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1 Complex Numbers and Euclidean Spaces

1.1 The Least Upper Bound Principle

A widely-used basic principle of analysis, from which many important theo-
rems ultimately derive, is the Least Upper Bound Principle.

Let D be a subset of the set R of real numbers. A real number u is said
to be an upper bound of the set D of x ≤ u for all x ∈ D. The set D is said
to be bounded above if such an upper bound exists.

Definition Let D be some set of real numbers which is bounded above.
A real number s is said to be the least upper bound (or supremum) of D
(denoted by sup D) if s is an upper bound of D and s ≤ u for all upper
bounds u of D.

Example The real number 2 is the least upper bound of the sets {x ∈ R :
x ≤ 2} and {x ∈ R : x < 2}. Note that the first of these sets contains its
least upper bound, whereas the second set does not.

The Least Upper Bound Principle may be stated as follows:

if D is any non-empty subset of R which is bounded above then
there exists a least upper bound sup D for the set D.

A lower bound of a set D of real numbers is a real number l with the
property that l ≤ x for all x ∈ D. A set D of real numbers is said to be
bounded below if such a lower bound exists. If D is bounded below, then
there exists a greatest lower bound (or infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.

1.2 Monotonic Sequences

An infinite sequence a1, a2, a3, . . . of real numbers is said to be strictly in-
creasing if an+1 > an for all n, strictly decreasing if an+1 < an for all n,
non-decreasing if an+1 ≥ an for all n, or non-increasing if an+1 ≤ an for all n.
A sequence satisfying any one of these conditions is said to be monotonic;
thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem 1.1 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.
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Proof Let a1, a2, a3, . . . be a non-decreasing sequence of real numbers that is
bounded above. It follows from the Least Upper Bound Principle that there
exists a least upper bound l for the set {an : n ∈ N}. We claim that the
sequence converges to l.

Let ε > 0 be given. We must show that there exists some natural num-
ber N such that |an − l| < ε whenever n ≥ N . Now l − ε is not an upper
bound for the set {an : n ∈ N} (since l is the least upper bound), and there-
fore there must exist some natural number N such that aN > l−ε. But then
l − ε < an ≤ l whenever n ≥ N , since the sequence is non-decreasing and
bounded above by l. Thus |an − l| < ε whenever n ≥ N . Therefore an → l
as n → +∞, as required.

If the sequence a1, a2, a3, . . . is non-increasing and bounded below then
the sequence −a1,−a2,−a3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence a1, a2, a3, . . . is also
convergent.

1.3 The Complex Plane

A complex number is a number of the form x + iy, where x and y are real
numbers, and i2 = −1. The real numbers x and y are uniquely determined
by the complex number x+ iy, and are referred to as the real and imaginary
parts of this complex number.

The algebraic operations of addition, subtraction and multiplication are
defined on complex numbers according to the formulae

(x+yi)+(u+iv) = (x+u)+i(y+v), (x+yi)−(u+iv) = (x−u)+i(y−v),

(x + yi)× (u + iv) = (xu− yv) + i(xv + yu),

where x, y, u and v are real numbers.
We regard a real number x as coinciding with the complex number x +

i×0. Note that the operations of addition, subtraction and multiplication of
complex numbers defined as above extend the corresponding operations on
the set of real numbers.

The set C of complex numbers, with the operations of addition and mul-
tiplication defined above, has the following properties:

(i) z1 + z2 = z2 + z1 for all z1, z2 ∈ C;

(ii) z1 + (z2 + z3) = (z1 + z2) + z3 for all z1, z2, z3 ∈ C;

(iii) there exists a complex number 0 with the property that z+0 = 0+z = z
for all complex numbers C;
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(iv) given any complex number z, there exists a complex number −z such
that z + (−z) = (−z) + z = 0;

(v) z1 × z2 = z2 × z1 for all z1, z2 ∈ C;

(vi) z1 × (z2 × z3) = z1 × (z2 × z3) for all z1, z2, z3 ∈ C;

(vii) there exists a complex number 1 with the property that z×1 = 1×z = z
for all complex numbers C;

(viii) given any complex number z satisfying z 6= 0, there exists a complex
number z−1 such that z × z−1 = z−1 × z = 1;

(ix) z1×(z2+z3) = (z1×z2)+(z1×z3) and (z1+z2)×z3 = (z1×z3)+(z2×z3)
for all z1, z2, z3 ∈ C.

To verify property (viii), we note that if z is a non-zero complex number,
where z = x + iy for some real numbers x and y, and if z−1 is given by the
formula

z−1 =
x

x2 + y2
− i

y

x2 + y2
,

then z × z−1 = z−1 × z = 1.
A field is a set X provided with binary operations + and ×, represent-

ing addition and multiplication respectively, which satisfy properties (i)–(ix)
above (where complex numbers are replaced in the statements of those prop-
erties by elements of the set X as appropriate). Thus properties (i)–(ix) may
be summarized in the statement that the set of complex numbers, with the
usual operations of addition and multiplication, is a field. The set R of real
numbers, with the usual algebraic operations, is also a field.

Given complex numbers z and w, with w 6= 0, we define the quotient z/w
(i.e., z divided by w) by the formula z/w = zw−1.

The conjugate z of a complex number z is defined such that x + iy = x−iy
for all real numbers x and y. The modulus |z| of a complex number z is
defined such that |x + iy| =

√
x2 + y2 for all real numbers x and y. Note

that |z| = |z| for all complex numbers z. Also z + w = z + w for all complex
numbers z and w. The real part Re z of a complex number satisfies the
formula 2 Re z = z + z. Now |Re z| ≤ |z|. It follows that |z + z| ≤ 2|z| for
all complex numbers z.

