Course 214
Basic Properties of Holomorphic Functions
Second Semester 2008

David R. Wilkins

Copyright © David R. Wilkins 1989–2008

Contents

7 Basic Properties of Holomorphic Functions 72
 7.1 Taylor’s Theorem for Holomorphic Functions 72
 7.2 Liouville’s Theorem . 73
 7.3 Laurent’s Theorem . 74
 7.4 Morera’s Theorem . 75
 7.5 Meromorphic Functions . 76
 7.6 Zero Sets of Holomorphic Functions 77
 7.7 The Maximum Modulus Principle 78
 7.8 The Argument Principle . 79
7 Basic Properties of Holomorphic Functions

7.1 Taylor’s Theorem for Holomorphic Functions

Theorem 7.1 (Taylor’s Theorem for Holomorphic Functions) Let \(w \) be a complex number, let \(r \) be a positive real number, and let \(f: D_{w,r} \to \mathbb{C} \) be a holomorphic function on the open disk \(D_{w,r} \) of radius \(r \) about \(w \). Then the function \(f \) may be differentiated any number of times on \(D_{w,r} \), and there exist complex numbers \(a_0, a_1, a_2, \ldots \) such that

\[
f(z) = \sum_{n=0}^{+\infty} a_n (z - w)^n.
\]

Moreover

\[
a_n = \frac{f^{(n)}(w)}{n!} = \frac{1}{2\pi i} \int_{\gamma_{\mathcal{R}}} \frac{f(z)}{(z - w)^{n+1}} dz,
\]

where \(\mathcal{R} \) is any real number satisfying \(0 < \mathcal{R} < r \) and \(\gamma_{\mathcal{R}}: [0,1] \to D_{w,r} \) is the closed path defined such that \(\gamma_{\mathcal{R}}(t) = w + Re^{2\pi it} \) for all \(t \in [0,1] \).

Proof Choose a real number \(R \) satisfying \(0 < \mathcal{R} < r \), and let \(z \) be a complex number satisfying \(|z - w| < \mathcal{R} \). It follows from Corollary 6.18 that

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma_{\mathcal{R}}} \frac{f(\zeta)}{\zeta - z} d\zeta.
\]

Now

\[
\frac{1}{\zeta - z} = \frac{1}{\zeta - w} \times \frac{1}{1 - \frac{z - w}{\zeta - w}} = \sum_{n=0}^{+\infty} \frac{(z - w)^n}{(\zeta - w)^{n+1}}
\]

and

\[
\left| \frac{(z - w)^n}{(\zeta - w)^{n+1}} \right| = \frac{1}{R} \left(\frac{|z - w|}{R} \right)^n
\]

for all \(\zeta \in \mathbb{C} \) satisfying \(|\zeta - w| = \mathcal{R} \). Moreover \(|z - w| < \mathcal{R} \), and therefore the infinite series \(\sum_{n=0}^{+\infty} \left(\frac{|z - w|}{R} \right)^n \) is convergent. On applying the Weierstass M-Test (Proposition 2.8), we find that the infinite series

\[
\sum_{n=0}^{+\infty} \frac{f(\zeta)(z - w)^n}{(\zeta - w)^{n+1}}
\]
converges uniformly in ζ on the circle \(\{ \zeta \in \mathbb{C} : |\zeta - w| = R \} \). It follows that

\[
f(z) = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_R} \left(\sum_{n=0}^{+\infty} \frac{(z - w)^n f(\zeta)}{(\zeta - w)^{n+1}} \right) d\zeta
\]

provided that \(|z - w| \leq R\). (The interchange of integration and summation above is justified by the uniform convergence of the infinite series of continuous functions occurring in the integrand.) The choice of R satisfying $0 < R < r$ is arbitrary. Thus $f(z) = \sum_{n=0}^{+\infty} a_n (z - w)^n$ for all complex numbers z satisfying \(|z - w| < r\), where the coefficients of this power series are given by the formula

\[
a_n = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(z)}{(z - w)^{n+1}} dz.
\]

It then follows directly from Corollary 5.7 that the function f can be differentiated any number of times on the open disk $D_{w,r}$, and $a_n = f^{(n)}(w)/n!$ for all positive integers n.

