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7 Basic Properties of Holomorphic Functions

7.1 Taylor’s Theorem for Holomorphic Functions

Theorem 7.1 (Taylor’s Theorem for Holomorphic Functions) Let w be a
complex number, let r be a positive real number, and let f: D, , — C be a
holomorphic function on the open disk D, , of radius r about w. Then the
function f may be differentiated any number of times on D, ., and there exist

complex numbers ag, a1, as, ... such that
+00
f(z) = an(z —w)".
n=0
Moreover -
" 1
ay, = / ('w) = _/ —f(Z)n+l dz,
n! 2mi J, (2 —w)

where R is any real number satisfying 0 < R < r and yg:[0,1] — D, is the
closed path defined such that yr(t) = w + Re*™™ for all t € [0,1].

Proof Choose a real number R satisfying 0 < R < r, and let 2z be a complex
number satisfying |z — w| < R. It follows from Corollary 6.18 that

L IO}

f(2>:2m. VRQ_ZdC-
Now
1 1 iy
c—z:c—wxl_ —w Zc wn+l
—w
and
(z—w)" | 1 [lz=w\"
o w ()

for all ¢ € C satisfying |( — w| = R. Moreover |z — w| < R, and therefore

R
M-Test (Proposition 2.8), we find that the infinite series

+ n
Z—w
the infinite series E (| |> is convergent. On applying the Weierstass

Zf(()(Z—W)

— (C _ w)nJrl

72



converges uniformly in ¢ on the circle {( € C : |( — w| = R}. It follows that
I T A ((S R S B R N CEk O (S
f(z) = %/mcjdc—%/m (; (¢ — w)rt! > dg
—+00 . n

(z — w) f(©)
- Z 271 /(C—w)"Jrl dc.

n=0 TR

provided that |z — w| < R. (The interchange of integration and summa-
tion above is justified by the uniform convergence of the infinite series of
continuous functions occuring in the integrand.) The choice of R satisfying

+oo
0 < R < risarbitrary. Thus f(z) = >_ a,(z—w)" for all complex numbers z
n=0
satisfying |z — w| < r, where the coefficients of this power series are given by
the formula
1 f(z)

= o g (2 —w)ntt dz.
It then follows directly from Corollary 5.7 that the function f can be differ-
entiated any number of times on the open disk D,,,, and a, = f™(w)/n!
for all positive integers n. |}

Corollary 7.2 (Cauchy’s Inequalities) Let Z;’:og a,z" be a power series, and
let R be a positive real number that does not exceed the radius of convergence
of the power series. Let f(z) = ;;Og a,z" for all complex numbers z for
which the power series converges. Suppose that |f(z)| < M for all complex
numbers z satisfying |z| = R. Then |a,] < MR™ and thus |f™(0)] <

n!MR™™ for all non-negative integers n.

Proof It follows from Lemma 4.2 that

|an| = o
T
where vg: [0, 1] — C denotes the closed path of length 27 R defined such that
vr(t) = Re*™ for all t € [0,1]. Therefore |f™(0)| = n!la,| < n!MR™, as
required. ||

<1>< ><2R—M
- 27 Rntl T R’

7.2 Liouville’s Theorem

Theorem 7.3 (Liouville’s Theorem) Let f:C — C be a holomorphic func-
tion defined over the entire complex plane. Suppose that there exists some
non-negative real number M such that |f(2)| < M for all z € C. Then the
function f is constant on C.
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Proof It follows from Theorem 7.1 that there exists an infinite sequence
ao, ai, az, ... of complex numbers such that f(z) = Z a,z" for all z € C.

Cauchy’s Inequalities then ensure that |a,| < MR~ “n for all non-negative
integers n and for all positive real numbers R (see Corollary 7.2). This
requires that a,, = 0 when n > 0. Thus f is constant on C, as required. |}

7.3 Laurent’s Theorem

Theorem 7.4 (Laurent’s Theorem) Let r be a positive real number, and let
f be a holomorphic function on Dy, where Dy, = {z € C:0 < |z| < r}.
Then there exist complex numbers a,, for all integers n such that

+o0

f() Zanz +Z 2"

n=0
for all complex numbers z satisfying 0 < |z| < r. Moreover

RN oM

- ; n+1
27 vr ?

n

for all integers n, where R is any real number satisfying 0 < R < r and
Yr:10,1] — Dy, is the closed path defined such that yg(t) = Re*™ for all
te[0,1].

