖Sx‖+‖Tx‖ ≤ (‖S‖+‖T‖)‖x‖ for all x ∈ X. Therefore
S+T is bounded, and ‖S+T‖ ≤ ‖S‖+‖T‖. Using the fact that ‖(λS)x‖ =
|λ| ‖Sx‖ for all x ∈ X, we see that λS is bounded, and ‖λS‖ = |λ| ‖S‖. If
S = 0 then ‖S‖ = 0. Conversely if ‖S‖ = 0 then ‖Sx‖ ≤ ‖S‖ ‖x‖ = 0 for all
x ∈ X, and hence S = 0. The result follows.

Lemma 4.6 Let X, Y and Z be normed vector spaces, and let S:X → Y
and T :Y → Z be bounded linear transformations. Then the composition TS
of S and T is also bounded, and ‖TS‖ ≤ ‖T‖ ‖S‖.

Proof ‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖ for all x ∈ X. The result fol-
lows.

Proposition 4.7 Let X and Y be normed vector spaces, and let T :X → Y
be a linear transformation from X to Y . Then the following conditions are
equivalent:—

(i) T :X → Y is continuous,

(ii) T :X → Y is continuous at 0,

39



(iii) T :X → Y is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii)
implies (i). The equivalence of the three conditions then follows immediately.

Suppose that T :X → Y is continuous at 0. Then there exists δ > 0 such
that ‖Tx‖ < 1 for all x ∈ X satisfying ‖x‖ < δ. Let C be any positive real
number satisfying C > 1/δ. If x is any non-zero element of X then ‖λx‖ < δ,
where λ = 1/(C‖x‖), and hence

‖Tx‖ = C‖x‖ ‖λTx‖ = C‖x‖ ‖T (λx)‖ < C‖x‖.

Thus ‖Tx‖ ≤ C‖x‖ for all x ∈ X, and hence T :X → Y is bounded. Thus
(ii) implies (iii).

Finally suppose that T :X → Y is bounded. Let x be a point of X, and
let ε > 0 be given. Choose δ > 0 satisfying ‖T‖δ < ε. If x′ ∈ X satisfies
‖x′ − x‖ < δ then

‖Tx′ − Tx‖ = ‖T (x′ − x)‖ ≤ ‖T‖ ‖x′ − x‖ < ‖T‖δ < ε.

Thus T :X → Y is continuous. Thus (iii) implies (i), as required.

Proposition 4.8 Let X be a normed vector space and let Y be a Banach
space. Then the space B(X, Y ) of bounded linear transformations from X to
Y is also a Banach space.

Proof We have already shown that B(X, Y ) is a normed vector space (see
Lemma 4.5). Thus it only remains to show that B(X, Y ) is complete.

Let S1, S2, S3, . . . be a Cauchy sequence in B(X,Y ). Let x ∈ X. We
claim that S1x, S2x, S3x, . . . is a Cauchy sequence in Y . This result is trivial
if x = 0. If x 6= 0, and if ε > 0 is given then there exists some positive
integer N such that ‖Sj − Sk‖ < ε/‖x‖ whenever j ≥ N and k ≥ N . But
then ‖Sjx − Skx‖ ≤ ‖Sj − Sk‖ ‖x‖ < ε whenever j ≥ N and k ≥ N .
This shows that S1x, S2x, S3x, . . . is indeed a Cauchy sequence. It therefore
converges to some element of Y , since Y is a Banach space.

Let the function S:X → Y be defined by Sx = lim
n→+∞

Snx. Then

S(x+ y) = lim
n→+∞

(Snx+ Sny) = lim
n→+∞

Snx+ lim
n→+∞

Sny = Sx+ Sy,

(see Lemma 4.3), and

S(λx) = lim
n→+∞

Sn(λx) = λ lim
n→+∞

Snx = λSx,

Thus S:X → Y is a linear transformation.
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Next we show that Sn → S in B(X, Y ) as n→ +∞. Let ε > 0 be given.
Then there exists some positive integer N such that ‖Sj−Sn‖ < 1

2
ε whenever

j ≥ N and n ≥ N , since the sequence S1, S2, S3, . . . is a Cauchy sequence in
B(X, Y ). But then ‖Sjx−Snx‖ ≤ 1

2
ε‖x‖ for all j ≥ N and n ≥ N , and thus

‖Sx− Snx‖ =

∥∥∥∥ lim
j→+∞

(Sjx− Snx)

∥∥∥∥ ≤ lim
j→+∞

‖Sjx− Snx‖

≤ lim
j→+∞

‖Sj − Sn‖ ‖x‖ ≤ 1
2
ε‖x‖

for all n ≥ N (since the norm is a continuous function on Y ). But then

‖Sx‖ ≤ ‖Snx‖+ ‖Sx− Snx‖ ≤
(
‖Sn‖+ 1

2
ε
)
‖x‖

for any n ≥ N , showing that S:X → Y is a bounded linear transformation,
and ‖S − Sn‖ ≤ 1

2
ε < ε for all n ≥ N , showing that Sn → S in B(X, Y ) as

n→ +∞. Thus the Cauchy sequence S1, S2, S3, . . . is convergent in B(X, Y ),
as required.

Corollary 4.9 Let X and Y be Banach spaces, and let T1, T2, T3, . . . be

bounded linear transformations from X to Y . Suppose that
+∞∑
n=0

‖Tn‖ is con-

vergent. Then
+∞∑
n=0

Tn is convergent, and∥∥∥∥∥
+∞∑
n=0

Tn

∥∥∥∥∥ ≤
+∞∑
n=0

‖Tn‖.

Proof The space B(X,Y ) of bounded linear maps from X to Y is a Ba-
nach space by Proposition 4.8. The result therefore follows immediately on
applying Lemma 4.4.

Example Let T be a bounded linear operator on a Banach space X (i.e., a
bounded linear transformation from X to itself). The infinite series

+∞∑
n=0

‖T‖n

n!

converges to exp(‖T‖). It follows immediately from Lemma 4.6 (using induc-
tion on n) that ‖T n‖ ≤ ‖T‖n for all n ≥ 0 (where T 0 is the identity operator
on X). It therefore follows from Corollary 4.9 that there is a well-defined
bounded linear operator expT on X, defined by

expT =
+∞∑
n=0

1

n!
T n

(where T 0 is the identity operator I on X).
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Proposition 4.10 Let T be a bounded linear operator on a Banach space X.
Suppose that ‖T‖ < 1. Then the operator I − T has a bounded inverse
(I − T )−1 (where I denotes the identity operator on X). Moreover

(I − T )−1 = I + T + T 2 + T 3 + · · · .

Proof ‖T n‖ ≤ ‖T‖n for all n, and the geometric series

1 + ‖T‖+ ‖T‖2 + ‖T‖3 + · · ·

is convergent (since ‖T‖ < 1). It follows from Corollary 4.9 that the infinite
series

I + T + T 2 + T 3 + · · ·
converges to some bounded linear operator S on X. Now

(I − T )S = lim
n→+∞

(I − T )(I + T + T 2 + · · ·+ T n) = lim
n→+∞

(I − T n+1)

= I − lim
n→+∞

T n+1 = I,

since ‖T‖n+1 → 0 and therefore T n+1 → 0 as n→ +∞. Similarly S(I−T ) =
I. This shows that I − T is invertible, with inverse S, as required.

4.4 Spaces of Bounded Continuous Functions

Let X be a metric space. We say that a function f :X → R
n from X to Rn is

bounded if there exists some non-negative constant K such that |f(x)| ≤ K
for all x ∈ X. If f and g are bounded continuous functions from X to Rn,
then so is f + g. Also λf is bounded and continuous for any real number λ.
It follows from this that the space C(X,Rn) of bounded continuous functions
from X to Rn is a vector space over R. Given f ∈ C(X,Rn), we define the
supremum norm ‖f‖ of f by the formula

‖f‖ = sup
x∈X
|f(x)|.

One can readily verify that ‖.‖ is a norm on the vector space C(X,Rn). We
shall show that C(X,Rn), with the supremum norm, is a Banach space (i.e.,
the supremum norm on C(X,Rn) is complete). The proof of this result will
make use of the following characterization of continuity for functions whose
range is Rn.

Theorem 4.11 The normed vector space C(X,Rn) of all bounded continu-
ous functions from some metric space X to Rn, with the supremum norm, is
a Banach space.
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Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,Rn). Then, for each
x ∈ X, the sequence f1(x), f2(x), f3(x), . . . is a Cauchy sequence in Rn (since
|fj(x)−fk(x)| ≤ ‖fj−fk‖ for all positive integers j and k), and Rn is a com-
plete metric space. Thus, for each x ∈ X, the sequence f1(x), f2(x), f3(x), . . .
converges to some point f(x) of Rn. We must show that the limit function f
defined in this way is bounded and continuous.

Let ε > 0 be given. Then there exists some positive integer N with the
property that ‖fj − fk‖ < 1

3
ε for all j ≥ N and k ≥ N , since f1, f2, f3, . . .

is a Cauchy sequence in C(X,Rn). But then, on taking the limit of the left
hand side of the inequality |fj(x)− fk(x)| < 1

3
ε as k → +∞, we deduce that

|fj(x)−f(x)| ≤ 1
3
ε for all x ∈ X and j ≥ N . In particular |fN(x)−f(x)| ≤ 1

3
ε

for all x ∈ X. It follows that |f(x)| ≤ ‖fN‖+ 1
3
ε for all x ∈ X, showing that

the limit function f is bounded.
Next we show that the limit function f is continuous. Let p ∈ X and ε > 0

be given. Let N be chosen large enough to ensure that |fN(x)−f(x)| ≤ 1
3
ε for

all x ∈ X. Now fN is continuous. It follows from the definition of continuity
for functions between metric spaces that there exists some real number δ
satisfying δ > 0 such that |fN(x) − fN(p)| < 1

3
ε for all elements x of X

satisfying dX(x, p) < δ, where dX denotes the distance function on X. Thus
if x ∈ X satisfies dX(x, p) < δ then

|f(x)− f(p)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(p)|+ |fN(p)− f(p)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε.

Therefore the limit function f is continuous. Thus f ∈ C(X,Rn).
Finally we observe that fj → f in C(X,Rn) as j → +∞. Indeed we have

already seen that, given ε > 0 there exists some positive integer N such that
|fj(x)− f(x)| ≤ 1

3
ε for all x ∈ X and for all j ≥ N . Thus ‖fj − f‖ ≤ 1

3
ε < ε

for all j ≥ N , showing that fj → f in C(X,Rn) as j → +∞. This shows
that C(X,Rn) is a complete metric space, as required.

Corollary 4.12 Let X be a metric space and let F be a closed subset of Rn.
Then the space C(X,F ) of bounded continuous functions from X to F is a
complete metric space with respect to the distance function ρ, where

ρ(f, g) = ‖f − g‖ = sup
x∈X
|f(x)− g(x)|

for all f, g ∈ C(X,F ).

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,F ). Then f1, f2, f3, . . .
is a Cauchy sequence in C(X,Rn) and therefore converges in C(X,Rn) to
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some function f :X → R
n. Let x be some point of X. Then fj(x)→ f(x) as

j → +∞. But then f(x) ∈ F , since fj(x) ∈ F for all j, and F is closed in Rn.
This shows that f ∈ C(X,F ), and thus the Cauchy sequence f1, f2, f3, . . .
converges in C(X,F ). We conclude that C(X,F ) is a complete metric space,
as required.

4.5 The Contraction Mapping Theorem and Picard’s
Theorem

Let X be a metric space with distance function d. A function T :X → X
mapping X to itself is said to be a contraction mapping if there exists some
constant λ satisfying 0 ≤ λ < 1 with the property that d(T (x), T (x′)) ≤
λd(x, x′) for all x, x′ ∈ X.