Straightforward calculations show that zz = |z|2 for all complex num-
bers z, from which it easily follows that z−1 = |z|−2z for all non-zero complex
numbers z.
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Let z and w be complex numbers, and let z = x + iy and w = u + iv,
where x, y, u and v are real numbers. Then

|zw|2 = (xu− yv)2 + (xv + yu)2

= (x2u2 + y2v2 − 2xyuv) + (x2v2 + y2u2 + 2xyuv)

= (x2 + y2)(u2 + v2) = |z|2 |w|2

It follows that |zw| = |z| |w| for all complex numbers z and w.
Let z and w be complex numbers. Then

|z + w|2 = (z + w) (z + w) = zz + zw + wz + ww

= |z|2 + 2 Re zw + |w|2

≤ |z|2 + 2|zw|+ |w|2 = |z|2 + 2|z| |w|+ |w|2

= (|z|+ |w|)2.

It follows that |z + w| ≤ |z|+ |w| for all complex numbers z and w.
We define the distance from a complex number z to a complex number w

to be the quantity |w − z|. Thus if z = x + iy and w = u + iv then

|w − z| =
√

(x− u)2 + (y − v)2.

We picture the complex numbers as representing points of the Euclidean
plane. A complex number x + iy, where x and y are real numbers, repre-
sents the point of the plane whose Cartesian coordinates (with respect to an
appropriate origin) are (x, y). The fact that |w − z| represents the distance
between the points of the plane represented by the complex numbers z and
w is an immediate consequence of Pythagoras’ Theorem.

Let z1, z2 and z3 be complex numbers. Then

|z3 − z1| = |(z3 − z2) + (z2 − z1)| ≤ |z3 − z2|+ |z2 − z1|.

This important inequality is known as the Triangle Inequality. It corresponds
to the geometric statement that the length of any side of a triangle in the
Euclidean plane is less than or equal to the sum of the lengths of the other
two sides.

1.4 Euclidean Spaces

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),
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and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Lemma 1.2 (Schwarz’ Inequality) Let x and y be elements of Rn. Then
|x · y| ≤ |x||y|.

Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.

It follows easily from Schwarz’ Inequality that |x + y| ≤ |x| + |y| for all
x,y ∈ Rn. For

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

It follows that
|z− x| ≤ |z− y|+ |y − x|

for all points x, y and z of Rn. This important inequality is known as the
Triangle Inequality. It expresses the geometric fact the the length of any
triangle in a Euclidean space is less than or equal to the sum of the lengths
of the other two sides.
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1.5 Convergence of Sequences in Euclidean Spaces

Definition Let n be a positive integer, and let p1,p2,p3, . . . be an infinite
sequence of points in n-dimensional Euclidean space Rn. This sequence of
points is said to converge to some point r of Rn if, given any real number ε
satisfying ε > 0, there exists some positive integer N such that |pj − r| < ε
whenever j ≥ N .

Lemma 1.3 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.

Proof Let xji and pi denote the ith components of xj and p. Then |xji−pi| ≤
|xj − p| for all j. It follows directly from the definition of convergence that
if xj → p as j → +∞ then xji → pi as j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist natural numbers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√

n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N
then

|xj − p|2 =
n∑

i=1

(xji − pi)
2 < n(ε/

√
n)2 = ε2,

so that xj → p as j → +∞.

1.6 The Bolzano-Weierstrass Theorem

We say that an infinite sequence p1,p2,p3, . . . of points in Rn is bounded if
there exists some positive real number R such that |pj| ≤ R for all positive
integers j.

Let p1,p2,p3, . . . be an infinite sequence of points in Rn. A subsequence
of this sequence is a sequence that is of the form pm1 ,pm2 ,pm3 , . . ., where
m1, m2, m3, . . . are natural numbers satisfying m1 < m2 < m3 < · · · . Thus,
for example, p2,p4,p6, . . . and p1,p4,p9, . . . are subsequences of the given
sequence.

The following theorem may be regarded as the Bolzano-Weierstrass The-
orem in n dimensions.

Theorem 1.4 Every bounded sequence of points in Rn has a convergent sub-
sequence.

Proof Let p1,p2,p3, . . . be a bounded sequence of points in Rn.
Given any point b of Rn, where b = (b1, b2, . . . , bn), and given any positive

real number L, let us denote by H(b, L) the hypercube in Rn consisting of
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those points (x1, x2, . . . , xn) of Rn whose coordinates satisfy the inequalities
bi ≤ xi ≤ bi + L for i = 1, 2, . . . , n. This hypercube may be decomposed
as the union of 2n hypercubes whose sides are of length 1

2
L: these smaller

hypercubes are the sets of the form H(c, 1
2
L), where c = (c1, c2, . . . , cn) and,

for each i, either ci = bi or else ci = bi + 1
2
L. Now if the larger hypercube

L(b, L) contains infinitely many members of the sequence p1,p2,p3, . . . then
at least one of the smaller hypercubes into which it is decomposed must also
contain infinitely many members of this sequence.