Proof Choose real numbers Ry and R, such that 0 < R; < Ry < r, and,
for each real number R satisfying 0 < R < r, let yg: [0,1] — C be the closed
path defined such that yz(t) = Re?™™ for all t € [0,1]. A straightforward
application of Theorem 6.16 shows that follows from Corollary 6.18 that

R N (S (5]

211 YRy (—z 2mi Ry C

~d¢
for all z € C satisfying Ry < |z| < Ry. But
+00 n
-5
— Cn—l—l

when |z| < Ry and || = Ry, and moreover the infinite series on the right-

hand side of this equality converges uniformly in (, for values of  that lie on
the circle |¢| = Ry. Also

1 +00 Cnfl

— n
g < n=1 o
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when |z| > Ry and || = Ry, and the infinite series on the right-hand side of

this equality converges uniformly in ¢, for values of ¢ that lie on the circle
|| = Ry. Tt follows that

o f(€) 1 f(Q)
10 = 55, «—de‘% et

¢

n

- Z% W <+Z S IR LGS
= Zanz +Z a_pz ",

n=0

when R; < |z| < R, where
1
Ay = 2—/ % dz
T o, 2

1 f(2)

271 - zntl

when n < 0, and

apn =

when n < 0. A straightforward apphca‘mon of Corollary 6.12 shows that
£) 4

ap = —
" 2mi vy 27T

for all integer n, where R is any real number satisfying 0 < R < r. The

result follows. |

7.4 Morera’s Theorem

Theorem 7.5 (Morera’s Theorem) Let f: D — C be a continuous function
defined over an open set D in C. Suppose that

f(z2)dz =
oT
for all closed triangles T contained in D. Then f is holomorphic on D.

Proof Let D; be an open disk with D; C D. It follows from Proposition 6.5
that there exists a holomorphic function F: D; — R such that f(z) = F'(2)
for all z € D;. But it follows from Theorem 7.1 and Corollary 5.7 that
the derivative of a holomorphic function is itself a holomorphic function.
Therefore the function f is holomorphic on the open disk D;. It follows that
the derivative of f exists at every point of D, and thus f is holomorphic
on D, as required. |
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7.5 Meromorphic Functions

Definition Let f be a complex-valued function defined over some subset of
the complex plane, and let w be a complex number. The function f is said to
be meromorphic at w if there exists an integer m, a positive real number r,
and a holomorphic function g on the open disk D, , of radius r about w
such that f(z) = (z —w)™g(z) for all z € D,,,. The function f is said to be
meromorphic on some open set D if it is meromorphic at each element of D.

Holomorphic functions are meromorphic.

Let w be a complex number, and let f be a complex-valued function
that is meromorphic at w, but is not identically zero over any open set
containing w. Then there exists an integer mg, a positive real number r,
and a holomorphic function gy on the open disk D,,, of radius r about w
such that f(z) = (# — w)™go(2) for all z € D,,. Now it follows from
Theorem 7.1 (Taylor’s Theorem) that there exists a sequence ay, as, ag, . . . of

+00
complex numbers such that the power series > a,(z—w)" converges to go(2)

n=0
for all z € D,,,. Let k be the smallest non-negative integer for which a;, # 0.
+o0
Then go(2) = (z—w)*g(z) for all z € D,, ., where g(z) = >_ an(z—w)"* Let
n=k
m = mgy + k. Then f(z) = (z — w)™g(z) where ¢ is a holomorphic function

on D,,, and g(w) # 0. The value of m is uniquely determined by f and w.
If m > 0 we say that the function f has a zero of order m at w. If m < 0, we
say that f has a pole of order —m at w. A pole is said to be a simple pole if
it is of order 1.