One can readily check that any contraction map T :X → X on a metric
space (X, d) is continuous. Indeed let x be a point of X, and let ε > 0 be
given. Then d(T (x), T (x′)) < ε for all points x′ of X satisfying d(x, x′) < ε.

Theorem 4.13 (Contraction Mapping Theorem) Let X be a complete met-
ric space, and let T :X → X be a contraction mapping defined on X. Then
T has a unique fixed point in X (i.e., there exists a unique point x of X for
which T (x) = x).

Proof Let λ be chosen such that 0 ≤ λ < 1 and d(T (u), T (u′)) ≤ λd(u, u′)
for all u, u′ ∈ X, where d is the distance function on X. First we show
the existence of the fixed point x. Let x0 be any point of X, and de-
fine a sequence x0, x1, x2, x3, x4, . . . of points of X by the condition that
xn = T (xn−1) for all positive integers n. It follows by induction on n that
d(xn+1, xn) ≤ λnd(x1, x0). Using the Triangle Inequality, we deduce that if j
and k are positive integers satisfying k > j then

d(xk, xj) ≤
k−1∑
n=j

d(xn+1, xn) ≤ λj − λk

1− λ
d(x1, x0) ≤ λj

1− λ
d(x1, x0).

(Here we have used the identity

λj + λj+1 + · · ·+ λk−1 =
λj − λk

1− λ
.)

Using the fact that 0 ≤ λ < 1, we deduce that the sequence (xn) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then we see that

T (x) = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn) = lim

n→+∞
xn+1 = x,
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since T :X → X is a continuous function, and thus x is a fixed point of T .
If x′ were another fixed point of T then we would have

d(x′, x) = d(T (x′), T (x)) ≤ λd(x′, x).

But this is impossible unless x′ = x, since λ < 1. Thus the fixed point x of
the contraction map T is unique.

We use the Contraction Mapping Theorem in order to prove the following
existence theorem for solutions of ordinary differential equations.

Theorem 4.14 (Picard’s Theorem) Let F :U → R be a continuous function
defined over some open set U in the plane R2, and let (x0, t0) be an element
of U . Suppose that there exists some non-negative constant M such that

|F (u, t)− F (v, t)| ≤M |u− v| for all (u, t) ∈ U and (v, t) ∈ U .

Then there exists a continuous function ϕ: [t0− δ, t0 + δ]→ R defined on the
interval [t0 − δ, t0 + δ] for some δ > 0 such that x = ϕ(t) is a solution to the
differential equation

dx(t)

dt
= F (x(t), t)

with initial condition x(t0) = x0.

Proof Solving the differential equation with the initial condition x(t0) = x0

is equivalent to finding a continuous function ϕ: I → R satisfying the integral
equation

ϕ(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

where I denotes the closed interval [t0− δ, t0 + δ]. (Note that any continuous
function ϕ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)

Let K = |F (x0, t0)|+ 1. Using the continuity of the function F , together
with the fact that U is open in R2, one can find some δ0 > 0 such that the
open disk of radius δ0 about (x0, t0) is contained in U and |F (x, t)| ≤ K for
all points (x, t) in this open disk. Now choose δ > 0 such that

δ
√

1 +K2 < δ0 and Mδ < 1.

Note that if |t − t0| ≤ δ and |x − x0| ≤ Kδ then (x, t) belongs to the open
disk of radius δ0 about (x0, t0), and hence (x, t) ∈ U and |F (x, t)| ≤ K.

45



Let J denote the closed interval [x0 − Kδ, x0 + Kδ]. The space C(I, J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 4.12. Define T :C(I, J)→ C(I, J) by

T (ϕ)(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

We claim that T does indeed map C(I, J) into itself and is a contraction
mapping.

Let ϕ: I → J be an element of C(I, J). Note that if |t− t0| ≤ δ then

|(ϕ(t), t)− (x0, t0)|2 = (ϕ(t)− x0)2 + (t− t0)2 ≤ δ2 +K2δ2 < δ2
0,

hence |F (ϕ(t), t)| ≤ K. It follows from this that

|T (ϕ)(t)− x0| ≤ Kδ

for all t satisfying |t − t0| < δ. The function T (ϕ) is continuous, and is
therefore a well-defined element of C(I, J) for all ϕ ∈ C(I, J).

We now show that T is a contraction mapping on C(I, J). Let ϕ and ψ
be elements of C(I, J). The hypotheses of the theorem ensure that

|F (ϕ(t), t)− F (ψ(t), t)| ≤M |ϕ(t)− ψ(t)| ≤Mρ(ϕ, ψ)

for all t ∈ I, where ρ(ϕ, ψ) = supt∈I |ϕ(t)− ψ(t)|. Therefore

|T (ϕ)(t)− T (ψ)(t)| =

∣∣∣∣∫ t

t0

(F (ϕ(s), s)− F (ψ(s), s)) ds

∣∣∣∣
≤ M |t− t0|ρ(ϕ, ψ)

for all t satisfying |t − t0| ≤ δ. Therefore ρ(T (ϕ), T (ψ)) ≤ Mδρ(ϕ, ψ) for
all ϕ, ψ ∈ C(I, J). But δ has been chosen such that Mδ < 1. This shows
that T :C(I, J) → C(I, J) is a contraction mapping on C(I, J). It follows
from the Contraction Mapping Theorem (Theorem 4.13) that there exists a
unique element ϕ of C(I, J) satisfying T (ϕ) = ϕ. This function ϕ is the
required solution to the differential equation.

A straightforward, but somewhat technical, least upper bound argument
can be used to show that if x = ψ(t) is any other continuous solution to the
differential equation

dx

dt
= F (x, t)

on the interval [t0− δ, t0 + δ] satisfying the initial condition ψ(t0) = x0, then
|ψ(t)− x0| ≤ Kδ for all t satisfying |t− t0| ≤ δ. Thus such a solution to the
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differential equation must belong to the space C(I, J) defined in the proof of
Theorem 4.14. The uniqueness of the fixed point of the contraction mapping
T :C(I, J) → C(I, J) then shows that ψ = ϕ, where ϕ: [t0 − δ, t0 + δ] → R

is the solution to the differential equation whose existence was proved in
Theorem 4.14. This shows that the solution to the differential equation is in
fact unique on the interval [t0 − δ, t0 + δ].

4.6 The Completion of a Metric Space

We describe below a construction whereby any metric space can be embedded
in a complete metric space.

Lemma 4.15 Let X be a metric space with distance function d, let (xj) and
(yj) be Cauchy sequences of points in X, and let dj = d(xj, yj) for all positive
integers j. Then (dj) is a Cauchy sequence of real numbers.

Proof It follows from the Triangle Inequality that

dj ≤ d(xj, xk) + dk + d(yk, yj)

and thus dj − dk ≤ d(xj, xk) + d(yj, yk) for all integers j and k. Similarly
dk − dj ≤ d(xj, xk) + d(yj, yk). It follows that

|dj − dk| ≤ d(xj, xk) + d(yj, yk)

for all integers j and k.
Let ε > 0 be given. Then there exists some positive integer N such that

d(xj, xk) <
1
2
ε and d(yj, yk) <

1
2
ε whenever j ≥ N and k ≥ N , since the

sequences (xj) and (yj) are Cauchy sequences in X. But then |dj − dk| < ε
whenever j ≥ N and k ≥ N . Thus the sequence (dj) is a Cauchy sequence
of real numbers, as required.

LetX be a metric space with distance function d. It follows from Cauchy’s
Criterion for Convergence and Lemma 4.15 that lim

j→+∞
d(xj, yj) exists for all

Cauchy sequences (xj) and (yj) in X.

Lemma 4.16 Let X be a metric space with distance function d, and let (xj),
(yj) and (zj) be Cauchy sequences of points in X. Then

0 ≤ lim
j→+∞

d(xj, zj) ≤ lim
j→+∞

d(xj, yj) + lim
j→+∞

d(yj, zj).

Proof This follows immediately on taking limits of both sides of the Triangle
Inequality.
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Lemma 4.17 Let X be a metric space with distance function d, and let (xj),
(yj) and (zj) be Cauchy sequences of points in X. Suppose that

lim
j→+∞

d(xj, yj) = 0 and lim
j→+∞

d(yj, zj) = 0.

Then lim
j→+∞

d(xj, zj) = 0.

Proof This is an immediate consequence of Lemma 4.16.

Lemma 4.18 Let X be a metric space with distance function d, and let (xj),
(x′j), (yj) and (y′j) be Cauchy sequences of points in X. Suppose that

lim
j→+∞

d(xj, x
′
j) = 0 and lim

j→+∞
d(yj, y

′
j) = 0.

Then lim
j→+∞

d(xj, yj) = lim
j→+∞

d(x′j, y
′
j).

Proof It follows from Lemma 4.16 that

lim
j→+∞

d(xj, yj) ≤ lim
j→+∞

d(xj, x
′
j) + lim

j→+∞
d(x′j, y

′
j) + lim

j→+∞
d(y′j, yj)

= lim
j→+∞

d(x′j, y
′
j).

Similarly lim
j→+∞

d(x′j, y
′
j) ≤ lim

j→+∞
d(xj, yj). It follows that lim

j→+∞
d(xj, yj) =

lim
j→+∞

d(x′j, y
′
j), as required.

Let X be a metric space with distance function d. Then there is an
equivalence relation on the set of Cauchy sequences of points in X, where
two Cauchy sequences (xj) and (x′j) in X are equivalent if and only if

lim
j→+∞

d(xj, x
′
j) = 0. Let X̃ denote the set of equivalence classes of Cauchy

sequences in X with respect to this equivalence relation. Let x̃ and ỹ be
elements of X̃, and let (xj) and (yj) be Cauchy sequences belonging to the
equivalence classes represented by x̃ and ỹ. We define

d(x̃, ỹ) = lim
j→+∞

d(xj, yj).

It follows from Lemma 4.18 that the value of d(x̃, ỹ) does not depend on the
choice of Cauchy sequences (xj) and (yj) representing x̃ and ỹ. We obtain
in this way a distance function on the set X̃. This distance function satisfies
the Triangle Inequality (Lemma 4.16) and the other metric space axioms.
Therefore X̃ with this distance function is a metric space. We refer to the
space X̃ as the completion of the metric space X.

We can regard the metric space X as being embedded in its completion
X̃, where a point x of X is represented in X̃ by the equivalence class of the
constant sequence x, x, x, . . ..
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Example The completion of the space Q of rational numbers is the space R
of real numbers.

Theorem 4.19 The completion X̃ of a metric space X is a complete metric
space.

Proof Let x̃1, x̃2, x̃3, . . . be a Cauchy sequence in the completion X̃ of X.
For each positive integer m let xm,1, xm,2, xm,3, . . . be a Cauchy sequence in X
belonging to the equivalence class that represents the element x̃m of X̃. Then,
for each positive integer m there exists a positive integer N(m) such that
d(xm,j, xm,k) < 1/m whenever j ≥ N(m) and k ≥ N(m). Let ym = xm,N(m).
We claim that the sequence y1, y2, y3, . . . is a Cauchy sequence in X, and that
the element ỹ of X̃ corresponding to this Cauchy sequence is the limit in X̃
of the sequence x̃1, x̃2, x̃3, . . ..