Let v1 be a point of Rn and let M be a positive real number chosen
such that the hypercube H(v1, M) contains all the members of the sequence
(pj : j ∈ N). (The boundedness of this sequence ensures that such a hyper-
cube exists.) Then there exists in infinite sequence v1,v2,v3, . . . of points of
Rn such that, for each integer j satisfying j > 1, the hypercube Hj defined
by Hj = H(vj, M/2j−1) contains infinitely many members of the sequence
(pj : j ∈ N), has sides of length M/2j−1, and is contained in the hyper-

cube Hj−1. Let vj = (v
(1)
j , v

(2)
j , . . . , v

(n)
j ) for each positive integer j. Then,

for each integer i between 1 and n, the sequence v
(i)
1 , v

(i)
2 , v

(i)
3 , . . . is a bounded

non-decreasing sequence of real numbers. Such a sequence is guaranteed to
converge to some real number ri (Theorem 1.1). Let r = (r1, r2, . . . , rn).
Then the sequence v1,v2,v3, . . . converges to the point r. We claim that the
sequence (pj : j ∈ N) has a subsequence that converges to this point r.

We claim that, for every real number ε satisfying ε > 0, there are infinitely
many members pj of the sequence (pj : j ∈ N) satisfying the inequality
|pj − r| < ε. Now, given ε > 0, there exists some integer j such that
M
√

n/2j−1 < 1
2
ε and |vj − r| < 1

2
ε. Now if x is a point of the hypercube Hj

then

|x− vj| ≤
M
√

n

2j−1
<

1

2
ε

and therefore
|x− r| ≤ |x− vj|+ |vj − r| < ε.

But the hypercube Hj contains infinitely many members of the sequence (pj :
j ∈ N). Thus infinitely many members pj of this sequence satisfy the inequal-
ity |pj − r| < ε. It follows that there exists a subsequence pm1 ,pm2 ,pm3 , . . . .
of the given sequence such that mj+1 > mj and |pmj

− r| < 1/j for each
positive integer j. This subsequence converges to the point r.

Each complex number determines a point of the Euclidean plane R2 whose
Cartesian coordinates are the real and imaginary parts of the complex num-
ber. Accordingly a sequence of complex numbers corresponds to a sequence
of points in R2, and converges if and only if the corresponding sequence
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of points in R2 converges. The following theorem is thus a special case of
Theorem 1.4.

Theorem 1.5 Every bounded sequence of complex numbers has a convergent
subsequence.

1.7 Cauchy Sequences

Definition A sequence x1,x2,x3, . . . of points in a Euclidean space is said to
be a Cauchy sequence if, given any ε > 0, there exists some natural number N
such that |xj − xk| < ε for all integers j and k satisfying j ≥ N and k ≥ N .

Lemma 1.6 Every convergent sequence in a Euclidean space is a Cauchy
sequence.

Proof Let x1,x2,x3, . . . be a sequence of points in a Euclidean space Rn

which converges to some point p of Rn. Given any ε > 0, there exists some
natural number N such that |xj − p| < ε/2 whenever j ≥ N . But then it
follows from the Triangle Inequality that

|xj − xk| ≤ |xj − p|+ |p− xk| <
ε

2
+

ε

2
= ε

whenever j ≥ N and k ≥ N .

Theorem 1.7 Every Cauchy sequence in Rn converges to some point of Rn.

Proof Let p1,p2,p3, . . . be a Cauchy sequence in Rn. Then, given any real
number ε satisfying ε > 0, there exists some natural number N such that
|pj − pk| < ε whenever j ≥ N and k ≥ N . In particular, there exists some
natural number L such that |pj − pk| < 1 whenever j ≥ L and k ≥ L. Let
R be the maximum of the numbers |p1|, |p2|, . . . , |pL−1| and |pL|+ 1. Then
|pj| ≤ R whenever j < L. Moreover if j ≥ L then

|pj| ≤ |pL|+ |pj − pL| < |pL|+ 1 ≤ R.

Thus |pj| ≤ R for all positive integers j. We conclude that the Cauchy
sequence (pj : j ∈ N) is bounded.

It now follows from the Bolzano-Weierstrass theorem in n dimensions
(Theorem 1.4) that the Cauchy sequence (pj : j ∈ N) has a convergent
subsequence (pkj

: j ∈ N), where k1, k2, k3, . . . are positive integers satisfying
k1 < k2 < k3 < · · ·. Let the point q of Rn be the limit of this subsequence.
Then, given any positive number ε satisfying ε > 0, there exists some positive
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integer M such that |pkm−q| < 1
2
ε whenever m ≥ M . Also there exists some

positive integer N such that |pj − pk| < 1
2
ε whenever j ≥ N and k ≥ N .

Choose m large enough to ensure that m ≥ M and km ≥ N . If j ≥ N then

|pj − q| ≤ |pj − pkm|+ |pkm − q| < 1
2
ε + 1

2
ε = ε.

It follows that the Cauchy sequence (pj : j ∈ N) converges to the point q.
Thus every Cauchy sequence is convergent, as required.

Theorem 1.8 (Cauchy’s Criterion for Convergence) A sequence of complex
numbers is convergent if and only if it is a Cauchy sequence.

Proof Every convergent sequence of complex numbers is a Cauchy sequence
(Lemma 1.6). Now every complex number corresponds to a point of the
Euclidean plane R2. Moreover a sequence of complex numbers is a Cauchy
sequence if and only if the corresponding sequence of points of R2 is a Cauchy
sequence. The result is therefore follows from Theorem 1.7.

1.8 Continuity

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f : X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some δ >
0 such that |f(x) − f(p)| < ε for all points x of X satisfying
|x− p| < δ.

