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1. (a) Let X be a subset of some Euclidean space, and let f1, f2, f3, . . . be an infinite

sequence of functions mapping X into some Euclidean space Rn. Define what

is meant by saying that the sequence f1, f2, f3, . . . converges uniformly to some

function f :X → R
n.

(b) Let X be a subset of some Euclidean space, and let f1, f2, f3, . . . be an infinite

sequence of continuous functions mapping X into some Euclidean space Rn which

converges uniformly to some function f :X → R
n. Prove that the function f is

also continuous.

(c) Let X be a subset of some Euclidean space, and let f :X → R
n be a function

mapping X into some Euclidean space Rn. What is meant by saying that this

function is uniformly continuous?

(d) Let X be a subset of some Euclidean space, and let f :X → R
n be a continuous

function mapping X into some Euclidean space Rn. Suppose that the set X is

both closed and bounded. Prove that the function f is then uniformly continuous.

[You may use without proof the result that any bounded sequence of points in a

Euclidean space has a convergent subsequence. You may also use without proof

the result that if a sequence of points in some closed set converges to some point p,

then this point p belongs to the closed set.]

2. (a) Give the definition of the winding number n(γ, w) of a closed path γ: [a, b] → C

about some point w of the complex plane that does not lie on γ.

(b) State and prove the Fundamental Theorem of Algebra.

[You may use without proof the result that if γs: [a, b] → C is a closed path for

each real number s in some interval [c, d], then the value of the winding number

n(γs, w) of γs about some complex number w is independent of the value of s,

provided that γs(t) is a continuous function of s and t, and provided also that

none of the paths γs passes through w.]
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3. Let f :D → C be a holomorphic function defined over an open set D in C, and let T

be a closed triangle contained in D. Prove that∫
∂T

f(z) dz = 0

where
∫
∂T
f(z) dz denotes the path integral of f taken round the boundary of the

triangle T in the anti-clockwise direction.

4. Let w be a complex number, let r be a positive real number, and let f be a holomorphic

function on {z ∈ C : 0 < |z| < r}. Laurent’s Theorem asserts that there exist complex

numbers an for all integers n such that

f(z) =
+∞∑
n=0

anz
n +

+∞∑
n=1

a−nz
−n

for all complex numbers z satisfying 0 < |z| < r, and that moreover

an ==
1

2πi

∫
γR

f(z)

zn+1
dz

for all integers n, where 0 < R < r, and γR: [0, 1]→ C is the closed path defined such

that γR(t) = Re2πit for all t ∈ [0, 1]. Prove this theorem.
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5. Use the method of contour integration to evaluate∫ +∞

−∞

eisx

x2 + 4
dx

and ∫ +∞

−∞

eisx

x4 + 5x2 + 4
dx

when s is a real number satisfying s > 0.

[Briefly justify your answers. You may use, without proof, the result that if R is a

positive real number, if f is a continuous complex-valued function defined everywhere

on the semicircle SR, where

SR = {z ∈ C : |z| = R and Im[z] ≥ 0},

and if there exists a non-negative real number M(R) such that |f(z)| ≤ M(R) for all

z ∈ SR then ∣∣∣∣∫
σR

f(z)eisz dz

∣∣∣∣ ≤ πM(R)

s

for all s > 0, where σR: [0, π] → C is the path with [σR] = SR defined such that

σR(θ) = Reiθ for all θ ∈ [0, π].]

6. (a) What is an elliptic function?

(b) What is a fundamental region for an elliptic function?

(c) Let f be an elliptic function, and let X be a fundamental region for f . Prove

that the sum of the residues of f at those poles of f located in the fundamental

region X is zero.
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