Let ε > 0 be given. Then there exists some positive integer M such that
M > 3/ε and d(x̃p, x̃q) <

1
3
ε whenever p ≥ M and q ≥ M . It follows from

the definition of the distance function on X̃ that if p ≥ M and q ≥ M then
d(xp,k, xq,k) <

1
3
ε for all sufficiently large positive integers k. If p ≥ M and

k ≥ N(p) then

d(yp, xp,k) = d(xp,N(p), xp,k) < 1/p ≤ 1/M < 1
3
ε

It follows that if p ≥ M and q ≥ M , and if k is sufficiently large, then
d(yp, xp,k) <

1
3
ε, d(yq, xq,k) <

1
3
ε, and d(xp,k, xq,k) <

1
3
ε, and hence d(yp, yq) <

ε. We conclude that the sequence y1, y2, y3, . . . of points of X is indeed a
Cauchy sequence.

Let ỹ be the element of X̃ which is represented by the Cauchy sequence
y1, y2, y3, . . . of points of X, and, for each positive integer m, let ỹm be the
element of X̃ represented by the constant sequence ym, ym, ym, . . . in X. Now

d(ỹ, ỹm) = lim
p→+∞

d(yp, ym),

and therefore d(ỹ, ỹm)→ 0 as m→ +∞. Also

d(ỹm, x̃m) = lim
j→+∞

d(xm,N(m), xm,j) ≤
1

m

and hence d(ỹm, x̃m)→ 0 as m→ +∞. It follows from this that d(ỹ, x̃m)→ 0
as m→ +∞, and therefore the Cauchy sequence x̃1, x̃2, x̃3, . . . in X̃ converges
to the point ỹ of X̃. We conclude that X̃ is a complete metric space, since
we have shown that every Cauchy sequence in X̃ is convergent.
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Remark In a paper published in 1872, Cantor gave a construction of the real
number system in which real numbers are represented as Cauchy sequences
of rational numbers. The real numbers represented by two Cauchy sequences
of rational numbers are equal if and only if the difference of the Cauchy
sequences converges to zero. Thus the construction of the completion of
a metric space, described above, generalizes Cantor’s construction of the
system of real numbers from the system of rational numbers.
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5 Topological Spaces

The theory of topological spaces provides a setting for the notions of continu-
ity and convergence which is more general than that provided by the theory
of metric spaces. In the theory of metric spaces one can find necessary and
sufficient conditions for convergence and continuity that do not refer explic-
itly to the distance function on a metric space but instead are expressed in
terms of open sets. Thus a sequence of points in a metric space X converges
to a point p of X if and only if every open set which contains the point p
also contains all but finitely many members of the sequence. Also a function
f :X → Y between metric spaces X and Y is continuous if and only if the
preimage f−1(V ) of every open set V in Y is an open set in X. It follows
from this that we can generalize the notions of convergence and continuity
by introducing the concept of a topological space: a topological space consists
of a set together with a collection of subsets termed open sets that satisfy
appropriate axioms. The axioms for open sets in a topological space are
satisfied by the open sets in any metric space.

5.1 Topological Spaces: Definitions and Examples

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

Any metric space may be regarded as a topological space. Indeed let X
be a metric space with distance function d. We recall that a subset V of
X is an open set if and only if, given any point v of V , there exists some
δ > 0 such that {x ∈ X : d(x, v) < δ} ⊂ V . The empty set ∅ and the
whole space X are open sets. Also any union of open sets in a metric space
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is an open set, and any finite intersection of open sets in a metric space is an
open set. Thus the topological space axioms are satisfied by the collection
of open sets in any metric space. We refer to this collection of open sets as
the topology generated by the distance function d on X.

Any subset X of n-dimensional Euclidean space Rn is a topological space:
a subset V of X is open in X if and only if, given any point v of V , there
exists some δ > 0 such that

{x ∈ X : |x− v| < δ} ⊂ V.

In particular Rn is itself a topological space whose topology is generated by
the Euclidean distance function on Rn. This topology on Rn is referred to
as the usual topology on Rn. One defines the usual topologies on R and C in
an analogous fashion.

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set ∅ and the whole set X.

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

We recall that the complement of the union of some collection of subsets
of some set X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X is the
union of the complements of those sets. The following result therefore follows
directly from the definition of a topological space.

Proposition 5.1 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.
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5.2 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

• if x and y are distinct points of X then there exist open sets U and V
such that x ∈ U , y ∈ V and U ∩ V = ∅.

Lemma 5.2 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and y be
points of X, where x 6= y. Let ε = 1

2
d(x, y). Then the open balls BX(x, ε)

and BX(y, ε) of radius ε centred on the points x and y are open sets. If
BX(x, ε)∩BX(y, ε) were non-empty then there would exist z ∈ X satisfying
d(x, z) < ε and d(z, y) < ε. But this is impossible, since it would then follow
from the Triangle Inequality that d(x, y) < 2ε, contrary to the choice of ε.
Thus x ∈ BX(x, ε), y ∈ BX(y, ε), BX(x, ε) ∩ BX(y, ε) = ∅. This shows that
the metric space X is a Hausdorff space.

We now give an example of a topological space which is not a Hausdorff
space.

Example The Zariski topology on the set R of real numbers is defined as
follows: a subset U of R is open (with respect to the Zariski topology) if and
only if either U = ∅ or else R \ U is finite. It is a straightforward exercise to
verify that the topological space axioms are satisfied, so that the set R of real
numbers is a topological space with respect to this Zariski topology. Now
the intersection of any two non-empty open sets in this topology is always
non-empty. (Indeed if U and V are non-empty open sets then U = R \ F1

and V = R \ F2, where F1 and F2 are finite sets of real numbers. But then
U ∩ V = R \ (F1 ∪ F2), which is non-empty, since F1 ∪ F2 is finite and R is
infinite.) It follows immediately from this that R, with the Zariski topology,
is not a Hausdorff space.

5.3 Subspace Topologies

Let X be a topological space with topology τ , and let A be a subset of X.
Let τA be the collection of all subsets of A that are of the form V ∩ A for
V ∈ τ . Then τA is a topology on the set A. (It is a straightforward exercise
to verify that the topological space axioms are satisfied.) The topology τA
on A is referred to as the subspace topology on A.

Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).
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Lemma 5.3 Let X be a metric space with distance function d, and let A be
a subset of X. A subset W of A is open with respect to the subspace topology
on A if and only if, given any point w of W , there exists some δ > 0 such
that

{a ∈ A : d(a, w) < δ} ⊂ W.

Thus the subspace topology on A coincides with the topology on A obtained
on regarding A as a metric space (with respect to the distance function d).

Proof Suppose that W is open with respect to the subspace topology on A.
Then there exists some open set U in X such that W = U ∩ A. Let w be a
point of W . Then there exists some δ > 0 such that

{x ∈ X : d(x,w) < δ} ⊂ U.

But then
{a ∈ A : d(a, w) < δ} ⊂ U ∩ A = W.

Conversely, suppose that W is a subset of A with the property that, for
any w ∈ W , there exists some δw > 0 such that

{a ∈ A : d(a, w) < δw} ⊂ W.

Define U to be the union of the open balls BX(w, δw) as w ranges over all
points of W , where

BX(w, δw) = {x ∈ X : d(x,w) < δw}.

The set U is an open set in X, since each open ball BX(w, δw) is an open set
in X, and any union of open sets is itself an open set. Moreover

BX(w, δw) ∩ A = {a ∈ A : d(a, w) < δw} ⊂ W

for any w ∈ W . Therefore U ∩A ⊂ W . However W ⊂ U ∩A, since, W ⊂ A
and {w} ⊂ BX(w, δw) ⊂ U for any w ∈ W . Thus W = U ∩ A, where U is
an open set in X. We deduce that W is open with respect to the subspace
topology on A.

Example Let X be any subset of n-dimensional Euclidean space Rn. Then
the subspace topology on X coincides with the topology on X generated by
the Euclidean distance function on X. We refer to this topology as the usual
topology on X.

Let X be a topological space, and let A be a subset of X. One can readily
verify the following:—

54



• a subset B of A is closed in A (relative to the subspace topology on A)
if and only if B = A ∩ F for some closed subset F of X;

• if A is itself open in X then a subset B of A is open in A if and only
if it is open in X;

• if A is itself closed in X then a subset B of A is closed in A if and only
if it is closed in X.

5.4 Continuous Functions between Topological Spaces

Definition A function f :X → Y from a topological space X to a topological
space Y is said to be continuous if f−1(V ) is an open set in X for every open
set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

Lemma 5.4 Let X, Y and Z be topological spaces, and let f :X → Y and
g:Y → Z be continuous functions. Then the composition g ◦ f :X → Z of
the functions f and g is continuous.

Proof Let V be an open set in Z. Then g−1(V ) is open in Y (since g is
continuous), and hence f−1(g−1(V )) is open in X (since f is continuous).
But f−1(g−1(V )) = (g ◦ f)−1(V ). Thus the composition function g ◦ f is
continuous.

Lemma 5.5 Let X and Y be topological spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(G)
is closed in X for every closed subset G of Y .

Proof If G is any subset of Y then X \ f−1(G) = f−1(Y \ G) (i.e., the
complement of the preimage of G is the preimage of the complement of G).
The result therefore follows immediately from the definitions of continuity
and closed sets.

We now show that, if a topological space X is the union of a finite col-
lection of closed sets, and if a function from X to some topological space is
continuous on each of these closed sets, then that function is continuous on
X.
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Lemma 5.6 Let X and Y be topological spaces, let f :X → Y be a function
from X to Y , and let X = A1∪A2∪· · ·∪Ak, where A1, A2, . . . , Ak are closed
sets in X. Suppose that the restriction of f to the closed set Ai is continuous
for i = 1, 2, . . . , k. Then f :X → Y is continuous.

Proof Let V be an open set in Y . We must show that f−1(V ) is open in
X. Now the preimage of the open set V under the restriction f |Ai of f to
Ai is f−1(V )∩Ai. It follows from the continuity of f |Ai that f−1(V )∩Ai is
relatively open in Ai for each i, and hence there exist open sets U1, U2, . . . , Uk
in X such that f−1(V )∩Ai = Ui∩Ai for i = 1, 2, . . . , k. Let Wi = Ui∪(X\Ai)
for i = 1, 2, . . . , k. Then Wi is an open set in X (as it is the union of the
open sets Ui and X \ Ai), and Wi ∩ Ai = Ui ∩ Ai = f−1(V ) ∩ Ai for each i.
We claim that f−1(V ) = W1 ∩W2 ∩ · · · ∩Wk.

Let W = W1 ∩W2 ∩ · · · ∩Wk. Then f−1(V ) ⊂ W , since f−1(V ) ⊂ Wi for
each i. Also

W =
k⋃
i=1

(W ∩ Ai) ⊂
k⋃
i=1

(Wi ∩ Ai) =
k⋃
i=1

(f−1(V ) ∩ Ai) ⊂ f−1(V ),

since X = A1∪A2∪· · ·∪Ak and Wi∩Ai = f−1(V )∩Ai for each i. Therefore
f−1(V ) = W . But W is open in X, since it is the intersection of a finite
collection of open sets. We have thus shown that f−1(V ) is open in X for
any open set V in Y . Thus f :X → Y is continuous, as required.

Alternative Proof A function f :X → Y is continuous if and only if f−1(G)
is closed in X for every closed set G in Y (Lemma 5.5). Let G be an closed
set in Y . Then f−1(G)∩Ai is relatively closed in Ai for i = 1, 2, . . . , k, since
the restriction of f to Ai is continuous for each i. But Ai is closed in X, and
therefore a subset of Ai is relatively closed in Ai if and only if it is closed in
X. Therefore f−1(G) ∩ Ai is closed in X for i = 1, 2, . . . , k. Now f−1(G) is
the union of the sets f−1(G) ∩ Ai for i = 1, 2, . . . , k. It follows that f−1(G),
being a finite union of closed sets, is itself closed in X. It now follows from
Lemma 5.5 that f :X → Y is continuous.