The function f : X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Lemma 1.9 The functions s: R2 → R and p: R2 → R defined by s(x, y) =
x + y and p(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s: R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x + y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s: R2 → R is continuous at (u, v).
Next we show that p: R2 → R is continuous at (u, v). Now

p(x, y)− p(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v

10



for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |p(x, y) − p(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 is given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ < (1 + |u|+ |v|)δ < ε, and thus
|p(x, y)− p(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v) is
less than δ. This shows that p: R2 → R is continuous at (u, v).

Lemma 1.10 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, let
f : X → Y be a function mapping X into Y , and let g: Y → Z be a function
mapping Y into Z. Let p be a point of X. Suppose that f is continuous at
p and g is continuous at f(p). Then the composition function g ◦ f : X → Z
is continuous at p.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 1.10 guarantees that a composition of continuous functions be-
tween subsets of Euclidean spaces is continuous.

1.9 Convergent Sequences and Continuous Functions

Lemma 1.11 Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that
|f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the func-
tion f is continuous at p. Also there exists some natural number N such
that |xj − p| < δ whenever j ≥ N , since the sequence x1,x2,x3, . . . con-
verges to p. Thus if j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

Proposition 1.12 Let a1, a2, a3, . . . and b1, b2, b3, . . . be convergent infinite
sequences of complex numbers. Then the sum, difference and product of these
sequences are convergent, and

lim
j→+∞

(aj + bj) = lim
j→+∞

aj + lim
j→+∞

bj,
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lim
j→+∞

(aj − bj) = lim
j→+∞

aj − lim
j→+∞

bj,

lim
j→+∞

(ajbj) =

(
lim

j→+∞
aj

) (
lim

j→+∞
bj

)
.

If in addition bj 6= 0 for all n and lim
j→+∞

bj 6= 0, then the quotient of the

sequences (aj) and (bj) is convergent, and

lim
j→+∞

aj

bj

=
lim

j→+∞
aj

lim
j→+∞

bj

.

Proof Throughout this proof let l = lim
j→+∞

aj and m = lim
j→+∞

bj.

First of all, consider the case when aj and bj are real numbers for all
positive integers j. Then aj + bj = s(aj, bj) and ajbj = p(aj, bj), where
s: R×R → R and p: R×R → R are the functions given by s(x, y) = x+y and
p(x, y) = xy for all real numbers x and y. Now the sequence ((aj, bj) : j ∈ N)
is a sequence of points in R2 which converges to the point (l,m), since its
components are sequences of real numbers converging to the limits l and m
(Lemma 1.3). Also the functions s and p are continuous (Lemma 1.9). It
now follows from Lemma 1.11 that

lim
j→+∞

(aj + bj) = lim
j→+∞

s(aj, bj) = s

(
lim

j→+∞
(aj, bj)

)
= s(l,m) = l + m,

and

lim
j→+∞

(ajbj) = lim
j→+∞

p(aj, bj) = p

(
lim

j→+∞
(aj, bj)

)
= p(l,m) = lm.

Also the sequence (−bj : j ∈ N) converges to −m, and therefore lim
j→+∞

(aj −
bj) = l − m. Now the reciprocal function r: R \ {0} → R is continuous on
R \ {0}, where r(x) = 1/x for all non-zero real numbers x. It follows from
Lemma 1.11 that if bj 6= 0 for all positive integers j then 1/bj converges to
1/m as j → +∞. But then lim

j→+∞
(aj/bj) = l/m. This completes the proof of

Proposition 1.12 in the case when (aj : j ∈ N) and (bj : j ∈ N) are convergent
sequences of real numbers.

The result for convergent sequences of complex numbers now follows easily
on considering the real and imaginary parts of the sequences involved and
using the result that a sequence of complex numbers converges to a complex
number u + iv, where u and v are real numbers, if and only if the real parts
of those complex numbers converge to u and the imaginary parts converge
to v.
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1.10 Components of Continuous Functions

Let f : X → Rn be a function mapping a mapping a set X into n-dimensional
Euclidean space Rn. Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .

Proposition 1.13 Let X be a subset of some Euclidean space, and let p be
a point of X. A function f : X → Rn mapping X into the Euclidean space
Rn is continuous at p if and only if its components are continuous at p.

Proof Note that the ith component fi of f is given by fi = pi ◦ f , where
pi: Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn onto
its ith coordinate yi. It therefore follows immediately from Lemma 1.10 that
if f is continuous the point p, then so are the components of f .

Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Corollary 1.14 Let f : X → C be a complex-valued function defined on a
subset X of some Euclidean space. Then the function f is continuous if and
only if the real and imaginary parts of f are continuous real-valued functions
on X.

Proposition 1.15 Let f : X → R and g: X → R be real-valued functions
defined on some subset X of a Euclidean space, and let p be a point of X.
Suppose that the functions f and g are continuous at the point p. Then so
are the functions f + g, f − g and f · g. If in addition g(x) 6= 0 for all x ∈ X
then the quotient function f/g is continuous at p.

Proof Note that f + g = s ◦ h and f · g = p ◦ h, where h: X → R2,
s: R2 → R and p: R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u + v
and p(u, v) = uv for all x ∈ X and u, v ∈ R. If the functions f and g are
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continuous at p then so is the function h (Proposition 1.13). The functions
s and p are continuous on R2. It therefore follows from Lemma 1.10 that the
composition functions s◦h and p◦h are continuous at p. Thus the functions
f + g and f · g are continuous at p. Now f − g = f + (−g), and both f and
−g are continuous. Therefore f − g is continuous.

Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r: R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. It now follows on applying Lemma 1.10
that the function 1/g is continuous at p. The function f/g, being the product
of the functions f and 1/g is therefore continuous at p.

Proposition 1.16 Let f : X → C and g: X → C be complex-valued functions
defined on some subset X of a Euclidean space, and let p be a point of X.
Suppose that the functions f and g are continuous at the point p. Then so
are the functions f + g, f − g and f · g. If in addition g(x) 6= 0 for all x ∈ X
then the quotient function f/g is continuous at p.

Proof Let f(x) = u1(x) + iv1(x) and g(x) = u2 + iv2(x) for all x ∈ X,
where u1, u2, v1 and v2 are real valued functions on X. It follows from
Corollary 1.14 that the functions u1, u2, v1 and v2 are all continuous at p.
Now

f + g = (u1 + u2) + i(v1 + v2), f − g = (u1 − u2) + i(v1 − v2),

fg = (u1v1 − u2v2) + i(u1v2 + u2v1).

Moreover
1/g = (u2 − iv2)/(u

2
2 + v2

2),

provided that the function g is non-zero at all points of its domain. It there-
fore follows from repeated applications of Proposition 1.15 that the real and
imaginary parts of the functions f + g, f − g and fg are continuous at p.
The same is true of the function 1/g, provided that the function g is non-zero
throughout its domain. It then follows from Corollary 1.14 that the functions
f + g, f − g and fg are themselves continuous at p. Also f/g is continuous
at p, provided that the function g is non-zero throughout its domain.

1.11 Limits of Functions

Let X be a subset of some Euclidean space Rn, and let p be a point of Rn.
We say that the point p is a limit point of X if, given any real number δ
satisfying δ > 0, there exists a point x of X satisfying 0 < |x − p| < δ. It
follows easily from this that a point p of Rn is a limit point of X if and only
if there exists a sequence of points of X \{p} which converges to the point p.

14



Definition Let X be a subset of a Euclidean space Rm, let f : X → Rn

mapping X into a Euclidean space Rn, let p be a limit point of X, and let
q be a point of Rn. We say that q is the limit of f(x) as x tends to p in X
if, given any real number ε satisfying ε > 0, there exists some real number δ
satisfying δ > 0 such that |f(x) − q| < ε for all points x of X satisfying
0 < |x−p| < δ. If the point q is the limit of f(x) as x tends to p in X, then
we denote this fact by writing: q = lim

x→p
f(x).

Lemma 1.17 Let X and Y be subsets of Euclidean spaces, let f : X → Y be
a function from X to Y , and let p be a point of X that is also limit point of
X. Then the function f is continuous at p if and only if lim

x→p
f(x) = f(p).

Proof The result follows immediately on comparing the definitions of con-
vergence and of limits of functions.

Let X be a subset of some Euclidean space. A point p of X is said to be
an isolated point of X if it is not a limit point of X. A point p of X is an
isolated point of X if and only if there exists some real number δ satisfying
δ > 0 such that the only point of X whose distance from p is less than δ is the
point p itself. It follows directly from the definition of continuity that any
function between subsets of Euclidean space is continuous at all the isolated
points of its domain.

Lemma 1.18 Let X, Y and Z be subsets of Euclidean spaces, let p be a
limit point of X, and let f : X → Y and g: Y → Z be functions. Suppose that
lim
x→p

f(x) = q. Suppose also that the function g is defined and is continuous

at q. Then lim
x→p

g(f(x)) = g(q).

Proof The function g is continuous at q. Therefore there exists some η > 0
such that |g(y) − g(q)| < ε for all y ∈ Y satisfying |y − q| < η. But then
there exists some δ > 0 such that |f(x) − q| < η for all x ∈ X satisfying
0 < |x − p| < δ. Thus |g(f(x)) − g(q)| < ε for all x ∈ X satisfying
0 < |x− p| < δ, showing that lim

x→p
g(f(x)) = g(q), as required.

Let X be a subset of some Euclidean space, let f : X → Rn be a function
mapping X into n-dimensional Euclidean space Rn, let p be a limit point of
the set X, and let q be a point in Rn. Let f̃ : X ∪ {p} → Rn be the function
on X ∪ {p} defined such that

f̃(x) =

{
f(x) if x ∈ X \ {p};
q if x = p.

15



Then lim
x→p

f(x) = q if and only if the function f̃ is continuous at p. This

enables one to deduce basic results concerning limits of functions from the
corresponding results concerning continuity of functions.

The following result is thus a conseqence of Proposition 1.13.

Proposition 1.19 Let X be a subset of some Euclidean space, let f : X → Rn

be a function mapping X into n-dimensional Euclidean space Rn, let p be
a limit point of the set X, and let q be a point in Rn. Let the real-valued
functions f1, f2, . . . , fn be the components of f , so that

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, and let q = (q1, q2, . . . , qn). Then lim
x→p

f(x) = q if and only if

lim
x→p

fi(x) = qi for i = 1, 2, . . . , n.

The following result is a consequence of Proposition 1.16.

Proposition 1.20 Let X be a subset of some Euclidean space, let p be a
limit point of X, and let f : X → Rn and g: X → Rn be functions on X
taking values in some Euclidean space Rn. Suppose that the limits lim

x→p
f(x)

and lim
x→p

g(x) exist. Then

lim
x→p

(f(x) + g(x)) = lim
x→p

f(x) + lim
x→p

g(x),

lim
x→p

(f(x)− g(x)) = lim
x→p

f(x)− lim
x→p

g(x),

lim
x→p

(f(x)g(x)) =

(
lim
x→p

f(x)

) (
lim
x→p

g(x)

)
.