Corollary 7.2 (Cauchy’s Inequalities) Let $\sum_{n=0}^{+\infty} a_n z^n$ be a power series, and let R be a positive real number that does not exceed the radius of convergence of the power series. Let $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ for all complex numbers z for which the power series converges. Suppose that $|f(z)| \leq M$ for all complex numbers z satisfying $|z| = R$. Then $|a_n| \leq MR^{-n}$ and thus $|f^{(n)}(0)| \leq n!MR^{-n}$ for all non-negative integers n.

Proof It follows from Lemma 4.2 that

\[
|a_n| = \frac{1}{2\pi} \left| \int_{\gamma_R} \frac{f(z)}{(z - w)^{n+1}} dz \right| \leq \frac{1}{2\pi} \times \frac{M}{R^{n+1}} \times 2\pi R = \frac{M}{R^n},
\]

where $\gamma_R : [0, 1] \to \mathbb{C}$ denotes the closed path of length $2\pi R$ defined such that $\gamma_R(t) = Re^{2\pi it}$ for all $t \in [0, 1]$. Therefore $|f^{(n)}(0)| = n!|a_n| \leq n!MR^{-n}$, as required.

7.2 Liouville’s Theorem

Theorem 7.3 (Liouville’s Theorem) Let $f : \mathbb{C} \to \mathbb{C}$ be a holomorphic function defined over the entire complex plane. Suppose that there exists some non-negative real number M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Then the function f is constant on \mathbb{C}.
Proof It follows from Theorem 7.1 that there exists an infinite sequence
a_0, a_1, a_2, \ldots of complex numbers such that
$f(z) = \sum_{n=0}^{\infty} a_n z^n$ for all $z \in \mathbb{C}$.
Cauchy’s Inequalities then ensure that $|a_n| \leq MR^{-n}$ for all non-negative integers n and for all positive real numbers R (see Corollary 7.2). This
requires that $a_n = 0$ when $n > 0$. Thus f is constant on \mathbb{C}, as required.

7.3 Laurent’s Theorem

Theorem 7.4 (Laurent’s Theorem) Let r be a positive real number, and let f be a holomorphic function on $D_{0,r}$, where $D_{0,r} = \{z \in \mathbb{C} : 0 < |z| < r\}$. Then there exist complex numbers a_n for all integers n such that

$$f(z) = \sum_{n=0}^{\infty} a_n z^n + \sum_{n=1}^{\infty} a_{-n} z^{-n}$$

for all complex numbers z satisfying $0 < |z| < r$. Moreover

$$a_n = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta,$$

for all integers n, where R is any real number satisfying $0 < R < r$ and $\gamma_R : [0, 1] \to D_{0,r}$ is the closed path defined such that $\gamma_R(t) = Re^{2\pi it}$ for all $t \in [0, 1]$.

Proof Choose real numbers R_1 and R_2 such that $0 < R_1 < R_2 < r$, and, for each real number R satisfying $0 < R < r$, let $\gamma_R : [0, 1] \to \mathbb{C}$ be the closed path defined such that $\gamma_R(t) = Re^{2\pi it}$ for all $t \in [0, 1]$. A straightforward application of Theorem 6.16 shows that follows from Corollary 6.18 that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{R_2}} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_{R_1}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

for all $z \in \mathbb{C}$ satisfying $R_1 < |z| < R_2$. But

$$\frac{1}{\zeta - z} = \sum_{n=0}^{\infty} \frac{z^n}{\zeta^{n+1}}$$

when $|z| < R_2$ and $|\zeta| = R_2$, and moreover the infinite series on the right-hand side of this equality converges uniformly in ζ, for values of ζ that lie on the circle $|\zeta| = R_2$. Also

$$\frac{1}{\zeta - z} = -\sum_{n=1}^{\infty} \frac{\zeta^{n-1}}{z^n}$$

74
when $|z| > R_1$ and $|\zeta| = R_1$, and the infinite series on the right-hand side of this equality converges uniformly in ζ, for values of ζ that lie on the circle $|\zeta| = R_1$. It follows that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma R_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma R_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{+\infty} \frac{z^n}{2\pi i} \int_{\gamma R_2} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta + \sum_{n=1}^{+\infty} \frac{z^{-n}}{2\pi i} \int_{\gamma R_1} f(\zeta) \zeta^{n-1} d\zeta$$