Example Let Y be a topological space, and let α: [0, 1]→ Y and β: [0, 1]→
Y be continuous functions defined on the interval [0, 1], where α(1) = β(0).
Let γ: [0, 1]→ Y be defined by

γ(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Now γ|[0, 1
2
] = α ◦ ρ where ρ: [0, 1

2
]→ [0, 1] is the continuous function defined

by ρ(t) = 2t for all t ∈ [0, 1
2
]. Thus γ|[0, 1

2
] is continuous, being a composition
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of two continuous functions. Similarly γ|[1
2
, 1] is continuous. The subinter-

vals [0, 1
2
] and [1

2
, 1] are closed in [0, 1], and [0, 1] is the union of these two

subintervals. It follows from Lemma 5.6 that γ: [0, 1]→ Y is continuous.

5.5 Homeomorphisms

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

• the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

• the function h:X → Y and its inverse h−1:Y → X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h:X → Y from X to Y .

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

5.6 Sequences and Convergence

Definition A sequence x1, x2, x3, . . . of points in a topological spaceX is said
to converge to a point p of X if, given any open set U containing the point p,
there exists some natural number N such that xj ∈ U for all j ≥ N . If the
sequence (xj) converges to p then we refer to p as a limit of the sequence.

This definition of convergence generalizes the definition of convergence
for a sequence of points in a metric space.

It can happen that a sequence of points in a topological space can have
more than one limit. For example, consider the set R of real numbers with the
Zariski topology. (The open sets of R in the Zariski topology are the empty
set and those subsets of R whose complements are finite.) Let x1, x2, x3, . . .
be the sequence in R defined by xj = j for all natural numbers j. One
can readily check that this sequence converges to every real number p (with
respect to the Zariski topology on R).

Lemma 5.7 A sequence x1, x2, x3, . . . of points in a Hausdorff space X con-
verges to at most one limit.
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Proof Suppose that p and q were limits of the sequence (xj), where p 6= q.
Then there would exist open sets U and V such that p ∈ U , q ∈ V and
U ∩V = ∅, since X is a Hausdorff space. But then there would exist natural
numbers N1 and N2 such that xj ∈ U for all j satisfying j ≥ N1 and xj ∈ V
for all j satisfying j ≥ N2. But then xj ∈ U ∩ V for all j satisfying j ≥ N1

and j ≥ N2, which is impossible, since U ∩ V = ∅. This contradiction shows
that the sequence (xj) has at most one limit.

Lemma 5.8 Let X be a topological space, and let F be a closed set in X.
Let (xj : j ∈ N) be a sequence of points in F . Suppose that the sequence (xj)
converges to some point p of X. Then p ∈ F .

Proof Suppose that p were a point belonging to the complement X \F of F .
Now X \ F is open (since F is closed). Therefore there would exist some
natural number N such that xj ∈ X \ F for all values of j satisfying j ≥ N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

Lemma 5.9 Let f :X → Y be a continuous function between topological
spaces X and Y , and let x1, x2, x3, . . . be a sequence of points in X which
converges to some point p of X. Then the sequence f(x1), f(x2), f(x3), . . .
converges to f(p).

Proof Let V be an open set in Y which contains the point f(p). Then
f−1(V ) is an open set in X which contains the point p. It follows that
there exists some natural number N such that xj ∈ f−1(V ) whenever j ≥
N . But then f(xj) ∈ V whenever j ≥ N . We deduce that the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

5.7 Neighbourhoods, Closures and Interiors

Definition Let X be a topological space, and let x be a point of X. Let
N be a subset of X which contains the point x. Then N is said to be a
neighbourhood of the point x if and only if there exists an open set U for
which x ∈ U and U ⊂ N .

One can readily verify that this definition of neighbourhoods in topolog-
ical spaces is consistent with that for neighbourhoods in metric spaces.

Lemma 5.10 Let X be a topological space. A subset V of X is open in X
if and only if V is a neighbourhood of each point belonging to V .
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Proof It follows directly from the definition of neighbourhoods that an open
set V is a neighbourhood of any point belonging to V . Conversely, suppose
that V is a subset of X which is a neighbourhood of each v ∈ V . Then, given
any point v of V , there exists an open set Uv such that v ∈ Uv and Uv ⊂ V .
Thus V is an open set, since it is the union of the open sets Uv as v ranges
over all points of V .

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A. The interior A0 of A in X is defined to be the
union of all of the open subsets of X that are contained in A.

Let X be a topological space and let A be a subset of X. It follows directly
from the definition of A that the closure A of A is uniquely characterized by
the following two properties:

(i) the closure A of A is a closed set containing A,

(ii) if F is any closed set containing A then F contains A.

Similarly the interior A0 of A is uniquely characterized by the following two
properties:

(i) the interior A0 of A is an open set contained in A,

(ii) if U is any open set contained in A then U is contained in A0.

Moreover a point x of A belongs to the interior A0 of A if and only if A is a
neighbourhood of x.

Lemma 5.11 Let X be a topological space, and let A be a subset of X.
Suppose that a sequence x1, x2, x3, . . . of points of A converges to some point p
of X. Then p belongs to the closure A of A.

Proof If F is any closed set containing A then xj ∈ F for all j, and therefore
p ∈ F , by Lemma 5.8. Therefore p ∈ A by definition of A.

Definition Let X be a topological space, and let A be a subset of X. We
say that A is dense in X if A = X.

Example The set of all rational numbers is dense in R.

59



5.8 Product Topologies

The Cartesian product X1 ×X2 × · · · ×Xn of sets X1, X2, . . . , Xn is defined
to be the set of all ordered n-tuples (x1, x2, . . . , xn), where xi ∈ Xi for i =
1, 2, . . . , n.

The sets R2 and R3 are the Cartesian products R × R and R × R × R
respectively.

Cartesian products of sets are employed as the domains of functions of
several variables. For example, if X, Y and Z are sets, and if an element
f(x, y) of Z is determined for each choice of an element x of X and an
element y of Y , then we have a function f :X × Y → Z whose domain is the
Cartesian product X × Y of X and Y : this function sends the ordered pair
(x, y) to f(x, y) for all x ∈ X and y ∈ Y .

Definition Let X1, X2, . . . , Xn be topological spaces. A subset U of the
Cartesian product X1×X2×· · ·×Xn is said to be open (with respect to the
product topology) if, given any point p of U , there exist open sets Vi in Xi

for i = 1, 2, . . . , n such that {p} ⊂ V1 × V2 × · · · × Vn ⊂ U .

Lemma 5.12 Let X1, X2, . . . , Xn be topological spaces. Then the collection
of open sets in X1 ×X2 × · · · ×Xn is a topology on X1 ×X2 × · · · ×Xn.

Proof Let X = X1×X2×· · ·×Xn. The definition of open sets ensures that
the empty set and the whole set X are open in X. We must prove that any
union or finite intersection of open sets in X is an open set.

Let E be a union of a collection of open sets in X and let p be a point of
E. Then p ∈ D for some open set D in the collection. It follows from this
that there exist open sets Vi in Xi for i = 1, 2, . . . , n such that

{p} ⊂ V1 × V2 × · · · × Vn ⊂ D ⊂ E.

Thus E is open in X.
Let U = U1∩U2∩· · ·∩Um, where U1, U2, . . . , Um are open sets in X, and let

p be a point of U . Then there exist open sets Vki in Xi for k = 1, 2, . . . ,m and
i = 1, 2, . . . , n such that {p} ⊂ Vk1×Vk2×· · ·×Vkn ⊂ Uk for k = 1, 2, . . . ,m.
Let Vi = V1i ∩ V2i ∩ · · · ∩ Vmi for i = 1, 2, . . . , n. Then

{p} ⊂ V1 × V2 × · · · × Vn ⊂ Vk1 × Vk2 × · · · × Vkn ⊂ Uk

for k = 1, 2, . . . ,m, and hence {p} ⊂ V1 × V2 × · · · × Vn ⊂ U . It follows that
U is open in X, as required.
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Lemma 5.13 Let X1, X2, . . . , Xn and Z be topological spaces. Then a func-
tion f :X1×X2× · · · ×Xn → Z is continuous if and only if, given any point
p of X1 × X2 × · · · × Xn, and given any open set U in Z containing f(p),
there exist open sets Vi in Xi for i = 1, 2, . . . , n such that p ∈ V1×V2 · · ·×Vn
and f(V1 × V2 × · · · × Vn) ⊂ U .

Proof Let Vi be an open set in Xi for i = 1, 2, . . . , n, and let U be an open set
in Z. Then V1×V2×· · ·×Vn ⊂ f−1(U) if and only if f(V1×V2×· · ·×Vn) ⊂ U .
It follows that f−1(U) is open in the product topology on X1×X2×· · ·×Xn if
and only if, given any point p of X1×X2×· · ·×Xn satisfying f(p) ∈ U , there
exist open sets Vi in Xi for i = 1, 2, . . . , n such that f(V1×V2×· · ·×Vn) ⊂ U .
The required result now follows from the definition of continuity.

Let X1, X2, . . . , Xn be topological spaces, and let Vi be an open set in
Xi for i = 1, 2, . . . , n. It follows directly from the definition of the product
topology that V1 × V2 × · · · × Vn is open in X1 ×X2 × · · · ×Xn.

Theorem 5.14 Let X = X1 × X2 × · · · × Xn, where X1, X2, . . . , Xn are
topological spaces and X is given the product topology, and for each i, let
pi:X → Xi denote the projection function which sends (x1, x2, . . . , xn) ∈ X
to xi. Then the functions p1, p2, . . . , pn are continuous. Moreover a function
f :Z → X mapping a topological space Z into X is continuous if and only if
pi ◦ f :Z → Xi is continuous for i = 1, 2, . . . , n.

Proof Let V be an open set in Xi. Then

p−1
i (V ) = X1 × · · · ×Xi−1 × V ×Xi+1 × · · · ×Xn,

and therefore p−1
i (V ) is open in X. Thus pi:X → Xi is continuous for all i.

Let f :Z → X be continuous. Then, for each i, pi ◦ f :Z → Xi is a
composition of continuous functions, and is thus itself continuous.

Conversely suppose that f :Z → X is a function with the property that
pi ◦ f is continuous for all i. Let U be an open set in X. We must show that
f−1(U) is open in Z.

Let z be a point of f−1(U), and let f(z) = (u1, u2, . . . , un). Now U is open
in X, and therefore there exist open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn

respectively such that ui ∈ Vi for all i and V1 × V2 × · · · × Vn ⊂ U . Let

Nz = f−1
1 (V1) ∩ f−1

2 (V2) ∩ · · · ∩ f−1
n (Vn),

where fi = pi ◦ f for i = 1, 2, . . . , n. Now f−1
i (Vi) is an open subset of Z for

i = 1, 2, . . . , n, since Vi is open in Xi and fi:Z → Xi is continuous. Thus Nz,
being a finite intersection of open sets, is itself open in Z. Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vn ⊂ U,
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so that Nz ⊂ f−1(U). It follows that f−1(U) is the union of the open sets Nz

as z ranges over all points of f−1(U). Therefore f−1(U) is open in Z. This
shows that f :Z → X is continuous, as required.

Proposition 5.15 The usual topology on R
n coincides with the product

topology on Rn obtained on regarding Rn as the Cartesian product R × R ×
· · · × R of n copies of the real line R.

Proof We must show that a subset U of Rn is open with respect to the usual
topology if and only if it is open with respect to the product topology.

Let U be a subset of Rn that is open with respect to the usual topology,
and let u ∈ U . Then there exists some δ > 0 such that B(u, δ) ⊂ U , where

B(u, δ) = {x ∈ Rn : |x− u| < δ}.