If moreover lim
x→p

g(x) 6= 0 and the function g is non-zero throughout its do-

main X then

lim
x→p

f(x)

g(x)
=

lim
x→p

f(x)

lim
x→p

g(x)
.

1.12 The Intermediate Value Theorem

Proposition 1.21 Let f : [a, b] → Z continuous integer-valued function de-
fined on a closed interval [a, b]. Then the function f is constant.
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Proof Let

S = {x ∈ [a, b] : f is constant on the interval [a, x]},

and let s = sup S. Now s ∈ [a, b], and therefore the function f is continuous
at s. Therefore there exists some real number δ satisfying δ > 0 such that
|f(x)− f(s)| < 1

2
for all x ∈ [a, b] satisfying |x− s| < δ. But the function f

is integer-valued. It follows that f(x) = f(s) for all x ∈ [a, b] satisfying
|x − s| < δ. Now s − δ is not an upper bound for the set S. Therefore
there exists some element x0 of S satisfying s − δ < x0 ≤ s. But then
f(s) = f(x0) = f(a), and therefore the function f is constant on the interval
[a, x] for all x ∈ [a, b] satisfying s ≤ x < s+δ. Thus x ∈ [a, b]∩ [s, s+δ) ⊂ S.
In particular s ∈ S. Now S cannot contain any elements x of [a, b] satisfying
x > s. Therefore [a, b] ∩ [s, s + δ) = {s}, and therefore s = b. This shows
that b ∈ S, and thus the function f is constant on the interval [a, b], as
required.

Theorem 1.22 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof Let c be a real number which lies between f(a) and f(b), and let
gc: R \ {c} → Z be the continuous integer-valued function on R \ {c} de-
fined such that gc(x) = 0 whenever x < c and gc(x) = 1 if x > c. Suppose
that c were not in the range of the function f . Then the composition func-
tion gc ◦ f : [a, b] → R would be a continuous integer-valued function defined
throughout the interval [a, b]. This function would not be constant, since
gc(f(a)) 6= gc(f(b)). But every continuous integer-valued function on the in-
terval [a, b] is constant (Proposition 1.21). It follows that every real number c
lying between f(a) and f(b) must belong to the range of the function f , as
required.

Corollary 1.23 Let f : [a, b] → [c, d] be a strictly increasing continuous func-
tion mapping an interval [a, b] into an interval [c, d], where a, b, c and d are
real numbers satisfying a < b and c < d. Suppose that f(a) = c and f(b) = d.
Then the function f has a continuous inverse f−1: [c, d] → [a, b].

Proof Let x1 and x2 be distinct real numbers belonging to the interval [a, b]
then either x1 < x2, in which case f(x1) < f(x2) or x1 > x2, in which case
f(x1) > f(x2). Thus f(x1) 6= f(x2) whenever x1 6= x2. It follows that the
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function f is injective. The Intermediate Value Theorem (Theorem 1.22)
ensures that f is surjective. It follows that the function f has a well-defined
inverse f−1: [c, d] → [a, b]. It only remains to show that this inverse function
is continuous.

Let y be a real number satisfying c < y < d, and let x be the unique real
number such that a < x < b and f(x) = y. Let ε > 0 be given. We can then
choose x1, x2 ∈ [a, b] such that x− ε < x1 < x < x2 < x + ε. Let y1 = f(x1)
and y2 = f(x2). Then y1 < y < y2. Choose δ > 0 such that δ < y − y1

and δ < y2 − y. If v ∈ [c, d] satisfies |v − y| < δ then y1 < v < y2 and
therefore x1 < f−1(v) < x2. But then |f−1(v) − f−1(y)| < ε. We conclude
that the function f−1: [c, d] → [a, b] is continuous at all points in the interior
of the interval [a, b]. A similar argument shows that it is continuous at the
endpoints of this interval. Thus the function f has a continuous inverse, as
required.

1.13 Uniform Convergence

Definition Let X be a subset of some Euclidean spaces, and let f1, f2, f3, . . .
be a sequence of functions mapping X into some Euclidean space Rn. The
sequence (fj) is said to converge uniformly to a function f : X → Rn on X
as j → +∞ if, given any real number ε satisfying ε > 0, there exists some
positive integer N such that |fj(x) − f(x)| < ε for all x ∈ X and for all
integers j satisfying j ≥ N (where the value of N is independent of x).

Theorem 1.24 Let f1, f2, f3, . . . be a sequence of continuous functions map-
ping some subset X of a Euclidean space into Rn. Suppose that this sequence
converges uniformly on X to some function f : X → Rn. Then this limit
function f is continuous.

Proof Let p be an element of X, and let ε > 0 be given. If j is chosen
sufficiently large then |f(x) − fj(x)| < 1

3
ε for all x ∈ X, since fj → f

uniformly on X as j → +∞. It then follows from the continuity of fj that
there exists some δ > 0 such that |fj(x)−fj(p)| < 1

3
ε for all x ∈ X satisfying

|x− p| < δ. But then

|f(x)− f(p)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(p)|+ |fj(p)− f(p)|
< 1

3
ε + 1

3
ε + 1

3
ε = ε

whenever |x−p| < δ. Thus the function f is continuous at p, as required.
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1.14 Open Sets in Euclidean Spaces

Let X be a subset of Rn. Given a point p of X and a non-negative real
number r, the open ball BX(p, r) in X of radius r about p is defined to be
the subset of X given by

BX(p, r) ≡ {x ∈ X : |x− p| < r}.

