Course 214 Basic Properties of Holomorphic Functions Second Semester 2008

David R. Wilkins

Copyright © David R. Wilkins 1989–2008

Contents

7	Bas	ic Properties of Holomorphic Functions	72
	7.1	Taylor's Theorem for Holomorphic Functions	72
	7.2	Liouville's Theorem	73
	7.3	Laurent's Theorem	74
	7.4	Morera's Theorem	75
	7.5	Meromorphic Functions	76
	7.6	Zero Sets of Holomorphic Functions	77
	7.7	The Maximum Modulus Principle	78
	7.8	The Argument Principle	79

7 Basic Properties of Holomorphic Functions

7.1 Taylor's Theorem for Holomorphic Functions

Theorem 7.1 (Taylor's Theorem for Holomorphic Functions) Let w be a complex number, let r be a positive real number, and let $f: D_{w,r} \to \mathbb{C}$ be a holomorphic function on the open disk $D_{w,r}$ of radius r about w. Then the function f may be differentiated any number of times on $D_{w,r}$, and there exist complex numbers a_0, a_1, a_2, \ldots such that

$$f(z) = \sum_{n=0}^{+\infty} a_n (z-w)^n.$$

Moreover

$$a_n = \frac{f^{(n)}(w)}{n!} = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(z)}{(z-w)^{n+1}} \, dz,$$

where R is any real number satisfying 0 < R < r and $\gamma_R: [0, 1] \to D_{w,r}$ is the closed path defined such that $\gamma_R(t) = w + Re^{2\pi i t}$ for all $t \in [0, 1]$.

Proof Choose a real number R satisfying 0 < R < r, and let z be a complex number satisfying |z - w| < R. It follows from Corollary 6.18 that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} \, d\zeta.$$

Now

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - w} \times \frac{1}{1 - \frac{z - w}{\zeta - w}} = \sum_{n=0}^{+\infty} \frac{(z - w)^n}{(\zeta - w)^{n+1}}$$

and

$$\left|\frac{(z-w)^n}{(\zeta-w)^{n+1}}\right| = \frac{1}{R} \left(\frac{|z-w|}{R}\right)^n$$

for all $\zeta \in \mathbb{C}$ satisfying $|\zeta - w| = R$. Moreover |z - w| < R, and therefore the infinite series $\sum_{n=0}^{+\infty} \left(\frac{|z - w|}{R}\right)^n$ is convergent. On applying the Weierstass *M*-Test (Proposition 2.8), we find that the infinite series

$$\sum_{n=0}^{+\infty} \frac{f(\zeta)(z-w)^n}{(\zeta-w)^{n+1}}$$

converges uniformly in ζ on the circle $\{\zeta \in \mathbb{C} : |\zeta - w| = R\}$. It follows that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\gamma_R} \left(\sum_{n=0}^{+\infty} \frac{(z - w)^n f(\zeta)}{(\zeta - w)^{n+1}} \right) d\zeta$$
$$= \sum_{n=0}^{+\infty} \frac{(z - w)^n}{2\pi i} \int_{\gamma_R} \frac{f(\zeta)}{(\zeta - w)^{n+1}} d\zeta,$$

provided that $|z - w| \leq R$. (The interchange of integration and summation above is justified by the uniform convergence of the infinite series of continuous functions occuring in the integrand.) The choice of R satisfying 0 < R < r is arbitrary. Thus $f(z) = \sum_{n=0}^{+\infty} a_n (z-w)^n$ for all complex numbers zsatisfying |z - w| < r, where the coefficients of this power series are given by the formula

$$a_n = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(z)}{(z-w)^{n+1}} \, dz.$$

It then follows directly from Corollary 5.7 that the function f can be differentiated any number of times on the open disk $D_{w,r}$, and $a_n = f^{(n)}(w)/n!$ for all positive integers n.

Corollary 7.2 (Cauchy's Inequalities) Let $\sum_{j=0}^{+\infty} a_n z^n$ be a power series, and let R be a positive real number that does not exceed the radius of convergence of the power series. Let $f(z) = \sum_{j=0}^{+\infty} a_n z^n$ for all complex numbers z for which the power series converges. Suppose that $|f(z)| \leq M$ for all complex numbers z satisfying |z| = R. Then $|a_n| \leq MR^{-n}$ and thus $|f^{(n)}(0)| \leq$ $n!MR^{-n}$ for all non-negative integers n.