Let I1, I2, . . . , In be the open intervals in R defined by

Ii = {t ∈ R : ui −
δ√
n
< t < ui +

δ√
n
}

for i = 1, 2, . . . , n. Then I1, I2, . . . , In are open sets in R. Moreover

{u} ⊂ I1 × I2 × · · · × In ⊂ B(u, δ) ⊂ U,

since

|x− u|2 =
n∑
i=1

(xi − ui)2 < n

(
δ√
n

)2

= δ2

for all x ∈ I1 × I2 × · · · × In. This shows that any subset U of Rn that is
open with respect to the usual topology on Rn is also open with respect to
the product topology on Rn.

Conversely suppose that U is a subset of Rn that is open with respect
to the product topology on Rn, and let u ∈ U . Then there exist open
sets V1, V2, . . . , Vn in R containing u1, u2, . . . , un respectively such that V1 ×
V2 × · · · × Vn ⊂ U . Now we can find δ1, δ2, . . . , δn such that δi > 0 and
(ui− δi, ui+ δi) ⊂ Vi for all i. Let δ > 0 be the minimum of δ1, δ2, . . . , . . . , δn.
Then

B(u, δ) ⊂ V1 × V2 × · · ·Vn ⊂ U,

for if x ∈ B(u, δ) then |xi − ui| < δi for i = 1, 2, . . . , n. This shows that any
subset U of Rn that is open with respect to the product topology on Rn is
also open with respect to the usual topology on Rn.

The following result is now an immediate corollary of Proposition 5.15
and Theorem 5.14.
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Corollary 5.16 Let X be a topological space and let f :X → R
n be a function

from X to Rn. Let us write

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components f1, f2, . . . , fn of f are functions from X
to R. The function f is continuous if and only if its components f1, f2, . . . , fn
are all continuous.

Let f :X → R and g:X → R be continuous real-valued functions on some
topological space X. We claim that f+g, f−g and f.g are continuous. Now
it is a straightforward exercise to verify that the sum and product functions
s:R2 → R and p:R2 → R defined by s(x, y) = x + y and p(x, y) = xy
are continuous, and f + g = s ◦ h and f.g = p ◦ h, where h:X → R

2 is
defined by h(x) = (f(x), g(x)). Moreover it follows from Corollary 5.16 that
the function h is continuous, and compositions of continuous functions are
continuous. Therefore f + g and f.g are continuous, as claimed. Also −g
is continuous, and f − g = f + (−g), and therefore f − g is continuous. If
in addition the continuous function g is non-zero everywhere on X then 1/g
is continuous (since 1/g is the composition of g with the reciprocal function
t 7→ 1/t), and therefore f/g is continuous.

Lemma 5.17 The Cartesian product X1 ×X2 × . . . Xn of Hausdorff spaces
X1, X2, . . . , Xn is Hausdorff.

Proof Let X = X1 ×X2 × . . . , Xn, and let u and v be distinct points of X,
where u = (x1, x2, . . . , xn) and v = (y1, y2, . . . , yn). Then xi 6= yi for some
integer i between 1 and n. But then there exist open sets U and V in Xi

such that xi ∈ U , yi ∈ V and U ∩ V = ∅ (since Xi is a Hausdorff space).
Let pi:X → Xi denote the projection function. Then p−1

i (U) and p−1
i (V ) are

open sets in X, since pi is continuous. Moreover u ∈ p−1
i (U), v ∈ p−1

i (V ),
and p−1

i (U) ∩ p−1
i (V ) = ∅. Thus X is Hausdorff, as required.

5.9 Cut and Paste Constructions

Suppose we start out with a square of paper. If we join together two opposite
edges of this square we obtain a cylinder. The boundary of the cylinder
consists of two circles. If we join together the two boundary circles we obtain
a torus (which corresponds to the surface of a doughnut).

Let the square be represented by the set [0, 1] × [0, 1] consisting of all
ordered pairs (s, t) where s and t are real numbers between 0 and 1. There
is an equivalence relation on the square [0, 1]× [0, 1], where points (s, t) and
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(u, v) of the square are related if and only if at least one of the following
conditions is satisfied:

• s = u and t = v;

• s = 0, u = 1 and t = v;

• s = 1, u = 0 and t = v;

• t = 0, v = 1 and s = u;

• t = 1, v = 0 and s = u;

• (s, t) and (u, v) both belong to {(0, 0), (0, 1), (1, 0), (1, 1)}.

Note that if 0 < s < 1 and 0 < t < 1 then the equivalence class of the
point (s, t) is the set {(s, t)} consisting of that point. If s = 0 or 1 and
if 0 < t < 1 then the equivalence class of (s, t) is the set {(0, t), (1, t)}.
Similarly if t = 0 or 1 and if 0 < s < 1 then the equivalence class of (s, t) is
the set {(s, 0), (s, 1)}. The equivalence class of each corner of the square is
the set {(0, 0), (1, 0), (0, 1), (1, 1)} consisting of all four corners. Thus each
equivalence class contains either one point in the interior of the square, or
two points on opposite edges of the square, or four points at the four corners
of the square. Let T 2 denote the set of these equivalence classes. We have
a map q: [0, 1] × [0, 1] → T 2 which sends each point (s, t) of the square to
its equivalence class. Each element of the set T 2 is the image of one, two
or four points of the square. The elements of T 2 represent points on the
torus obtained from the square by first joining together two opposite sides of
the square to form a cylinder and then joining together the boundary circles
of this cylinder as described above. We say that the torus T 2 is obtained
from the square [0, 1]× [0, 1] by identifying the points (0, t) and (1, t) for all
t ∈ [0, 1] and identifying the points (s, 0) and (s, 1) for all s ∈ [0, 1].

The topology on the square [0, 1]× [0, 1] induces a corresponding topology
on the set T 2, where a subset U of T 2 is open in T 2 if and only if q−1(U)
is open in the square [0, 1] × [0, 1]. (The fact that these open sets in T 2

constitute a topology on the set T 2 is a consequence of Lemma 5.18.) The
function q: [0, 1] × [0, 1] → T 2 is then a continuous surjection. We say that
the topological space T 2 is the identification space obtained from the square
[0, 1] × [0, 1] by identifying points on the sides to the square as described
above. The continuous map q from the square to the torus is an example of
an identification map, and the topology on the torus T 2 is referred to as the
quotient topology on T 2 induced by the identification map q: [0, 1]× [0, 1]→
T 2.
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Another well-known identification space obtained from the square is the
Klein bottle (Kleinsche Flasche). The Klein bottle K2 is obtained from the
square [0, 1] × [0, 1] by identifying (0, t) with (1, 1 − t) for all t ∈ [0, 1] and
identifying (s, 0) with (s, 1) for all s ∈ [0, 1]. These identifications correspond
to an equivalence relation on the square, where points (s, t) and (u, v) of the
square are equivalent if and only if one of the following conditions is satisfied:

• s = u and t = v;

• s = 0, u = 1 and t = 1− v;

• s = 1, u = 0 and t = 1− v;

• t = 0, v = 1 and s = u;

• t = 1, v = 0 and s = u;

• (s, t) and (u, v) both belong to {(0, 0), (0, 1), (1, 0), (1, 1)}.

The corresponding set of equivalence classes is the Klein bottle K2. Thus
each point of the Klein bottle K2 represents an equivalence class consisting
of either one point in the interior of the square, or two points (0, t) and
(1, 1− t) with 0 < t < 1 on opposite edges of the square, or two points (s, 0)
and (s, 1) with 0 < s < 1 on opposite edges of the square, or the four corners
of the square. There is a surjection r: [0, 1] × [0, 1] → K2 from the square
to the Klein bottle that sends each point of the square to its equivalence
class. The identifications used to construct the Klein bottle ensure that
r(0, t) = r(1, 1− t) for all t ∈ [0, 1] and r(s, 0) = r(s, 1) for all s ∈ [0, 1]. One
can construct a quotient topology on the Klein bottle K2, where a subset U
of K2 is open in K2 if and only if its preimage r−1(U) is open in the square
[0, 1]× [0, 1].

5.10 Identification Maps and Quotient Topologies

Definition Let X and Y be topological spaces and let q:X → Y be a
function from X to Y . The function q is said to be an identification map if
and only if the following conditions are satisfied:

• the function q:X → Y is surjective,

• a subset U of Y is open in Y if and only if q−1(U) is open in X.
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It follows directly from the definition that any identification map is con-
tinuous. Moreover, in order to show that a continuous surjection q:X → Y
is an identification map, it suffices to prove that if V is a subset of Y with
the property that q−1(V ) is open in X then V is open in Y .

Example Let S1 denote the unit circle {(x, y) ∈ R2 : x2+y2 = 1} in R2, and
let q: [0, 1] → S1 be the continuous map defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. We show that q: [0, 1] → S1 is an identification map. This
map is continuous and surjective. It remains to show that if V is a subset of
S1 with the property that q−1(V ) is open in [0, 1] then V is open in S1.

Note that |q(s) − q(t)| = 2| sin π(s − t)| for all s, t ∈ [0, 1] satisfying
|s − t| ≤ 1

2
. Let V be a subset of S1 with the property that q−1(V ) is open

in [0, 1], and let v be an element of V . We show that there exists ε > 0
such that all points u of S1 satisfying |u− v| < ε belong to V . We consider
separately the cases when v = (1, 0) and when v 6= (1, 0).

Suppose that v = (1, 0). Then (1, 0) ∈ V , and hence 0 ∈ q−1(V ) and
1 ∈ q−1(V ). But q−1(V ) is open in [0, 1]. It follows that there exists a real
number δ satisfying 0 < δ < 1

2
such that [0, δ) ⊂ q−1(V ) and (1 − δ, 1] ∈

q−1(V ). Let ε = 2 sin πδ. Now if −π ≤ θ ≤ π then the Euclidean distance
between the points (1, 0) and (cos θ, sin θ) is 2 sin 1

2
|θ|. Moreover, this distance

increases monotonically as |θ| increases from 0 to π. Thus any point on the
unit circle S1 whose distance from (1, 0) is less than ε must be of the form
(cos θ, sin θ), where |θ| < 2πδ. Thus if u ∈ S1 satisfies |u − v| < ε then
u = q(s) for some s ∈ [0, 1] satisfying either 0 ≤ s < δ or 1− δ < s ≤ 1. But
then s ∈ q−1(V ), and hence u ∈ V .

Next suppose that v 6= (1, 0). Then v = q(t) for some real number t
satisfying 0 < t < 1. But q−1(V ) is open in [0, 1], and t ∈ q−1(V ). It
follows that (t− δ, t + δ) ⊂ q−1(V ) for some real number δ satisfying δ > 0.
Let ε = 2 sin πδ. If u ∈ S1 satisfies |u − v| < ε then u = q(s) for some
s ∈ (t− δ, t+ δ). But then s ∈ q−1(V ), and hence u ∈ V .

We have thus shown that if V is a subset of S1 with the property that
q−1(V ) is open in [0, 1] then there exists ε > 0 such that u ∈ V for all
elements u of S1 satisfying |u − v| < ε. It follows from this that V is open
in S1. Thus the continuous surjection q: [0, 1]→ S1 is an identification map.

Lemma 5.18 Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. Then there is a unique topology on Y for which the function
q:X → Y is an identification map.