The following result is a direct consequence of Theorem 7.1 (Taylor’s
Theorem) and the definition of a meromorphic function.

Lemma 7.6 Let w be a complex number, and let f be a function defined on
Dy, \ {w} for some r > 0, where D,,, is the open disk of radius r about
w. Suppose that f is not identically zero throughout D, \ {w}. Then the
function f is meromorphic at w if and only if there exists an integer m and

complex numbers G, Gy, Gmyo, - .. such that
+oo
f2) =) an(z—w)"
n=m

for all z € Dy, in which case Res,(f) = a_;.
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7.6 Zero Sets of Holomorphic Functions

Let D be an open set in the complex plane, let f: D — C be a holomorphic
function on D, and let w be a complex number belonging to the set D. We
say that the function f is identically zero throughout some neighbourhood of
w if there exists some positive real number ¢ such that f(z) = 0 for all z € D
satisfying |z — w| < §. Also we say that w is an isolated zero of f if there
exists some positive real number 0 such that f(z) # 0 for all z € D satisfying
0 <|z—w| <d. If fisnot identically zero throughout some neighbourhood
of w then there exists some non-negative integer m and some holomorphic
function ¢ such that g(w) # 0 and f(z) = (2 — w)™g(z) for all z € D. If
m = 0 then the function f is non-zero at w. If m > 0 then the function f
has an isolated zero at w. The following result follows immediately.

Lemma 7.7 Let D be an open set in the complex plane, let f: D — C be a
holomorphic function on D, and let w be a complex number belonging to the
set D. Then either the function f is non-zero at w, or f has an isolated zero
at w, or f is identically zero throughout some neighbourhood of w.

Lemma 7.8 Let D be a path-connected open set in the complex plane, and
let U and V' be open sets in the complex plane. Suppose that U UV = D and
UNV =0. Then either U =0 or V = 0.

Proof Let g: D — {0,1} be the function on D defined such that g(z) = 0
for all z € U and ¢g(z) = 1 for all z € V. We first prove that this function g is
continuous on D. Let w be a complex number belonging to the open set D. If
w € U then there exists a positive real number ¢ such that {z € C' : |z—w| <
0} C U, because U is an open set. Similarly if w € V then there exists a
positive real number 0 such that {z € C': |z —w| < §} C V. It follows that,
given any element w of D, there exists some positive real number  such that
z € D and g(z) = g(w) for all complex numbers z satisfying |z — w| < J. It
follows directly from this that the function g: D — {0,1} is continuous on
the path-connected open set D.

Suppose that the sets U and V' were both non-empty. Let zy € U and
z1 € V. Now the open set D is path-connected. Therefore there would
exist a path 7:[0,1] — D with v(0) = zy and (1) = z;. The function
gov:[0,1] — {0,1} would then be a non-constant integer-valued continuous
function on the interval [0, 1]. But this is impossible, since every continuous
integer-valued function on [0, 1] is constant (Proposition 1.17). It follows
that at least one of the sets U and V must be empty, as required. |}
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Theorem 7.9 Let D be a path-connected open set in the complex plane, and
let f: D — C be a holomorphic function on D. Suppose there exists some
non-empty open subset Dy of D such that f(z) = 0 for all z € Dy. Then
f(2) =0 forall z € D.

Proof Let U be the set of all complex numbers w belonging to D with
the property that the function f is identically zero in a neighbourhood of
w. Now the set U is an open set in the complex plane, for if w is a complex
number belonging to U then there exists some real number § such that z € D
and f(z) = 0 for all complex numbers z satisfying |z — w| < 2§. But then
the function f is identically zero in a neighbourhood of w; for all complex
numbers w; satisfying |w; — w| < 4§, for if z is a complex number satisfying
|z —wi| < § then |z — w| < 20 and therefore f(z) = 0. It follows from this
that the set U is an open set in the complex plane.