Proof It follows from Lemma 4.2 that

$$|a_n| = \frac{1}{2\pi} \left| \int_{\gamma_R} \frac{f(z)}{(z-w)^{n+1}} \, dz \right| \le \frac{1}{2\pi} \times \frac{M}{R^{n+1}} \times 2\pi R = \frac{M}{R^n}$$

where $\gamma_R: [0,1] \to \mathbb{C}$ denotes the closed path of length $2\pi R$ defined such that $\gamma_R(t) = Re^{2\pi i t}$ for all $t \in [0,1]$. Therefore $|f^{(n)}(0)| = n! |a_n| \leq n! M R^{-n}$, as required.

7.2 Liouville's Theorem

Theorem 7.3 (Liouville's Theorem) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function defined over the entire complex plane. Suppose that there exists some non-negative real number M such that $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Then the function f is constant on \mathbb{C} . **Proof** It follows from Theorem 7.1 that there exists an infinite sequence a_0, a_1, a_2, \ldots of complex numbers such that $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ for all $z \in \mathbb{C}$. Cauchy's Inequalities then ensure that $|a_n| \leq MR^{-n}$ for all non-negative integers n and for all positive real numbers R (see Corollary 7.2). This requires that $a_n = 0$ when n > 0. Thus f is constant on \mathbb{C} , as required.

7.3 Laurent's Theorem

Theorem 7.4 (Laurent's Theorem) Let r be a positive real number, and let f be a holomorphic function on $D_{0,r}$, where $D_{0,r} = \{z \in \mathbb{C} : 0 < |z| < r\}$. Then there exist complex numbers a_n for all integers n such that

$$f(z) = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=1}^{+\infty} a_{-n} z^{-n}$$

for all complex numbers z satisfying 0 < |z| < r. Moreover

$$a_n = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(z)}{z^{n+1}} \, dz,$$

for all integers n, where R is any real number satisfying 0 < R < r and $\gamma_R: [0,1] \to D_{0,r}$ is the closed path defined such that $\gamma_R(t) = Re^{2\pi i t}$ for all $t \in [0,1]$.

Proof Choose real numbers R_1 and R_2 such that $0 < R_1 < R_2 < r$, and, for each real number R satisfying 0 < R < r, let $\gamma_R: [0,1] \to \mathbb{C}$ be the closed path defined such that $\gamma_R(t) = Re^{2\pi i t}$ for all $t \in [0,1]$. A straightforward application of Theorem 6.16 shows that follows from Corollary 6.18 that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{R_2}} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \frac{1}{2\pi i} \int_{\gamma_{R_1}} \frac{f(\zeta)}{\zeta - z} \, d\zeta$$

for all $z \in \mathbb{C}$ satisfying $R_1 < |z| < R_2$. But

$$\frac{1}{\zeta - z} = \sum_{n=0}^{+\infty} \frac{z^n}{\zeta^{n+1}}$$

when $|z| < R_2$ and $|\zeta| = R_2$, and moreover the infinite series on the righthand side of this equality converges uniformly in ζ , for values of ζ that lie on the circle $|\zeta| = R_2$. Also

$$\frac{1}{\zeta - z} = -\sum_{n=1}^{+\infty} \frac{\zeta^{n-1}}{z^n}$$

when $|z| > R_1$ and $|\zeta| = R_1$, and the infinite series on the right-hand side of this equality converges uniformly in ζ , for values of ζ that lie on the circle $|\zeta| = R_1$. It follows that

$$f(z) = \frac{1}{2\pi i} \int_{\gamma_{R_2}} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\gamma_{R_1}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \sum_{n=0}^{+\infty} \frac{z^n}{2\pi i} \int_{\gamma_{R_2}} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta + \sum_{n=1}^{+\infty} \frac{z^{-n}}{2\pi i} \int_{\gamma_{R_1}} f(\zeta) \zeta^{n-1} d\zeta$$

$$= \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=1}^{+\infty} a_{-n} z^{-n},$$

when $R_1 < |z| < R_2$, where

$$a_n = \frac{1}{2\pi i} \int_{\gamma_{R_2}} \frac{f(z)}{z^{n+1}} dz$$

when $n \leq 0$, and

$$a_n = \frac{1}{2\pi i} \int_{\gamma_{R_1}} \frac{f(z)}{z^{n+1}} dz$$

when n < 0. A straightforward application of Corollary 6.12 shows that

$$a_n = \frac{1}{2\pi i} \int_{\gamma_R} \frac{f(z)}{z^{n+1}} \, dz$$

for all integer n, where R is any real number satisfying 0 < R < r. The result follows.