Proof Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and
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Y ∈ τ . If {Vα : α ∈ A} is any collection of subsets of Y indexed by a set A,
then it is a straightforward exercise to verify that⋃

α∈A
q−1(Vα) = q−1

(⋃
α∈A

Vα

)
,

⋂
α∈A

q−1(Vα) = q−1
(⋂

α∈A
Vα

)
(i.e., given any collection of subsets of Y , the union of the preimages of the
sets is the preimage of the union of those sets, and the intersection of the
preimages of the sets is the preimage of the intersection of those sets). It
follows easily from this that unions and finite intersections of sets belonging
to τ must themselves belong to τ . Thus τ is a topology on Y , and the
function q:X → Y is an identification map with respect to the topology τ .
Clearly τ is the unique topology on Y for which the function q:X → Y is an
identification map.

Let X be a topological space, let Y be a set, and let q:X → Y be a
surjection. The unique topology on Y for which the function q is an identifi-
cation map is referred to as the quotient topology (or identification topology)
on Y .

Let ∼ be an equivalence relation on a topological space X. If Y is the
corresponding set of equivalence classes of elements of X then there is a
surjection q:X → Y that sends each element of X to its equivalence class.
Lemma 5.18 ensures that there is a well-defined quotient topology on Y ,
where a subset U of Y is open in Y if and only if q−1(U) is open in X.
(Appropriate equivalence relations on the square yield the torus and the
Klein bottle, as discussed above.)

Lemma 5.19 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let Z be a topological space, and let f :Y → Z be a
function from Y to Z. Then the function f is continuous if and only if the
composition function f ◦ q:X → Z is continuous.

Proof Suppose that f is continuous. Then the composition function f ◦ q is
a composition of continuous functions and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open set in Z.
Then q−1(f−1(U)) is open in X (since f ◦ q is continuous), and hence f−1(U)
is open in Y (since the function q is an identification map). Therefore the
function f is continuous, as required.

Example Let S1 be the unit circle in R2, and let q: [0, 1] → S1 be the
map that sends t ∈ [0, 1] to (cos 2πt, sin 2πt). Then q: [0, 1] → S1 is an
identification map, and therefore a function f :S1 → Z from S1 to some
topological space Z is continuous if and only if f ◦q: [0, 1]→ Z is continuous.
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Example The Klein bottle K2 is the identification space obtained from the
square [0, 1] × [0, 1] by identifying (0, t) with (1, 1 − t) for all t ∈ [0, 1] and
identifying (s, 0) with (s, 1) for all s ∈ [0, 1]. Let q: [0, 1] × [0, 1] → K2

be the identification map determined by these identifications. Let Z be a
topological space. A function g: [0, 1]× [0, 1]→ Z mapping the square into Z
which satisfies g(0, t) = g(1, 1− t) for all t ∈ [0, 1] and g(s, 0) = g(s, 1) for all
s ∈ [0, 1], determines a corresponding function f :K2 → Z, where g = f ◦ q.
It follows from Lemma 5.19 that the function f :K2 → Z is continuous if and
only if g: [0, 1]× [0, 1]→ Z is continuous.

Example Let Sn be the n-sphere, consisting of all points x in Rn+1 satisfy-
ing |x| = 1. Let RP n be the set of all lines in Rn+1 passing through the origin
(i.e., RP n is the set of all one-dimensional vector subspaces of Rn+1). Let
q:Sn → RP n denote the function which sends a point x of Sn to the element
of RP n represented by the line in Rn+1 that passes through both x and the
origin. Note that each element of RP n is the image (under q) of exactly
two antipodal points x and −x of Sn. The function q induces a correspond-
ing quotient topology on RP n such that q:Sn → RP n is an identification
map. The set RP n, with this topology, is referred to as real projective n-
space. In particular RP 2 is referred to as the real projective plane. It follows
from Lemma 5.19 that a function f :RP n → Z from RP n to any topological
space Z is continuous if and only if the composition function f ◦ q:Sn → Z
is continuous.

5.11 Connected Topological Spaces

Definition A topological space X is said to be connected if the empty set ∅
and the whole space X are the only subsets of X that are both open and
closed.

Lemma 5.20 A topological space X is connected if and only if it has the
following property: if U and V are non-empty open sets in X such that
X = U ∪ V , then U ∩ V is non-empty.

Proof If U is a subset of X that is both open and closed, and if V = X \U ,
then U and V are both open, U ∪ V = X and U ∩ V = ∅. Conversely if U
and V are open subsets of X satisfying U ∪ V = X and U ∩ V = ∅, then
U = X \V , and hence U is both open and closed. Thus a topological space X
is connected if and only if there do not exist non-empty open sets U and V
such that U ∪ V = X and U ∩ V = ∅. The result follows.
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Let Z be the set of integers with the usual topology (i.e., the subspace
topology on Z induced by the usual topology on R). Then {n} is open for
all n ∈ Z, since

{n} = Z ∩ {t ∈ R : |t− n| < 1
2
}.

It follows that every subset of Z is open (since it is a union of sets consisting
of a single element, and any union of open sets is open). It follows that
a function f :X → Z on a topological space X is continuous if and only if
f−1(V ) is open in X for any subset V of Z. We use this fact in the proof of
the next theorem.

Proposition 5.21 A topological space X is connected if and only if every
continuous function f :X → Z from X to the set Z of integers is constant.

Proof Suppose that X is connected. Let f :X → Z be a continuous function.
Choose n ∈ f(X), and let

U = {x ∈ X : f(x) = n}, V = {x ∈ X : f(x) 6= n}.

Then U and V are the preimages of the open subsets {n} and Z \ {n} of
Z, and therefore both U and V are open in X. Moreover U ∩ V = ∅, and
X = U ∪ V . It follows that V = X \U , and thus U is both open and closed.
Moreover U is non-empty, since n ∈ f(X). It follows from the connectedness
of X that U = X, so that f :X → Z is constant, with value n.

Conversely suppose that every continuous function f :X → Z is constant.
Let S be a subset of X which is both open and closed. Let f :X → Z be
defined by

f(x) =

{
1 if x ∈ S;
0 if x 6∈ S.

Now the preimage of any subset of Z under f is one of the open sets ∅,
S, X \ S and X. Therefore the function f is continuous. But then the
function f is constant, so that either S = ∅ or S = X. This shows that X is
connected.

Lemma 5.22 The closed interval [a, b] is connected, for all real numbers a
and b satisfying a ≤ b.

Proof Let f : [a, b]→ Z be a continuous integer-valued function on [a, b]. We
show that f is constant on [a, b]. Indeed suppose that f were not constant.
Then f(τ) 6= f(a) for some τ ∈ [a, b]. But the Intermediate Value Theorem
would then ensure that, given any real number c between f(a) and f(τ), there
would exist some t ∈ [a, τ ] for which f(t) = c, and this is clearly impossible,
since f is integer-valued. Thus f must be constant on [a, b]. We now deduce
from Proposition 5.21 that [a, b] is connected.
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Example Let X = {(x, y) ∈ R2 : x 6= 0}. The topological space X is not
connected. Indeed if f :X → Z is defined by

f(x, y) =

{
1 if x > 0,
−1 if x < 0,

then f is continuous on X but is not constant.

A concept closely related to that of connectedness is path-connectedness.
Let x0 and x1 be points in a topological space X. A path in X from x0 to x1

is defined to be a continuous function γ: [0, 1]→ X such that γ(0) = x0 and
γ(1) = x1. A topological space X is said to be path-connected if and only if,
given any two points x0 and x1 of X, there exists a path in X from x0 to x1.

Proposition 5.23 Every path-connected topological space is connected.

Proof Let X be a path-connected topological space, and let f :X → Z be a
continuous integer-valued function on X. If x0 and x1 are any two points of X
then there exists a path γ: [0, 1]→ X such that γ(0) = x0 and γ(1) = x1. But
then f ◦ γ: [0, 1] → Z is a continuous integer-valued function on [0, 1]. But
[0, 1] is connected (Lemma 5.22), therefore f◦γ is constant (Proposition 5.21).
It follows that f(x0) = f(x1). Thus every continuous integer-valued function
on X is constant. Therefore X is connected, by Proposition 5.21.

The topological spaces R, C and Rn are all path-connected. Indeed, given
any two points of one of these spaces, the straight line segment joining these
two points is a continuous path from one point to the other. Also the n-sphere
Sn is path-connected for all n > 0. We conclude that these topological spaces
are connected.

Let A be a subset of a topological space X. Using Lemma 5.20 and the
definition of the subspace topology, we see that A is connected if and only if
the following condition is satisfied:

• if U and V are open sets in X such that A∩U and A∩V are non-empty
and A ⊂ U ∪ V then A ∩ U ∩ V is also non-empty.

Lemma 5.24 Let X be a topological space and let A be a connected subset
of X. Then the closure A of A is connected.

Proof It follows from the definition of the closure of A that A ⊂ F for any
closed subset F of X for which A ⊂ F . On taking F to be the complement
of some open set U , we deduce that A∩U = ∅ for any open set U for which
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A ∩ U = ∅. Thus if U is an open set in X and if A ∩ U is non-empty then
A ∩ U must also be non-empty.

Now let U and V be open sets in X such that A ∩ U and A ∩ V are
non-empty and A ⊂ U ∪ V . Then A ∩ U and A ∩ V are non-empty, and
A ⊂ U ∪ V . But A is connected. Therefore A ∩ U ∩ V is non-empty, and
thus A ∩ U ∩ V is non-empty. This shows that A is connected.

Lemma 5.25 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a connected subset of X. Then f(A) is con-
nected.

Proof Let g: f(A)→ Z be any continuous integer-valued function on f(A).
Then g ◦ f :A → Z is a continuous integer-valued function on A. It follows
from Proposition 5.21 that g ◦ f is constant on A. Therefore g is constant
on f(A). We deduce from Proposition 5.21 that f(A) is connected.

Lemma 5.26 The Cartesian product X × Y of connected topological spaces
X and Y is itself connected.

Proof Let f :X×Y → Z be a continuous integer-valued function from X×Y
to Z. Choose x0 ∈ X and y0 ∈ Y . The function x 7→ f(x, y0) is continuous
on X, and is thus constant. Therefore f(x, y0) = f(x0, y0) for all x ∈ X. Now
fix x. The function y 7→ f(x, y) is continuous on Y , and is thus constant.
Therefore

f(x, y) = f(x, y0) = f(x0, y0)

for all x ∈ X and y ∈ Y . We deduce from Proposition 5.21 that X × Y is
connected.

We deduce immediately that a finite Cartesian product of connected topo-
logical spaces is connected.

Proposition 5.27 Let X be a topological space. For each x ∈ X, let Sx be
the union of all connected subsets of X that contain x. Then

(i) Sx is connected,

(ii) Sx is closed,

(iii) if x, y ∈ X, then either Sx = Sy, or else Sx ∩ Sy = ∅.

71



Proof Let f :Sx → Z be a continuous integer-valued function on Sx, for
some x ∈ X. Let y be any point of Sx. Then, by definition of Sx, there exists
some connected set A containing both x and y. But then f is constant on A,
and thus f(x) = f(y). This shows that the function f is constant on Sx.
We deduce that Sx is connected. This proves (i). Moreover the closure Sx is
connected, by Lemma 5.24. Therefore Sx ⊂ Sx. This shows that Sx is closed,
proving (ii).

Finally, suppose that x and y are points of X for which Sx ∩ Sy 6= ∅. Let
f :Sx ∪ Sy → Z be any continuous integer-valued function on Sx ∪ Sy. Then
f is constant on both Sx and Sy. Moreover the value of f on Sx must agree
with that on Sy, since Sx ∩ Sy is non-empty. We deduce that f is constant
on Sx ∪ Sy. Thus Sx ∪ Sy is a connected set containing both x and y, and
thus Sx∪Sy ⊂ Sx and Sx∪Sy ⊂ Sy, by definition of Sx and Sy. We conclude
that Sx = Sy. This proves (iii).

