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7 Basic Properties of Holomorphic Functions

7.1 Taylor’s Theorem for Holomorphic Functions

Theorem 7.1 (Taylor’s Theorem for Holomorphic Functions) Let w be a
complex number, let r be a positive real number, and let f : Dw,r → C be a
holomorphic function on the open disk Dw,r of radius r about w. Then the
function f may be differentiated any number of times on Dw,r, and there exist
complex numbers a0, a1, a2, . . . such that

f(z) =
+∞∑
n=0

an(z − w)n.

Moreover

an =
f (n)(w)

n!
=

1

2πi

∫
γR

f(z)

(z − w)n+1
dz,

where R is any real number satisfying 0 < R < r and γR: [0, 1] → Dw,r is the
closed path defined such that γR(t) = w + Re2πit for all t ∈ [0, 1].

Proof Choose a real number R satisfying 0 < R < r, and let z be a complex
number satisfying |z − w| < R. It follows from Corollary 6.18 that

f(z) =
1

2πi

∫
γR

f(ζ)

ζ − z
dζ.

Now
1

ζ − z
=

1

ζ − w
× 1

1− z − w

ζ − w

=
+∞∑
n=0

(z − w)n

(ζ − w)n+1

and ∣∣∣∣ (z − w)n

(ζ − w)n+1

∣∣∣∣ =
1

R

(
|z − w|

R

)n

for all ζ ∈ C satisfying |ζ − w| = R. Moreover |z − w| < R, and therefore

the infinite series
+∞∑
n=0

(
|z − w|

R

)n

is convergent. On applying the Weierstass

M -Test (Proposition 2.8), we find that the infinite series

+∞∑
n=0

f(ζ)(z − w)n

(ζ − w)n+1
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converges uniformly in ζ on the circle {ζ ∈ C : |ζ − w| = R}. It follows that

f(z) =
1

2πi

∫
γR

f(ζ)

ζ − z
dζ =

1

2πi

∫
γR

(
+∞∑
n=0

(z − w)nf(ζ)

(ζ − w)n+1

)
dζ

=
+∞∑
n=0

(z − w)n

2πi

∫
γR

f(ζ)

(ζ − w)n+1
dζ,

provided that |z − w| ≤ R. (The interchange of integration and summa-
tion above is justified by the uniform convergence of the infinite series of
continuous functions occuring in the integrand.) The choice of R satisfying

0 < R < r is arbitrary. Thus f(z) =
+∞∑
n=0

an(z−w)n for all complex numbers z

satisfying |z−w| < r, where the coefficients of this power series are given by
the formula

an =
1

2πi

∫
γR

f(z)

(z − w)n+1
dz.

It then follows directly from Corollary 5.7 that the function f can be differ-
entiated any number of times on the open disk Dw,r, and an = f (n)(w)/n!
for all positive integers n.

Corollary 7.2 (Cauchy’s Inequalities) Let
∑+∞

j=0 anz
n be a power series, and

let R be a positive real number that does not exceed the radius of convergence
of the power series. Let f(z) =

∑+∞
j=0 anz

n for all complex numbers z for
which the power series converges. Suppose that |f(z)| ≤ M for all complex
numbers z satisfying |z| = R. Then |an| ≤ MR−n and thus |f (n)(0)| ≤
n!MR−n for all non-negative integers n.

Proof It follows from Lemma 4.2 that

|an| =
1

2π

∣∣∣∣∫
γR

f(z)

(z − w)n+1
dz

∣∣∣∣ ≤ 1

2π
× M

Rn+1
× 2πR =

M

Rn
,

where γR: [0, 1] → C denotes the closed path of length 2πR defined such that
γR(t) = Re2πit for all t ∈ [0, 1]. Therefore |f (n)(0)| = n!|an| ≤ n!MR−n, as
required.

7.2 Liouville’s Theorem

Theorem 7.3 (Liouville’s Theorem) Let f : C → C be a holomorphic func-
tion defined over the entire complex plane. Suppose that there exists some
non-negative real number M such that |f(z)| ≤ M for all z ∈ C. Then the
function f is constant on C.
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Proof It follows from Theorem 7.1 that there exists an infinite sequence

a0, a1, a2, . . . of complex numbers such that f(z) =
+∞∑
n=0

anz
n for all z ∈ C.

Cauchy’s Inequalities then ensure that |an| ≤ MR−n for all non-negative
integers n and for all positive real numbers R (see Corollary 7.2). This
requires that an = 0 when n > 0. Thus f is constant on C, as required.