7.4 Morera's Theorem

Theorem 7.5 (Morera's Theorem) Let $f: D \to \mathbb{C}$ be a continuous function defined over an open set D in \mathbb{C} . Suppose that

$$\int_{\partial T} f(z) \, dz = 0$$

for all closed triangles T contained in D. Then f is holomorphic on D.

Proof Let D_1 be an open disk with $D_1 \subset D$. It follows from Proposition 6.5 that there exists a holomorphic function $F: D_1 \to \mathbb{R}$ such that f(z) = F'(z) for all $z \in D_1$. But it follows from Theorem 7.1 and Corollary 5.7 that the derivative of a holomorphic function is itself a holomorphic function. Therefore the function f is holomorphic on the open disk D_1 . It follows that the derivative of f exists at every point of D, and thus f is holomorphic on D, as required.

7.5 Meromorphic Functions

Definition Let f be a complex-valued function defined over some subset of the complex plane, and let w be a complex number. The function f is said to be *meromorphic* at w if there exists an integer m, a positive real number r, and a holomorphic function g on the open disk $D_{w,r}$ of radius r about w such that $f(z) = (z - w)^m g(z)$ for all $z \in D_{w,r}$. The function f is said to be meromorphic on some open set D if it is meromorphic at each element of D.

Holomorphic functions are meromorphic.

Let w be a complex number, and let f be a complex-valued function that is meromorphic at w, but is not identically zero over any open set containing w. Then there exists an integer m_0 , a positive real number r, and a holomorphic function g_0 on the open disk $D_{w,r}$ of radius r about wsuch that $f(z) = (z - w)^{m_0} g_0(z)$ for all $z \in D_{w,r}$. Now it follows from Theorem 7.1 (Taylor's Theorem) that there exists a sequence a_1, a_2, a_3, \ldots of complex numbers such that the power series $\sum_{n=0}^{+\infty} a_n(z-w)^n$ converges to $g_0(z)$ for all $z \in D_{w,r}$. Let k be the smallest non-negative integer for which $a_k \neq 0$. Then $g_0(z) = (z-w)^k g(z)$ for all $z \in D_{w,r}$, where $g(z) = \sum_{n=k}^{+\infty} a_n(z-w)^{n-k}$ Let $m = m_0 + k$. Then $f(z) = (z - w)^m g(z)$ where g is a holomorphic function on $D_{w,r}$ and $g(w) \neq 0$. The value of m is uniquely determined by f and w. If m > 0 we say that the function f has a zero of order m at w. If m < 0, we say that f has a pole of order -m at w. A pole is said to be a simple pole if it is of order 1.

The following result is a direct consequence of Theorem 7.1 (Taylor's Theorem) and the definition of a meromorphic function.

Lemma 7.6 Let w be a complex number, and let f be a function defined on $D_{w,r} \setminus \{w\}$ for some r > 0, where $D_{w,r}$ is the open disk of radius r about w. Suppose that f is not identically zero throughout $D_{w,r} \setminus \{w\}$. Then the function f is meromorphic at w if and only if there exists an integer m and complex numbers $a_m, a_{m+1}, a_{m+2}, \ldots$ such that

$$f(z) = \sum_{n=m}^{+\infty} a_n (z-w)^n$$

for all $z \in D_{w,r}$, in which case $\operatorname{Res}_w(f) = a_{-1}$.

7.6 Zero Sets of Holomorphic Functions

Let D be an open set in the complex plane, let $f: D \to \mathbb{C}$ be a holomorphic function on D, and let w be a complex number belonging to the set D. We say that the function f is *identically zero* throughout some neighbourhood of w if there exists some positive real number δ such that f(z) = 0 for all $z \in D$ satisfying $|z - w| < \delta$. Also we say that w is an *isolated zero* of f if there exists some positive real number δ such that $f(z) \neq 0$ for all $z \in D$ satisfying $0 < |z - w| < \delta$. If f is not identically zero throughout some neighbourhood of w then there exists some non-negative integer m and some holomorphic function g such that $g(w) \neq 0$ and $f(z) = (z - w)^m g(z)$ for all $z \in D$. If m = 0 then the function f is non-zero at w. If m > 0 then the function fhas an isolated zero at w. The following result follows immediately.

Lemma 7.7 Let D be an open set in the complex plane, let $f: D \to \mathbb{C}$ be a holomorphic function on D, and let w be a complex number belonging to the set D. Then either the function f is non-zero at w, or f has an isolated zero at w, or f is identically zero throughout some neighbourhood of w.