Now let V' be the complement D \ U of U in D, and let w be a complex
number belonging to V. Now the function f is not identically zero in a
neighbourhood of w. It therefore follows from Lemma 7.7 that either f(z) #
0, or else the function f has an isolated zero at w. It follows that there
exists some positive real number ¢ such that the function f is defined and
non-zero throughout the set {z € C': 0 < |z — w| < 0}. But then {z € C':
0 < |z—w| <d} C V. We conclude from this that V' is an open set. Now
D is the union of the open sets U and V, and U NV = (). It follows from
Lemma 7.8 that either U =0 or V = .

Now the open set U is non-empty, since D; C U. Therefore V = 0,
and thus U = D. It follows immediately from this that the function f is
identically zero throughout D as required. |j

Corollary 7.10 Let D be a path-connected open set in the complex plane,
and let f:D — C and g: D — C be holomorphic functions on D. Suppose
there exists some non-empty open subset Dy of D such that f(z) = g(z) for
all z € Dy. Then f(z) = g(z) for all z € D.

Proof The result follows immediately on applying Theorem 7.9 to the func-
tion f—g. |}

7.7 The Maximum Modulus Principle

Proposition 7.11 (Maximum Modulus Principle) Let f: D — C be a holo-
morphic function defined over a path-connected open set D in the complex
plane. Suppose that the real-valued function on D sending z € D to |f(2)| at-
tains a local maximum at some point w of D. Then f is constant throughout

D.
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Proof Suppose that f is not constant throughout D. It follows from Corol-
lary 7.10 that f cannot be constant over any open subset of D.

Let u(z) = |f(2)] for all z € D, and let w be an element of D. Then
the holomorphic function that sends z € D to f(z) — f(w) has a zero at
w. This zero is an isolated zero of order m for some positive integer m,
and there exists a holomorphic function g on D such that g(w) # 0 and
f(z) = f(w) + (z —w)™g(z) for all z € D. If f(w) = 0 then w is not a
local maximum for the function u, since f(z) # 0 for all complex numbers z
that are distinct from w but sufficiently close to w. Suppose therefore that
f(w) # 0. Then there exists a complex number « such that |a| = 1 and
a™g(w) f(w)~! is a positive real number. It then follows from the continuity
of g that a™g(2) f(w)~! has a positive real part when z is sufficiently close to
w. But then |1+t"a™g(w+ta)f(w) | > 1 for all sufficiently small positive
real numbers t. It follows that |f(w + ta)| > |f(w)] for all sufficiently small
positive real numbers ¢, and therefore the function u does not have a local
maximum at w. Thus if f is not constant on D then the function u that
sends z € D to |f(z)| does not have a local maximum at any element of D.
The result follows. |}

7.8 The Argument Principle

Theorem 7.12 (The Argument Principle) Let D be a simply-connected open
set in the complex plane and let f be a meromorphic function on D whose
zeros and poles are located at wy,ws, ..., ws. Let my, mo, ..., ms be integers,
determined such that m; = k if f has a zero of order k at w;, and m; = —k
if f has a pole of order k at w;. Let ~y:[a,b] — D be a piecewise continuously

differentiable closed path in D which does not pass through any zero or pole
of f. Then

f'(2)
f(2)

1 S
n(for0) =5 [ 8 as = Y minla )
vy j=1

Proof It follows from Proposition 6.2 that

w(fon0) = = [ Lo L [,

Wz ), FO0)
LG 1 (e,
ori ), Fo) 2w ) i) ¢

Let F(z) = f'(2)f(z)"! for all z € D\ {wy,...,ws}. Suppose that f(z) =
(z — w;)™g,(z), where g; is holomorphic over some open disk of positive

t
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radius centred on w; and g;(w;) # 0. Then

I'(2) m; n 9;(2)

fl2)  z—w o gi(2)

for all complex numbers z that are not equal to w but are sufficiently close to
w. Moreover the function sending z to ¢'(2)g~'(z) is holomorphic around w.
It follows that the function F' has a simple pole at w;, and that the residue
of F' at w; is m;. It therefore follows from Corollary 6.17 that

n(for0) = 5o [ F2) e = 3" myny,wy),

as required. |
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