when $R_1 < |z| < R_2$, where

$$a_n = \frac{1}{2\pi i} \int_{\gamma R_2} \frac{f(z)}{z^{n+1}} dz$$

when $n \leq 0$, and

$$a_n = \frac{1}{2\pi i} \int_{\gamma R_1} \frac{f(z)}{z^{n+1}} dz$$

when $n < 0$. A straightforward application of Corollary 6.12 shows that

$$a_n = \frac{1}{2\pi i} \int_{\gamma R} \frac{f(z)}{z^{n+1}} dz,$$

for all integer n, where R is any real number satisfying $0 < R < r$. The result follows.

7.4 Morera’s Theorem

Theorem 7.5 (Morera’s Theorem) Let $f: D \to \mathbb{C}$ be a continuous function defined over an open set D in \mathbb{C}. Suppose that

$$\int_{\partial T} f(z) \, dz = 0$$

for all closed triangles T contained in D. Then f is holomorphic on D.

Proof Let D_1 be an open disk with $D_1 \subset D$. It follows from Proposition 6.5 that there exists a holomorphic function $F: D_1 \to \mathbb{R}$ such that $f(z) = F'(z)$ for all $z \in D_1$. But it follows from Theorem 7.1 and Corollary 5.7 that the derivative of a holomorphic function is itself a holomorphic function. Therefore the function f is holomorphic on the open disk D_1. It follows that the derivative of f exists at every point of D, and thus f is holomorphic on D, as required.
7.5 Meromorphic Functions

Definition Let f be a complex-valued function defined over some subset of the complex plane, and let w be a complex number. The function f is said to be meromorphic at w if there exists an integer m, a positive real number r, and a holomorphic function g on the open disk $D_{w,r}$ of radius r about w such that $f(z) = (z - w)^m g(z)$ for all $z \in D_{w,r}$. The function f is said to be meromorphic on some open set D if it is meromorphic at each element of D.

Holomorphic functions are meromorphic.

Let w be a complex number, and let f be a complex-valued function that is meromorphic at w, but is not identically zero over any open set containing w. Then there exists an integer m_0, a positive real number r, and a holomorphic function g_0 on the open disk $D_{w,r}$ of radius r about w such that $f(z) = (z - w)^{m_0} g_0(z)$ for all $z \in D_{w,r}$. Now it follows from Theorem 7.1 (Taylor’s Theorem) that there exists a sequence a_1, a_2, a_3, \ldots of complex numbers such that the power series $\sum_{n=0}^{+\infty} a_n (z-w)^n$ converges to $g_0(z)$ for all $z \in D_{w,r}$. Let k be the smallest non-negative integer for which $a_k \neq 0$.

Then $g_0(z) = (z-w)^k g(z)$ for all $z \in D_{w,r}$, where $g(z) = \sum_{n=k}^{+\infty} a_n (z-w)^{n-k}$ Let $m = m_0 + k$. Then $f(z) = (z-w)^m g(z)$ where g is a holomorphic function on $D_{w,r}$ and $g(w) \neq 0$. The value of m is uniquely determined by f and w. If $m > 0$ we say that the function f has a zero of order m at w. If $m < 0$, we say that f has a pole of order $-m$ at w. A pole is said to be a simple pole if it is of order 1.

The following result is a direct consequence of Theorem 7.1 (Taylor’s Theorem) and the definition of a meromorphic function.

Lemma 7.6 Let w be a complex number, and let f be a function defined on $D_{w,r} \setminus \{w\}$ for some $r > 0$, where $D_{w,r}$ is the open disk of radius r about w. Suppose that f is not identically zero throughout $D_{w,r} \setminus \{w\}$. Then the function f is meromorphic at w if and only if there exists an integer m and complex numbers $a_m, a_{m+1}, a_{m+2}, \ldots$ such that

$$f(z) = \sum_{n=m}^{+\infty} a_n (z-w)^n$$

for all $z \in D_{w,r}$, in which case $\text{Res}_w(f) = a_{-1}$.
7.6 Zero Sets of Holomorphic Functions