(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)

Definition Let X be a subset of Rn. A subset V of X is said to be open
in X if and only if, given any point p of V , there exists some δ > 0 such that
BX(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

In particular, a subset V of Rn is said to be an open set (in Rn) if and only
if, given any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V ,
where B(p, r) = {x ∈ Rn : |x− p| < r}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
Then H is an open set in R3. Indeed let p be a point of H. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.

The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}, {(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.
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Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3 of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .

Lemma 1.25 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof Let x be an element of BX(p, r). We must show that there exists
some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r− |x−p|. Then δ > 0,
since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Lemma 1.26 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number r, the set {x ∈ X : |x−p| > r} is an open set
in X.

Proof Let x be a point of X satisfying |x− p| > r, and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus BX(x, δ) is contained in the given set. The result follows.

Proposition 1.27 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;
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(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each natural number k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all natural
numbers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
natural numbers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.
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Lemma 1.28 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
natural number N such that xj ∈ U for all j satisfying j ≥ N .

Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some natural number N such
that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 1.25. Therefore there exists some
natural number N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of X that satisfy |x − p| < ε.
But there exists some natural number N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

1.15 Interiors

Definition Let X be a subset of some Euclidean space, and let A be a
subset of X. The interior of A in X is the subset of A consisting of those
points p of A for which there exists some positive real number δ such that
BX(p, δ) ⊂ A. (Here BX(p, δ) denotes the open ball in X of radius δ centred
on p.)

A straightforward application of Lemma 1.25 shows that if X is a subset
of some Euclidean space, and if A is a subset of X then the interior of A is
open in X.

1.16 Closed Sets in Euclidean Spaces

Let X be a subset of Rn. A subset F of X is said to be closed in X if and
only if its complement X \ F in X is open in X. (Recall that X \ F = {x ∈
X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.

Example Let X be a subset of Rn, and let x0 be a point of X. Then the
sets {x ∈ X : |x − x0| ≤ r} and {x ∈ X : |x − x0| ≥ r} are closed for
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each non-negative real number r. In particular, the set {x0} consisting of
the single point x0 is a closed set in X. (These results follow immediately
using Lemma 1.25 and Lemma 1.26 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 1.27.

Proposition 1.29 Let X be a subset of Rn. The collection of closed sets
in X has the following properties:—

(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Lemma 1.30 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X\F . It would then follow from Lemma 1.28
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

Lemma 1.31 Let F be a closed bounded set in Rn, and let U be an open set
in Rn. Suppose that F ⊂ U . Then there exists positive real number δ such
that |x− y| ≥ δ > 0 for all x ∈ F and y ∈ Rn \ U .

Proof Suppose that such a positive real number δ did not exist. Then
there would exist an infinite sequence (xj : j ∈ N) of points of F and a
correspondinding infinite sequence (yj : j ∈ N) of points of Rn \ U such
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that |xj − yj| < 1/j for all positive integers j. The sequence (xj : j ∈ N)
would be a bounded sequence of points of Rn, and would therefore have a
convergent subsequence (xmj

: j ∈ N) (Theorem 1.4). Let p = lim
j→+∞

xmj
.

Then p = lim
j→+∞

ymj
, because lim

j→+∞
(xmj

− ymj
) = 0. But then p ∈ F and

p ∈ Rn \ U , because the sets F and Rn \ U are closed (Lemma 1.30). But
this is impossible, as F ⊂ U . It follows that there must exist some positive
real number δ with the required properties.

1.17 Closures

Definition Let X be a subset of some Euclidean space Rn, and let A be a
subset of X. The closure of A in X is the subset of X consisting of all points
x of X with the property that, given any real number δ satisfying δ > 0,
there exists some point a of A such that |x− a| < δ. We denote the closure
of A in X by A.

Let X be a subset of some Euclidean space, and let A be a subset of
X. Note that a point x of X belongs to the closure of A in X if and only
if BX(x, δ) ∩ A is a non-empty set for all positive real numbers δ, where
BX(x, δ) denotes the open ball in X of radius δ centred on x consisting of
all points of X whose distance from x is less than δ.

Lemma 1.32 Let X be a subset of some Euclidean space, let A be a subset
of X, and let p be a point of the closure A of A in X. Then there exists an
infinite sequence of points in A which converges to p.

Proof For each positive integer j let xj be a point of A satisfying |p−xj| <
1/j. Then lim

j→+∞
xj = p.

Proposition 1.33 Let X be a subset of some Euclidean space Rn, and let
A be a subset of X. Then the closure A of A in X is closed in X. Moreover
if F is a subset of X which is closed in X, and if A ⊂ F then A ⊂ F .

Proof Let p be a point belonging to the complement X \A of A in X. Then
there exists some real number δ such that BX(p, 2δ) ∩ A = ∅. Let x be a
point of A. Then there exists some point a of A such that |x− a| < δ. Then

2δ ≤ |p− a| ≤ |p− x|+ |x− a| < |p− x|+ δ,

and therefore |p − x| > δ. This shows that BX(p, δ) ∩ A = ∅. We deduce
that the complement of A is open in X, and therefore A is closed in X.
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Now let F be a subset of X which is closed in X. Suppose that A ⊂ F .
Let p be a point belonging to the complement X \F of F in X. Then there
exists some real number δ satisfying δ > 0 for which BX(p, δ) ∩ F = ∅. But
then BX(p, δ) ∩ A = ∅ and therefore p 6∈ A. Thus X \ F ⊂ X \ A, and
therefore A ⊂ F , as required.

