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1. (a) What is meant by saying that a subset X of the complex plane is an open set?

What is meant by saying that a subset X of the complex plane is a closed set?

(b) Let w be a complex number, and let r be a positive real number. Prove that the

open disk {z ∈ C : |z − w| < r} is an open set in the complex plane.

(c) Determine which of the following subsets of the complex plane are open sets, and

which are closed sets:

(i) the set {z ∈ C : |z − 2| < 1 or |z − 5| ≤ 1};

(ii) the set {z ∈ C : |z − 2| < 1 or |z − 5| < 1};

(iii) the set {z ∈ C : |z − 2| ≥ 1 and |z − 5| ≥ 1}.

[Briefly justify your answers.]

2. (a) Give the definition of the winding number n(γ, w) of a closed path γ: [a, b] → C

about some point w of the complex plane that does not lie on γ.

(b) State and prove the Fundamental Theorem of Algebra.

[You may use without proof the result that if γs: [a, b] → C is a closed path for

each real number s in some interval [c, d], then the value of the winding number

n(γs, w) of γs about some complex number w is independent of the value of s,

provided that γs(t) is a continuous function of s and t, and provided also that

none of the paths γs passes through w.]
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3. (a) Let f : D → C be a function defined over an open set D in the complex plane. What

is meant by saying that the function f is holomorphic? What is the derivative of

a holomorphic function?

(b) Let f : D → C be a function defined on an open set D in the complex plane. Prove

that f is holomorphic on D if and only if, given any complex number w belonging

to D, and given any positive real number ε, there exists some real positive number δ

such that |f(z)− f(w)− (z − w)f ′(w)| ≤ ε|z − w| whenever |z − w| < δ.

(c) Describe the Cauchy-Riemann equations satisfied by a holomorphic function, and

explain why any holomorphic function satisfies these equations.

4. (a) What is meant by saying that an open set D in the complex plane is star-shaped?

(b) Let f : D → C be a continuous complex-valued function defined over a star-shaped

open set D in C. Suppose that ∫
∂T

f(z) dz = 0

for all closed triangles T contained in D (where the above denotes the path integral

of the function f taken around the boundary of the triangle T in the anti-clockwise

direction). Prove that there exists a holomorphic function F : D → C such that

f(z) = F ′(z) for all z ∈ D.

(c) State and prove Cauchy’s Theorem for star-shaped domains. [You may use, without

proof, the fact that the path integral of a holomorphic function taken around the

boundary of a triangle in the complex plane is zero, provided that the triangle is

contained in the domain of the holomorphic function.]
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5. Use the method of contour integration to evaluate∫ +∞

−∞

eisx

x2 + 2x + 5
dx

and ∫ +∞

−∞

eisx

x4 + 2x2 + 1
dx

when s is a real number satisfying s > 0.

[Briefly justify your answers. You may use, without proof, the result that if R is a

positive real number, if f is a continuous complex-valued function defined everywhere

on the semicircle SR, where

SR = {z ∈ C : |z| = R and Im[z] ≥ 0},

and if there exists a non-negative real number M(R) such that |f(z)| ≤ M(R) for all

z ∈ SR then ∣∣∣∣∫
σR

f(z)eisz dz

∣∣∣∣ ≤ πM(R)

s

for all s > 0, where σR: [0, π] → C is the path with [σR] = SR defined such that

σR(θ) = Reiθ for all θ ∈ [0, π].]

6. (a) What is an elliptic function?

(b) What is a fundamental region for an elliptic function?

(c) Let f be an elliptic function, and let X be a fundamental region for f . Prove

that the sum of the residues of f at those poles of f located in the fundamental

region X is zero.
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