7.3 Laurent’s Theorem

Theorem 7.4 (Laurent’s Theorem) Let r be a positive real number, and let
f be a holomorphic function on D0,r, where D0,r = {z ∈ C : 0 < |z| < r}.
Then there exist complex numbers an for all integers n such that

f(z) =
+∞∑
n=0

anz
n +

+∞∑
n=1

a−nz
−n

for all complex numbers z satisfying 0 < |z| < r. Moreover

an =
1

2πi

∫
γR

f(z)

zn+1
dz,

for all integers n, where R is any real number satisfying 0 < R < r and
γR: [0, 1] → D0,r is the closed path defined such that γR(t) = Re2πit for all
t ∈ [0, 1].

Proof Choose real numbers R1 and R2 such that 0 < R1 < R2 < r, and,
for each real number R satisfying 0 < R < r, let γR: [0, 1] → C be the closed
path defined such that γR(t) = Re2πit for all t ∈ [0, 1]. A straightforward
application of Theorem 6.16 shows that follows from Corollary 6.18 that

f(z) =
1

2πi

∫
γR2

f(ζ)

ζ − z
dζ − 1

2πi

∫
γR1

f(ζ)

ζ − z
dζ

for all z ∈ C satisfying R1 < |z| < R2. But

1

ζ − z
=

+∞∑
n=0

zn

ζn+1

when |z| < R2 and |ζ| = R2, and moreover the infinite series on the right-
hand side of this equality converges uniformly in ζ, for values of ζ that lie on
the circle |ζ| = R2. Also

1

ζ − z
= −

+∞∑
n=1

ζn−1

zn
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when |z| > R1 and |ζ| = R1, and the infinite series on the right-hand side of
this equality converges uniformly in ζ, for values of ζ that lie on the circle
|ζ| = R1. It follows that

f(z) =
1

2πi

∫
γR2

f(ζ)

ζ − z
dζ − 1

2πi

∫
γR1

f(ζ)

ζ − z
dζ

=
+∞∑
n=0

zn

2πi

∫
γR2

f(ζ)

ζn+1
dζ +

+∞∑
n=1

z−n

2πi

∫
γR1

f(ζ)ζn−1 dζ

=
+∞∑
n=0

anz
n +

+∞∑
n=1

a−nz
−n,

when R1 < |z| < R2, where

an =
1

2πi

∫
γR2

f(z)

zn+1
dz

when n ≤ 0, and

an =
1

2πi

∫
γR1

f(z)

zn+1
dz

when n < 0. A straightforward application of Corollary 6.12 shows that

an =
1

2πi

∫
γR

f(z)

zn+1
dz,

for all integer n, where R is any real number satisfying 0 < R < r. The
result follows.

7.4 Morera’s Theorem

Theorem 7.5 (Morera’s Theorem) Let f : D → C be a continuous function
defined over an open set D in C. Suppose that∫

∂T

f(z) dz = 0

for all closed triangles T contained in D. Then f is holomorphic on D.

Proof Let D1 be an open disk with D1 ⊂ D. It follows from Proposition 6.5
that there exists a holomorphic function F : D1 → R such that f(z) = F ′(z)
for all z ∈ D1. But it follows from Theorem 7.1 and Corollary 5.7 that
the derivative of a holomorphic function is itself a holomorphic function.
Therefore the function f is holomorphic on the open disk D1. It follows that
the derivative of f exists at every point of D, and thus f is holomorphic
on D, as required.
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7.5 Meromorphic Functions

Definition Let f be a complex-valued function defined over some subset of
the complex plane, and let w be a complex number. The function f is said to
be meromorphic at w if there exists an integer m, a positive real number r,
and a holomorphic function g on the open disk Dw,r of radius r about w
such that f(z) = (z −w)mg(z) for all z ∈ Dw,r. The function f is said to be
meromorphic on some open set D if it is meromorphic at each element of D.

Holomorphic functions are meromorphic.
Let w be a complex number, and let f be a complex-valued function

that is meromorphic at w, but is not identically zero over any open set
containing w. Then there exists an integer m0, a positive real number r,
and a holomorphic function g0 on the open disk Dw,r of radius r about w
such that f(z) = (z − w)m0g0(z) for all z ∈ Dw,r. Now it follows from
Theorem 7.1 (Taylor’s Theorem) that there exists a sequence a1, a2, a3, . . . of

complex numbers such that the power series
+∞∑
n=0

an(z−w)n converges to g0(z)

for all z ∈ Dw,r. Let k be the smallest non-negative integer for which ak 6= 0.