Let D be an open set in the complex plane, let $f: D \rightarrow \mathbb{C}$ be a holomorphic function on D, and let w be a complex number belonging to the set D. We say that the function f is identically zero throughout some neighbourhood of w if there exists some positive real number δ such that $f(z) = 0$ for all $z \in D$ satisfying $|z - w| < \delta$. Also we say that w is an isolated zero of f if there exists some positive real number δ such that $f(z) \neq 0$ for all $z \in D$ satisfying $0 < |z - w| < \delta$. If f is not identically zero throughout some neighbourhood of w then there exists some non-negative integer m and some holomorphic function g such that $g(w) \neq 0$ and $f(z) = (z - w)^m g(z)$ for all $z \in D$. If $m = 0$ then the function f is non-zero at w. If $m > 0$ then the function f has an isolated zero at w. The following result follows immediately.

Lemma 7.7 Let D be an open set in the complex plane, let $f: D \rightarrow \mathbb{C}$ be a holomorphic function on D, and let w be a complex number belonging to the set D. Then either the function f is non-zero at w, or f has an isolated zero at w, or f is identically zero throughout some neighbourhood of w.

Lemma 7.8 Let D be a path-connected open set in the complex plane, and let U and V be open sets in the complex plane. Suppose that $U \cup V = D$ and $U \cap V = \emptyset$. Then either $U = \emptyset$ or $V = \emptyset$.

Proof Let $g: D \rightarrow \{0, 1\}$ be the function on D defined such that $g(z) = 0$ for all $z \in U$ and $g(z) = 1$ for all $z \in V$. We first prove that this function g is continuous on D. Let w be a complex number belonging to the open set D. If $w \in U$ then there exists a positive real number δ such that $\{z \in C : |z - w| < \delta\} \subset U$, because U is an open set. Similarly if $w \in V$ then there exists a positive real number δ such that $\{z \in C : |z - w| < \delta\} \subset V$. It follows that, given any element w of D, there exists some positive real number δ such that $z \in D$ and $g(z) = g(w)$ for all complex numbers z satisfying $|z - w| < \delta$. It follows directly from this that the function $g: D \rightarrow \{0, 1\}$ is continuous on the path-connected open set D.

Suppose that the sets U and V were both non-empty. Let $z_0 \in U$ and $z_1 \in V$. Now the open set D is path-connected. Therefore there would exist a path $\gamma: [0, 1] \rightarrow D$ with $\gamma(0) = z_0$ and $\gamma(1) = z_1$. The function $g \circ \gamma: [0, 1] \rightarrow \{0, 1\}$ would then be a non-constant integer-valued continuous function on the interval $[0, 1]$. But this is impossible, since every continuous integer-valued function on $[0, 1]$ is constant (Proposition 1.17). It follows that at least one of the sets U and V must be empty, as required. ■
Theorem 7.9 Let D be a path-connected open set in the complex plane, and let $f: D \to \mathbb{C}$ be a holomorphic function on D. Suppose there exists some non-empty open subset D_1 of D such that $f(z) = 0$ for all $z \in D_1$. Then $f(z) = 0$ for all $z \in D$.

Proof Let U be the set of all complex numbers w belonging to D with the property that the function f is identically zero in a neighbourhood of w. Now the set U is an open set in the complex plane, for if w is a complex number belonging to U then there exists some real number δ such that $z \in D$ and $f(z) = 0$ for all complex numbers z satisfying $|z - w| < \delta$. But then the function f is identically zero in a neighbourhood of w_1 for all complex numbers w_1 satisfying $|w_1 - w| < \delta$, for if z is a complex number satisfying $|z - w_1| < \delta$ then $|z - w| < 2\delta$ and therefore $f(z) = 0$. It follows from this that the set U is an open set in the complex plane.

Now let V be the complement $D \setminus U$ of U in D, and let w be a complex number belonging to V. Now the function f is not identically zero in a neighbourhood of w. It therefore follows from Lemma 7.7 that either $f(z) \neq 0$, or else the function f has an isolated zero at w. It follows that there exists some positive real number δ such that the function f is defined and non-zero throughout the set $\{z \in C : 0 < |z - w| < \delta\}$. But then $\{z \in C : 0 < |z - w| < \delta\} \subset V$. We conclude from this that V is an open set. Now D is the union of the open sets U and V, and $U \cap V = \emptyset$. It follows from Lemma 7.8 that either $U = \emptyset$ or $V = \emptyset$.