Given any topological space X, the connected subsets Sx of X defined as
in the statement of Proposition 5.27 are referred to as the connected com-
ponents of X. We see from Proposition 5.27, part (iii) that the topological
space X is the disjoint union of its connected components.

Example The connected components of {(x, y) ∈ R2 : x 6= 0} are

{(x, y) ∈ R2 : x > 0} and {(x, y) ∈ R2 : x < 0}.

Example The connected components of

{t ∈ R : |t− n| < 1
2

for some integer n}.

are the sets Jn for all n ∈ Z, where Jn = (n− 1
2
, n+ 1

2
).
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6 Compact Spaces

6.1 Compact Topological Spaces

Let X be a topological space, and let A be a subset of X. A collection of
subsets of X in X is said to cover A if and only if every point of A belongs to
at least one of these subsets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 6.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 6.2 (Heine-Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.

Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to U , and let s = supS. Now
s ∈ W for some open set W belonging to U . Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to U .

73



Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to U , as required.

Lemma 6.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 6.1 that A is compact, as required.

Lemma 6.4 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

Lemma 6.5 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof The range f(X) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m,m), where m ∈ N, since f(X)
is compact (Lemma 6.4) and R is covered by the collection of all intervals of
this form. It follows that f(X) ⊂ (−M,M), where (−M,M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on X, as required.

Proposition 6.6 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.
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Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 6.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 6.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

Proposition 6.7 Let A be a compact subset of a metric space X. Then A
is closed in X.

Proof Let p be a point of X that does not belong to A, and let f(x) =
d(x, p), where d is the distance function on X. It follows from Proposition 6.6
that there is a point q of A such that f(a) ≥ f(q) for all a ∈ A, since A is
compact. Now f(q) > 0, since q 6= p. Let δ satisfy 0 < δ ≤ f(q). Then the
open ball of radius δ about the point p is contained in the complement of
A, since f(x) < f(q) for all points x of this open ball. It follows that the
complement of A is an open set in X, and thus A itself is closed in X.

Proposition 6.8 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point y ∈ K there exist open sets Vx,y and Wx,y such that
x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But
then there exists a finite set {y1, y2, . . . , yr} of points of K such that K is
contained in Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr , since K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then V and W are open sets, x ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 6.9 A compact subset of a Hausdorff topological space is closed.

Proof Let K be a compact subset of a Hausdorff topological space X. It
follows immediately from Proposition 6.8 that, for each x ∈ X \ K, there
exists an open set Vx such that x ∈ Vx and Vx ∩K = ∅. But then X \K is
equal to the union of the open sets Vx as x ranges over all points of X \K,
and any set that is a union of open sets is itself an open set. We conclude
that X \K is open, and thus K is closed.
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Proposition 6.10 Let X be a Hausdorff topological space, and let K1 and
K2 be compact subsets of X, where K1 ∩K2 = ∅. Then there exist open sets
U1 and U2 such that K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅.

Proof It follows from Proposition 6.8 that, for each point x of K1, there
exist open sets Vx and Wx such that x ∈ Vx, K2 ⊂ Wx and Vx∩Wx = ∅. But
then there exists a finite set {x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr ,

since K1 is compact. Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr , U2 = Wx1 ∩Wx2 ∩ · · · ∩Wxr .

Then U1 and U2 are open sets, K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅, as
required.

Lemma 6.11 Let f :X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then f(K) is closed in Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 6.3), and there-
fore f(K) is compact (Lemma 6.4). But any compact subset of a Hausdorff
space is closed (Corollary 6.9). Thus f(K) is closed in Y , as required.

Remark If the Hausdorff space Y in Lemma 6.11 is a metric space, then
Proposition 6.7 may be used in place of Corollary 6.9 in the proof of the
lemma.

Theorem 6.12 A continuous bijection f :X → Y from a compact topological
space X to a Hausdorff space Y is a homeomorphism.

Proof Let g:Y → X be the inverse of the bijection f :X → Y . If U is
open in X then X \ U is closed in X, and hence f(X \ U) is closed in Y ,
by Lemma 6.11. But f(X \ U) = g−1(X \ U) = Y \ g−1(U). It follows that
g−1(U) is open in Y for every open set U in X. Therefore g:Y → X is
continuous, and thus f :X → Y is a homeomorphism.

We recall that a function f :X → Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and
satisfies the following condition: a subset U of Y is open in Y if and only if
f−1(U) is open in X.
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Proposition 6.13 A continuous surjection f :X → Y from a compact topo-
logical space X to a Hausdorff space Y is an identification map.

Proof Let U be a subset of Y . We claim that Y \ U = f(K), where K =
X \ f−1(U). Clearly f(K) ⊂ Y \ U . Also, given any y ∈ Y \ U , there exists
x ∈ X satisfying y = f(x), since f :X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if and only if f−1(U) is open
in X. First suppose that f−1(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y , by Lemma 6.11. It follows that U is open in Y .
Conversely if U is open in Y then f−1(Y ) is open in X, since f :X → Y is
continuous. Thus the surjection f :X → Y is an identification map.

Example Let S1 be the unit circle in R2, defined by S1 = {(x, y) ∈ R2 :
x2 + y2 = 1}, and let q: [0, 1] → S1 be defined by q(t) = (cos 2πt, sin 2πt)
for all t ∈ [0, 1]. It has been shown that the map q is an identification map.
This also follows directly from the fact that q: [0, 1] → S1 is a continuous
surjection from the compact space [0, 1] to the Hausdorff space S1.

We shall show that a finite Cartesian product of compact spaces is com-
pact. To prove this, we apply the following result, known as the Tube Lemma.

Lemma 6.14 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V = {x ∈ X : {x} × K ⊂ U}.
Then V is an open set in X.

Proof Let x ∈ V . For each y ∈ K there exist open subsets Dy and Ey
of X and Y respectively such that (x, y) ∈ Dy × Ey and Dy × Ey ⊂ U .
Now there exists a finite set {y1, y2, . . . , yk} of points of K such that K ⊂
Ey1 ∪ Ey2 ∪ · · · ∪ Eyk , since K is compact. Set Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .
Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃
i=1

(Nx × Eyi) ⊂
k⋃
i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem 6.15 A Cartesian product of a finite number of compact spaces is
itself compact.
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Proof It suffices to prove that the product of two compact topological spaces
X and Y is compact, since the general result then follows easily by induction
on the number of compact spaces in the product.

Let U be an open cover of X × Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x}×Y is a compact subset of X×Y , since
it is the image of the compact space Y under the continuous map from Y to
X×Y which sends y ∈ Y to (x, y), and the image of any compact set under a
continuous map is itself compact (Lemma 6.4). Therefore there exists a finite
collection U1, U2, . . . , Ur of open sets belonging to the open cover U such that
{x}×Y is contained in U1∪U2∪ · · · ∪Ur. Let Vx denote the set of all points
x′ of X for which {x′} × Y is contained in U1 ∪ U2 ∪ · · · ∪ Ur. Then x ∈ Vx,
and Lemma 6.14 ensures that Vx is an open set in X. Note that Vx × Y is
covered by finitely many of the open sets belonging to the open cover U .

Now {Vx : x ∈ X} is an open cover of the space X. It follows from the
compactness of X that there exists a finite set {x1, x2, . . . , xr} of points of X
such that X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr . Now X × Y is the union of the sets
Vxj × Y for j = 1, 2, . . . , r, and each of these sets can be covered by a finite
collection of open sets belonging to the open cover U . On combining these
finite collections, we obtain a finite collection of open sets belonging to U
which covers X × Y . This shows that X × Y is compact.

Theorem 6.16 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 6.9). For
each natural number m, let Bm be the open ball of radius m about the origin,
given by Bm = {x ∈ Rn : |x| < m}. Then {Bm : m ∈ N} is an open cover of
R
n. It follows from the compactness of K that there exist natural numbers

m1,m2, . . . ,mk such that K ⊂ Bm1 ∪ Bm2 ∪ · · · ∪ Bmk . But then K ⊂ BM ,
where M is the maximum of m1,m2, . . . ,mk, and thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.
Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem 6.2), and C is the Cartesian product of n copies of the compact
set [−L,L]. It follows from Theorem 6.15 that C is compact. But K is a
closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 6.3. Thus K is compact, as required.
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6.2 Compact Metric Spaces

We recall that a metric or topological space is said to be compact if every
open cover of the space has a finite subcover. We shall obtain some equivalent
characterizations of compactness for metric spaces (Theorem 6.22); these
characterizations do not generalize to arbitrary topological spaces.

Proposition 6.17 Every sequence of points in a compact metric space has
a convergent subsequence.

Proof Let X be a compact metric space, and let x1, x2, x3, . . . be a sequence
of points of X. We must show that this sequence has a convergent subse-
quence. Let Fn denote the closure of {xn, xn+1, xn+2, . . .}. We claim that
the intersection of the sets F1, F2, F3, . . . is non-empty. For suppose that
this intersection were the empty set. Then X would be the union of the
sets V1, V2, V3, . . ., where Vn = X \ Fn for all n. But V1 ⊂ V2 ⊂ V3 ⊂ · · ·,
and each set Vn is open. It would therefore follow from the compactness of
X that X would be covered by finitely many of the sets V1, V2, V3, . . ., and
therefore X = Vn for some sufficiently large n. But this is impossible, since
Fn is non-empty for all natural numbers n. Thus the intersection of the sets
F1, F2, F3, . . . is non-empty, as claimed, and therefore there exists a point p
of X which belongs to Fn for all natural numbers n.

We now obtain, by induction on n, a subsequence xn1 , xn2 , xn3 , . . . which
satisfies d(xnj , p) < 1/j for all natural numbers j. Now p belongs to the
closure F1 of the set {x1, x2, x3, . . .}. Therefore there exists some natural
number n1 such that d(xn1 , p) < 1. Suppose that xnj has been chosen so
that d(xnj , p) < 1/j. The point p belongs to the closure Fnj+1 of the set
{xn : n > nj}. Therefore there exists some natural number nj+1 such that
nj+1 > nj and d(xnj+1

, p) < 1/(j + 1). The subsequence xn1 , xn2 , xn3 , . . .
constructed in this manner converges to the point p, as required.

We shall also prove the converse of Proposition 6.17: if X is a metric
space, and if every sequence of points of X has a convergent subsequence,
then X is compact (see Theorem 6.22 below).

Let X be a metric space with distance function d. A Cauchy sequence in
X is a sequence x1, x2, x3, . . . of points of X with the property that, given
any ε > 0, there exists some natural number N such that d(xj, xk) < ε for
all j and k satisfying j ≥ N and k ≥ N .

A metric space (X, d) is said to be complete if every Cauchy sequence
in X converges to some point of X.

Proposition 6.18 Let X be a metric space with the property that every
sequence of points of X has a convergent subsequence. Then X is complete.
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Proof Let x1, x2, x3, . . . be a Cauchy sequence in X. This sequence then has
a subsequence xn1 , xn2 , xn3 , . . . which converges to some point p of X. We
claim that the given Cauchy sequence also converges to p.

Let ε > 0 be given. Then there exists some natural number N such that
d(xm, xn) < 1

2
ε whenever m ≥ N and n ≥ N , since x1, x2, x3, . . . is a Cauchy

sequence. Moreover nj can be chosen large enough to ensure that nj ≥ N
and d(xnj , p) <

1
2
ε. If n ≥ N then

d(xn, p) ≤ d(xn, xnj) + d(xnj , p) <
1
2
ε+ 1

2
ε = ε.

This shows that the Cauchy sequence x1, x2, x3, . . . converges to the point p.
Thus X is complete, as required.

Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Let X be a metric space with distance function d, and let A be a subset of
X. The closure A of A is the intersection of all closed sets in X that contain
the set A: it can be regarded as the smallest closed set in X containing A.
Let x be a point of the closure A of A. Given any ε > 0, there exists some
point x′ of A such that d(x, x′) < ε. (Indeed the open ball in X of radius ε
about the point x must intersect the set A, since otherwise the complement
of this open ball would be a closed set in X containing the set A but not
including the point x, which is not possible if x belongs to the closure of A.)

Lemma 6.19 Let X be a metric space, and let A be a subset of X. Then
diamA = diamA, where A is the closure of A.

Proof Clearly diamA ≤ diamA. Let x and y be points of A. Then, given
any ε > 0, there exist points x′ and y′ of A satisfying d(x, x′) < ε and
d(y, y′) < ε. It follows from the Triangle Inequality that

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y) < diamA+ 2ε.

Thus d(x, y) < diamA + 2ε for all ε > 0, and hence d(x, y) ≤ diamA. This
shows that diamA ≤ diamA, as required.

Definition A metric space X is said to be totally bounded if, given any
ε > 0, the set X can be expressed as a finite union of subsets of X, each of
which has diameter less than ε.
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A subset A of a totally bounded metric space X is itself totally bounded.
For if X is the union of the subsets B1, B2, . . . , Bk, where diamBn < ε
for n = 1, 2, . . . , k, then A is the union of A ∩ Bn for n = 1, 2, . . . , k, and
diamA ∩Bn < ε.

Proposition 6.20 Let X be a metric space. Suppose that every sequence of
points of X has a convergent subsequence. Then X is totally bounded.

Proof Suppose that X were not totally bounded. Then there would exist
some ε > 0 with the property that no finite collection of subsets of X of
diameter less than 3ε covers the set X. There would then exist an infinite
sequence x1, x2, x3, . . . of points of X with the property that d(xm, xn) ≥ ε
whenever m 6= n. Indeed suppose that points x1, x2, . . . , xk−1 of X have
already been chosen satisfying d(xm, xn) ≥ ε whenever m < k, n < k and
m 6= n. The diameter of each open ball BX(xm, ε) is less than or equal to
2ε. Therefore X could not be covered by the sets BX(xm, ε) for m < k, and
thus there would exist a point xk of X which does not belong to B(xm, ε)
for any m < k. Then d(xm, xk) ≥ ε for all m < k. In this way we can
successively choose points x1, x2, x3, . . . to form an infinite sequence with
the required property. However such an infinite sequence would have no
convergent subsequence, which is impossible. This shows that X must be
totally bounded, as required.

Proposition 6.21 Every complete totally bounded metric space is compact.

Proof Let X be some totally bounded metric space. Suppose that there
exists an open cover V of X which has no finite subcover. We shall prove the
existence of a Cauchy sequence x1, x2, x3, . . . in X which cannot converge to
any point of X. (Thus if X is not compact, then X cannot be complete.)

Let ε > 0 be given. Then X can be covered by finitely many closed sets
whose diameter is less than ε, since X is totally bounded and every subset of
X has the same diameter as its closure (Lemma 6.19). At least one of these
closed sets cannot be covered by a finite collection of open sets belonging to
V (since if every one of these closed sets could be covered by a such a finite
collection of open sets, then we could combine these collections to obtain
a finite subcover of V). We conclude that, given any ε > 0, there exists a
closed subset of X of diameter less than ε which cannot be covered by any
finite collection of open sets belonging to V .

We claim that there exists a sequence F1, F2, F3, . . . of closed sets in X
satisfying F1 ⊃ F2 ⊃ F3 ⊃ · · · such that each closed set Fn has the following
properties: diamFn < 1/2n, and no finite collection of open sets belonging
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to V covers Fn. For if Fn is a closed set with these properties then Fn is itself
totally bounded, and thus the above remarks (applied with Fn in place of
X) guarantee the existence of a closed subset Fn+1 of Fn with the required
properties. Thus the existence of the required sequence of closed sets follows
by induction on n.

Choose xn ∈ Fn for each natural number n. Then d(xm, xn) < 1/2n for
any m > n, since xm and xn belong to Fn and diamFn < 1/2n. Therefore
the sequence x1, x2, x3, . . . is a Cauchy sequence. Suppose that this Cauchy
sequence were to converge to some point p of X. Then p ∈ Fn for each
natural number n, since Fn is closed and xm ∈ Fn for all m ≥ n. (If a
sequence of points belonging to a closed subset of a metric or topological
space is convergent then the limit of that sequence belongs to the closed set.)
Moreover p ∈ V for some open set V belonging to V , since V is an open
cover of X. But then there would exist δ > 0 such that BX(p, δ) ⊂ V , where
BX(p, δ) denotes the open ball of radius δ in X centred on p. Thus if n were
large enough to ensure that 1/2n < δ, then p ∈ Fn and diamFn < δ, and
hence Fn ⊂ BX(p, δ) ⊂ V , contradicting the fact that no finite collection of
open sets belonging to V covers the set Fn. This contradiction shows that
the Cauchy sequence x1, x2, x3, . . . is not convergent.

We have thus shown that if X is a totally bounded metric space which is
not compact then X is not complete. Thus every complete totally bounded
metric space must be compact, as required.

Theorem 6.22 Let X be a metric space with distance function d. The fol-
lowing are equivalent:—

(i) X is compact,

(ii) every sequence of points of X has a convergent subsequence,

(iii) X is complete and totally bounded,

Proof Propositions 6.17, 6.18 6.20 and 6.21 show that (i) implies (ii), (ii)
implies (iii), and (iii) implies (i). It follows that (i), (ii) and (iii) are all
equivalent to one another.

Remark A subset K of Rn is complete if and only if it is closed in Rn. Also
it is easy to see that K is totally bounded if and only if K is a bounded
subset of Rn. Thus Theorem 6.22 is a generalization of the theorem which
states that a subset K of Rn is compact if and only if it is both closed and
bounded (Theorem 6.16).
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6.3 The Lebesgue Lemma and Uniform Continuity

Lemma 6.23 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let
U be an open cover of X. Then there exists a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly within
one of the open sets belonging to the open cover U .

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

Let X and Y be metric spaces with distance functions dX and dY respec-
tively, and let f :X → Y be a function from X to Y . The function f is said
to be uniformly continuous on X if and only if, given ε > 0, there exists some
δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X satisfying
dX(x, x′) < δ. (The value of δ should be independent of both x and x′.)

Theorem 6.24 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.
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Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now the open ball BY (y, 1

2
ε) is an open set in Y ,

and f is continuous. Therefore Vy is open in X for all y ∈ Y . Note that
x ∈ Vf(x) for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 6.23) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 6.16
and Theorem 6.24 that any continuous function f :K → R

k is uniformly
continuous.

6.4 The Equivalence of Norms on a Finite-Dimensional
Vector Space

Let ‖.‖ and ‖.‖∗ be norms on a real or complex vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.

Lemma 6.25 Two norms ‖.‖ and ‖.‖∗ on a real or complex vector space X
are equivalent if and only if they induce the same topology on X.
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Proof Suppose that the norms ‖.‖ and ‖.‖∗ induce the same topology on X.
Then there exists some δ > 0 such that

{x ∈ X : ‖x‖ < δ} ⊂ {x ∈ X : ‖x‖∗ < 1},

since the set {x ∈ X : ‖x‖∗ < 1} is open with respect to the topology on X
induced by both ‖.‖∗ and ‖.‖. Let C be any positive real number satisfying
Cδ > 1. Then ∥∥∥∥ 1

C‖x‖
x

∥∥∥∥ =
1

C
< δ,

and hence

‖x‖∗ = C‖x‖
∥∥∥∥ 1

C‖x‖
x

∥∥∥∥
∗
< C‖x‖.

for all non-zero elements x of X, and thus ‖x‖∗ ≤ C‖x‖ for all x ∈ X. On
interchanging the roles of the two norms, we deduce also that there exists a
positive real number c such that ‖x‖ ≤ (1/c)‖x‖∗ for all x ∈ X. But then
c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖ for all x ∈ X. We conclude that the norms ‖.‖ and
‖.‖∗ are equivalent.

Conversely suppose that the norms ‖.‖ and ‖.‖∗ are equivalent. Then
there exist constants c and C, where 0 < c ≤ C, such that c‖x‖ ≤ ‖x‖∗ ≤
C‖x‖ for all x ∈ X. Let U be a subset of X that is open with respect to the
topology on X induced by the norm ‖.‖∗, and let u ∈ U . Then there exists
some δ > 0 such that

{x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U.

But then

{x ∈ X : ‖x− u‖ < δ} ⊂ {x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U,

showing that U is open with respect to the topology induced by the norm ‖.‖.
Similarly any subset of X that is open with respect to the topology induced
by the norm ‖.‖ must also be open with respect to the topology induced by
‖.‖∗. Thus equivalent norms induce the same topology on X.

It follows immediately from Lemma 6.25 that if ‖.‖, ‖.‖∗ and ‖.‖] are
norms on a real (or complex) vector space X, if the norms ‖.‖ and ‖.‖∗ are
equivalent, and if the norms ‖.‖∗ and ‖.‖] are equivalent, then the norms ‖.‖
and ‖.‖] are also equivalent. This fact can easily be verified directly from the
definition of equivalence of norms.

We recall that the usual topology on Rn is that generated by the Euclidean
norm on Rn.

85



Lemma 6.26 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is
continuous with respect to the usual topology on on Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).

Let x and y be points of Rn, given by

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Using Schwarz’ Inequality, we see that

‖x− y‖ =

∥∥∥∥∥
n∑
j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑
j=1

|xj − yj| ‖ej‖

≤

(
n∑
j=1

(xj − yj)2

) 1
2
(

n∑
j=1

‖ej‖2

) 1
2

= C‖x− y‖2,

where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

and ‖x− y‖2 denotes the Euclidean norm of x− y, defined by

‖x− y‖2 =

(
n∑
j=1

(xj − yj)2

) 1
2

.

Also |‖x‖ − ‖y‖| ≤ ‖x− y‖, since

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

We conclude therefore that

|‖x‖ − ‖y‖| ≤ C‖x− y‖2,

for all x,y ∈ Rn, and thus the function x 7→ ‖x‖ is continuous on Rn (with
respect to the usual topology on Rn).

Theorem 6.27 Any two norms on Rn are equivalent, and induce the usual
topology on Rn.
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Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm ‖.‖2. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : ‖x‖2 = 1},

and let f :Sn−1 → R be the real-valued function on Sn−1 defined such that
f(x) = ‖x‖ for all x ∈ Sn−1. Now the function f is a continuous function on
Sn−1 (Lemma 6.26). Also the function f is non-zero at each point of Sn−1,
and therefore the function sending x ∈ Sn−1 to 1/f(x) is continuous. Now
any closed bounded set in Rn is compact (Theorem 6.16), and any continuous
real-valued function on a compact topological space is bounded (Lemma 6.5).
It follows that there exist positive real numbers C and D such that f(x) ≤ C
and 1/f(x) ≤ D for all x ∈ Sn−1. Let c = D−1. Then c ≤ ‖x‖ ≤ C for all
x ∈ Sn−1.

Now
‖x‖
‖x‖2

= f
(
‖x‖−1

2 x
)

for all x ∈ Rn \ {0}. (This is an immediate consequence of the fact that
‖λx‖ = |λ| ‖x‖ for all x ∈ Rn and λ ∈ R.) It follows that c‖x‖2 ≤ ‖x‖ ≤
C‖x‖2 for all x ∈ Rn \ {0}. These inequalities also hold when x = 0. The
result follows.
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