Then g0(z) = (z−w)kg(z) for all z ∈ Dw,r, where g(z) =
+∞∑
n=k

an(z−w)n−k Let

m = m0 + k. Then f(z) = (z − w)mg(z) where g is a holomorphic function
on Dw,r and g(w) 6= 0. The value of m is uniquely determined by f and w.
If m > 0 we say that the function f has a zero of order m at w. If m < 0, we
say that f has a pole of order −m at w. A pole is said to be a simple pole if
it is of order 1.

The following result is a direct consequence of Theorem 7.1 (Taylor’s
Theorem) and the definition of a meromorphic function.

Lemma 7.6 Let w be a complex number, and let f be a function defined on
Dw,r \ {w} for some r > 0, where Dw,r is the open disk of radius r about
w. Suppose that f is not identically zero throughout Dw,r \ {w}. Then the
function f is meromorphic at w if and only if there exists an integer m and
complex numbers am, am+1, am+2, . . . such that

f(z) =
+∞∑
n=m

an(z − w)n

for all z ∈ Dw,r, in which case Resw(f) = a−1.
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7.6 Zero Sets of Holomorphic Functions

Let D be an open set in the complex plane, let f : D → C be a holomorphic
function on D, and let w be a complex number belonging to the set D. We
say that the function f is identically zero throughout some neighbourhood of
w if there exists some positive real number δ such that f(z) = 0 for all z ∈ D
satisfying |z − w| < δ. Also we say that w is an isolated zero of f if there
exists some positive real number δ such that f(z) 6= 0 for all z ∈ D satisfying
0 < |z −w| < δ. If f is not identically zero throughout some neighbourhood
of w then there exists some non-negative integer m and some holomorphic
function g such that g(w) 6= 0 and f(z) = (z − w)mg(z) for all z ∈ D. If
m = 0 then the function f is non-zero at w. If m > 0 then the function f
has an isolated zero at w. The following result follows immediately.

Lemma 7.7 Let D be an open set in the complex plane, let f : D → C be a
holomorphic function on D, and let w be a complex number belonging to the
set D. Then either the function f is non-zero at w, or f has an isolated zero
at w, or f is identically zero throughout some neighbourhood of w.

Lemma 7.8 Let D be a path-connected open set in the complex plane, and
let U and V be open sets in the complex plane. Suppose that U ∪V = D and
U ∩ V = ∅. Then either U = ∅ or V = ∅.

Proof Let g: D → {0, 1} be the function on D defined such that g(z) = 0
for all z ∈ U and g(z) = 1 for all z ∈ V . We first prove that this function g is
continuous on D. Let w be a complex number belonging to the open set D. If
w ∈ U then there exists a positive real number δ such that {z ∈ C : |z−w| <
δ} ⊂ U , because U is an open set. Similarly if w ∈ V then there exists a
positive real number δ such that {z ∈ C : |z − w| < δ} ⊂ V . It follows that,
given any element w of D, there exists some positive real number δ such that
z ∈ D and g(z) = g(w) for all complex numbers z satisfying |z − w| < δ. It
follows directly from this that the function g: D → {0, 1} is continuous on
the path-connected open set D.

Suppose that the sets U and V were both non-empty. Let z0 ∈ U and
z1 ∈ V . Now the open set D is path-connected. Therefore there would
exist a path γ: [0, 1] → D with γ(0) = z0 and γ(1) = z1. The function
g ◦ γ: [0, 1] → {0, 1} would then be a non-constant integer-valued continuous
function on the interval [0, 1]. But this is impossible, since every continuous
integer-valued function on [0, 1] is constant (Proposition 1.17). It follows
that at least one of the sets U and V must be empty, as required.
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Theorem 7.9 Let D be a path-connected open set in the complex plane, and
let f : D → C be a holomorphic function on D. Suppose there exists some
non-empty open subset D1 of D such that f(z) = 0 for all z ∈ D1. Then
f(z) = 0 for all z ∈ D.

Proof Let U be the set of all complex numbers w belonging to D with
the property that the function f is identically zero in a neighbourhood of
w. Now the set U is an open set in the complex plane, for if w is a complex
number belonging to U then there exists some real number δ such that z ∈ D
and f(z) = 0 for all complex numbers z satisfying |z − w| < 2δ. But then
the function f is identically zero in a neighbourhood of w1 for all complex
numbers w1 satisfying |w1 − w| < δ, for if z is a complex number satisfying
|z − w1| < δ then |z − w| < 2δ and therefore f(z) = 0. It follows from this
that the set U is an open set in the complex plane.