Now the open set U is non-empty, since $D_1 \subset U$. Therefore $V = \emptyset$, and thus $U = D$. It follows immediately from this that the function f is identically zero throughout D as required.

Corollary 7.10 Let D be a path-connected open set in the complex plane, and let $f: D \to \mathbb{C}$ and $g: D \to \mathbb{C}$ be holomorphic functions on D. Suppose there exists some non-empty open subset D_1 of D such that $f(z) = g(z)$ for all $z \in D_1$. Then $f(z) = g(z)$ for all $z \in D$.

Proof The result follows immediately on applying Theorem 7.9 to the function $f - g$.

7.7 The Maximum Modulus Principle

Proposition 7.11 (Maximum Modulus Principle) Let $f: D \to \mathbb{C}$ be a holomorphic function defined over a path-connected open set D in the complex plane. Suppose that the real-valued function on D sending $z \in D$ to $|f(z)|$ attains a local maximum at some point w of D. Then f is constant throughout D.

78
Proof Suppose that f is not constant throughout D. It follows from Corollary 7.10 that f cannot be constant over any open subset of D.

Let $u(z) = |f(z)|$ for all $z \in D$, and let w be an element of D. Then the holomorphic function that sends $z \in D$ to $f(z) - f(w)$ has a zero at w. This zero is an isolated zero of order m for some positive integer m, and there exists a holomorphic function g on D such that $g(w) \neq 0$ and $f(z) = f(w) + (z - w)^mg(z)$ for all $z \in D$. If $f(w) = 0$ then w is not a local maximum for the function u, since $f(z) \neq 0$ for all complex numbers z that are distinct from w but sufficiently close to w. Suppose therefore that $f(w) \neq 0$. Then there exists a complex number α such that $|\alpha| = 1$ and $\alpha^mg(w)f(w)^{-1}$ is a positive real number. It then follows from the continuity of g that $\alpha^mg(z)f(w)^{-1}$ has a positive real part when z is sufficiently close to w. But then $|1 + t^m\alpha^mg(w + t\alpha)f(w)^{-1}| > 1$ for all sufficiently small positive real numbers t. It follows that $|f(w + t\alpha)| > |f(w)|$ for all sufficiently small positive real numbers t, and therefore the function u does not have a local maximum at w. Thus if f is not constant on D then the function u that sends $z \in D$ to $|f(z)|$ does not have a local maximum at any element of D. The result follows.

7.8 The Argument Principle

Theorem 7.12 (The Argument Principle) Let D be a simply-connected open set in the complex plane and let f be a meromorphic function on D whose zeros and poles are located at w_1, w_2, \ldots, w_s. Let m_1, m_2, \ldots, m_s be integers, determined such that $m_j = k$ if f has a zero of order k at w_j, and $m_j = -k$ if f has a pole of order k at w_j. Let $\gamma : [a, b] \to D$ be a piecewise continuously differentiable closed path in D which does not pass through any zero or pole of f. Then

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz = \sum_{j=1}^{s} m_j n(\gamma, w_j).$$

Proof It follows from Proposition 6.2 that

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dz}{z} = \frac{1}{2\pi i} \int_{a}^{b} \frac{(f \circ \gamma)'(t)}{f(\gamma(t))} \, dt = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz.$$

Let $F(z) = f'(z)f(z)^{-1}$ for all $z \in D \setminus \{w_1, \ldots, w_s\}$. Suppose that $f(z) = (z - w_j)^{m_j}g_j(z)$, where g_j is holomorphic over some open disk of positive
radius centred on w_j and $g_j(w_j) \neq 0$. Then

$$\frac{f'(z)}{f(z)} = \frac{m_j}{z - w_j} + \frac{g'_j(z)}{g_j(z)}$$

for all complex numbers z that are not equal to w but are sufficiently close to w. Moreover the function sending z to $g'(z)g^{-1}(z)$ is holomorphic around w. It follows that the function F has a simple pole at w_j, and that the residue of F at w_j is m_j. It therefore follows from Corollary 6.17 that

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \oint_{\gamma} F(z) \, dz = \sum_{j=1}^{s} m_j n(\gamma, w_j),$$

as required. □