1.18 Continuous Functions and Open and Closed Sets

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a function
from X to Y . We recall that the function f is continuous at a point p of X
if, given any ε > 0, there exists some δ > 0 such that |f(u) − f(p)| < ε
for all points u of X satisfying |u − p| < δ. Thus the function f : X → Y
is continuous at p if and only if, given any ε > 0, there exists some δ > 0
such that the function f maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ)
and BY (f(p), ε) denote the open balls in X and Y of radius δ and ε about
p and f(p) respectively).

Given any function f : X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.
Proposition 1.34 Let X and Y be subsets of Rm and Rn, and let f : X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f : X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈
V . But V is open, hence there exists some ε > 0 with the property that
BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε) (see the remarks above).
Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that BX(p, δ) ⊂ f−1(V ). This
shows that f−1(V ) is open in X for every open set V in Y .

Conversely suppose that f : X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BY (f(p), ε) is
an open set in Y , by Lemma 1.25, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Let X be a subset of Rn, let f : X → R be continuous, and let c be some
real number. Then the sets {x ∈ X : f(x) > c} and {x ∈ X : f(x) < c}
are open in X, and, given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f(x) < b} is open in X.
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1.19 Continuous Functions on Closed Bounded Sets

We shall prove that continuous functions between subsets of Euclidean spaces
map closed bounded sets to closed bounded sets.

Lemma 1.35 Let X be a closed bounded subset of some Euclidean space Rm,
and let f : X → Rn be a continuous function mapping X into some Euclidean
space Rn. Then there exists some non-negative real number M such that
|f(x)| ≤ M for all x ∈ X.

Proof Let f : X → Rn be a continuous function defined on some closed set X
in Rm. Suppose that the function f is not bounded on X. We shall prove
that the domain X of f must then be unbounded.

Now if the function f is not bounded on X then there must exist a se-
quence (xj : j ∈ N) of points of X such that |f(xj)| > j for all positive inte-
gers j. If (xmj

: j ∈ N) were a subsequence of (xj : j ∈ N) converging to some
point p of Rm, then p would belong to X, since X is closed (Lemma 1.30).
Then lim

j→+∞
f(xmj

) = f(p), and therefore |f(xmj
)| ≤ |f(p)| + 1 for all suffi-

ciently large positive integers j. But this is impossible because |f(xj)| > j
for all positive integers j. Thus the sequence (xj : j ∈ N) cannot have any
convergent subsequences. Now every bounded sequence of points in Rm has
a convergent subsequence (Theorem 1.4). It follows that (xj : j ∈ N) is not
a bounded sequence of points in Rm, and therefore X is an unbounded set.

It follows from this that if the domain X of the continuous function
f : X → Rn is both closed and bounded then the function f must be bounded
on X, as required.

Theorem 1.36 Let X be a closed bounded set in some Euclidean space, and
let f : X → Rn be a continuous function mapping X into some Euclidean
space Rn. Then the function f maps X onto a closed bounded set f(X) in
Rn.

Proof It follows from Lemma 1.35 that the set f(X) must be bounded.
Let q be a point belonging to the closure f(A) of f(A). Then there

exists a sequence (xj : j ∈ N) of points of X such that lim
j→+∞

f(xj) = q

(Lemma 1.32). Because the set X is both closed and bounded, this sequence
is a bounded sequence in Euclidean space, and therefore has a convergent
subsequence (xmj

: j ∈ N) (Theorem 1.4). Let p = lim
j→+∞

xmj
. Then p ∈ X,

because X is closed (Lemma 1.30). But then q = lim
j→+∞

f(xmj
) = f(p), and

therefore q ∈ f(A). Thus every point of the closure of f(A) belongs to f(A)
itself, and therefore f(A) is closed, as required.
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1.20 Uniform Continuity

Definition Let X and Y be subsets of Euclidean spaces. A function f : X →
Y from X to Y is said to be to be uniformly continuous if, given any ε > 0,
there exists some δ > 0 (which does not depend on either x′ or x) such that
|f(x′)− f(x)| < ε for all points x′ and x of X satisfying |x′ − x| < δ.

Theorem 1.37 Let X be a subset of Rm that is both closed and bounded.
Then any continuous function f : X → Rn is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0 such
that |f(x′)− f(x)| < ε for all points x′,x ∈ X satisfying |x′− x| < δ. Then,
for each natural number j, there would exist points uj and vj in X such
that |uj −vj| < 1/j and |f(uj)− f(vj)| ≥ ε. But the sequence u1,u2,u3, . . .
would be bounded, since X is bounded, and thus would possess a subsequence
uj1 ,uj2 ,uj3 , . . . converging to some point p (Theorem 1.4). Moreover p ∈ X,
since X is closed. The sequence vj1 ,vj2 ,vj3 , . . . would also converge to p,
since lim

k→+∞
|vjk

− ujk
| = 0. But then the sequences f(uj1), f(uj2), f(uj3), . . .

and f(vj1), f(vj2), f(vj3), . . . would converge to f(p), since f is continuous
(Lemma 1.11), and thus lim

k→+∞
|f(ujk

)− f(vjk
)| = 0. But this is impossible,

since uj and vj have been chosen so that |f(uj) − f(vj)| ≥ ε for all j. We
conclude therefore that there must exist some δ > 0 such that |f(x′)−f(x)| <
ε for all points x′,x ∈ X satisfying |x′ − x| < δ, as required.
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