Now let V be the complement D \ U of U in D, and let w be a complex
number belonging to V . Now the function f is not identically zero in a
neighbourhood of w. It therefore follows from Lemma 7.7 that either f(z) 6=
0, or else the function f has an isolated zero at w. It follows that there
exists some positive real number δ such that the function f is defined and
non-zero throughout the set {z ∈ C : 0 < |z − w| < δ}. But then {z ∈ C :
0 < |z − w| < δ} ⊂ V . We conclude from this that V is an open set. Now
D is the union of the open sets U and V , and U ∩ V = ∅. It follows from
Lemma 7.8 that either U = ∅ or V = ∅.

Now the open set U is non-empty, since D1 ⊂ U . Therefore V = ∅,
and thus U = D. It follows immediately from this that the function f is
identically zero throughout D as required.

Corollary 7.10 Let D be a path-connected open set in the complex plane,
and let f : D → C and g: D → C be holomorphic functions on D. Suppose
there exists some non-empty open subset D1 of D such that f(z) = g(z) for
all z ∈ D1. Then f(z) = g(z) for all z ∈ D.

Proof The result follows immediately on applying Theorem 7.9 to the func-
tion f − g.

7.7 The Maximum Modulus Principle

Proposition 7.11 (Maximum Modulus Principle) Let f : D → C be a holo-
morphic function defined over a path-connected open set D in the complex
plane. Suppose that the real-valued function on D sending z ∈ D to |f(z)| at-
tains a local maximum at some point w of D. Then f is constant throughout
D.
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Proof Suppose that f is not constant throughout D. It follows from Corol-
lary 7.10 that f cannot be constant over any open subset of D.

Let u(z) = |f(z)| for all z ∈ D, and let w be an element of D. Then
the holomorphic function that sends z ∈ D to f(z) − f(w) has a zero at
w. This zero is an isolated zero of order m for some positive integer m,
and there exists a holomorphic function g on D such that g(w) 6= 0 and
f(z) = f(w) + (z − w)mg(z) for all z ∈ D. If f(w) = 0 then w is not a
local maximum for the function u, since f(z) 6= 0 for all complex numbers z
that are distinct from w but sufficiently close to w. Suppose therefore that
f(w) 6= 0. Then there exists a complex number α such that |α| = 1 and
αmg(w)f(w)−1 is a positive real number. It then follows from the continuity
of g that αmg(z)f(w)−1 has a positive real part when z is sufficiently close to
w. But then |1+ tmαmg(w + tα)f(w)−1| > 1 for all sufficiently small positive
real numbers t. It follows that |f(w + tα)| > |f(w)| for all sufficiently small
positive real numbers t, and therefore the function u does not have a local
maximum at w. Thus if f is not constant on D then the function u that
sends z ∈ D to |f(z)| does not have a local maximum at any element of D.
The result follows.

7.8 The Argument Principle

Theorem 7.12 (The Argument Principle) Let D be a simply-connected open
set in the complex plane and let f be a meromorphic function on D whose
zeros and poles are located at w1, w2, . . . , ws. Let m1, m2, . . . ,ms be integers,
determined such that mj = k if f has a zero of order k at wj, and mj = −k
if f has a pole of order k at wj. Let γ: [a, b] → D be a piecewise continuously
differentiable closed path in D which does not pass through any zero or pole
of f . Then

n(f ◦ γ, 0) =
1

2πi

∫
γ

f ′(z)

f(z)
dz =

s∑
j=1

mjn(γ, wj).

Proof It follows from Proposition 6.2 that

n(f ◦ γ, 0) =
1

2πi

∫
f◦γ

dz

z
=

1

2πi

∫ b

a

(f ◦ γ)′(t)

f(γ(t))
dt

=
1

2πi

∫ b

a

f ′(γ(t))γ′(t)

f(γ(t))
dt =

1

2πi

∫
γ

f ′(z)

f(z)
dz.

Let F (z) = f ′(z)f(z)−1 for all z ∈ D \ {w1, . . . , ws}. Suppose that f(z) =
(z − wj)

mjgj(z), where gj is holomorphic over some open disk of positive
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radius centred on wj and gj(wj) 6= 0. Then

f ′(z)

f(z)
=

mj

z − wj

+
g′j(z)

gj(z)

for all complex numbers z that are not equal to w but are sufficiently close to
w. Moreover the function sending z to g′(z)g−1(z) is holomorphic around w.
It follows that the function F has a simple pole at wj, and that the residue
of F at wj is mj. It therefore follows from Corollary 6.17 that

n(f ◦ γ, 0) =
1

2πi

∫
γ

F (z) dz =
s∑

j=1

mjn(γ, wj),

as required.
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