Lemma 7.8 Let D be a path-connected open set in the complex plane, and let U and V be open sets in the complex plane. Suppose that $U \cup V = D$ and $U \cap V = \emptyset$. Then either $U = \emptyset$ or $V = \emptyset$.

Proof Let $g: D \to \{0, 1\}$ be the function on D defined such that g(z) = 0for all $z \in U$ and g(z) = 1 for all $z \in V$. We first prove that this function g is continuous on D. Let w be a complex number belonging to the open set D. If $w \in U$ then there exists a positive real number δ such that $\{z \in C : |z - w| < \delta\} \subset U$, because U is an open set. Similarly if $w \in V$ then there exists a positive real number δ such that $\{z \in C : |z - w| < \delta\} \subset V$. It follows that, given any element w of D, there exists some positive real number δ such that $z \in D$ and g(z) = g(w) for all complex numbers z satisfying $|z - w| < \delta$. It follows directly from this that the function $g: D \to \{0, 1\}$ is continuous on the path-connected open set D.

Suppose that the sets U and V were both non-empty. Let $z_0 \in U$ and $z_1 \in V$. Now the open set D is path-connected. Therefore there would exist a path $\gamma:[0,1] \to D$ with $\gamma(0) = z_0$ and $\gamma(1) = z_1$. The function $g \circ \gamma: [0,1] \to \{0,1\}$ would then be a non-constant integer-valued continuous function on the interval [0,1]. But this is impossible, since every continuous integer-valued function on [0,1] is constant (Proposition 1.17). It follows that at least one of the sets U and V must be empty, as required.

Theorem 7.9 Let D be a path-connected open set in the complex plane, and let $f: D \to \mathbb{C}$ be a holomorphic function on D. Suppose there exists some non-empty open subset D_1 of D such that f(z) = 0 for all $z \in D_1$. Then f(z) = 0 for all $z \in D$.

Proof Let U be the set of all complex numbers w belonging to D with the property that the function f is identically zero in a neighbourhood of w. Now the set U is an open set in the complex plane, for if w is a complex number belonging to U then there exists some real number δ such that $z \in D$ and f(z) = 0 for all complex numbers z satisfying $|z - w| < 2\delta$. But then the function f is identically zero in a neighbourhood of w_1 for all complex numbers w_1 satisfying $|w_1 - w| < \delta$, for if z is a complex number satisfying $|z - w_1| < \delta$ then $|z - w| < 2\delta$ and therefore f(z) = 0. It follows from this that the set U is an open set in the complex plane.

Now let V be the complement $D \setminus U$ of U in D, and let w be a complex number belonging to V. Now the function f is not identically zero in a neighbourhood of w. It therefore follows from Lemma 7.7 that either $f(z) \neq$ 0, or else the function f has an isolated zero at w. It follows that there exists some positive real number δ such that the function f is defined and non-zero throughout the set $\{z \in C : 0 < |z - w| < \delta\}$. But then $\{z \in C :$ $0 < |z - w| < \delta\} \subset V$. We conclude from this that V is an open set. Now D is the union of the open sets U and V, and $U \cap V = \emptyset$. It follows from Lemma 7.8 that either $U = \emptyset$ or $V = \emptyset$.

Now the open set U is non-empty, since $D_1 \subset U$. Therefore $V = \emptyset$, and thus U = D. It follows immediately from this that the function f is identically zero throughout D as required.

Corollary 7.10 Let D be a path-connected open set in the complex plane, and let $f: D \to \mathbb{C}$ and $g: D \to \mathbb{C}$ be holomorphic functions on D. Suppose there exists some non-empty open subset D_1 of D such that f(z) = g(z) for all $z \in D_1$. Then f(z) = g(z) for all $z \in D$.

Proof The result follows immediately on applying Theorem 7.9 to the function f - g.

7.7 The Maximum Modulus Principle

Proposition 7.11 (Maximum Modulus Principle) Let $f: D \to \mathbb{C}$ be a holomorphic function defined over a path-connected open set D in the complex plane. Suppose that the real-valued function on D sending $z \in D$ to |f(z)| attains a local maximum at some point w of D. Then f is constant throughout D. **Proof** Suppose that f is not constant throughout D. It follows from Corollary 7.10 that f cannot be constant over any open subset of D.

Let u(z) = |f(z)| for all $z \in D$, and let w be an element of D. Then the holomorphic function that sends $z \in D$ to f(z) - f(w) has a zero at w. This zero is an isolated zero of order m for some positive integer m, and there exists a holomorphic function g on D such that $g(w) \neq 0$ and $f(z) = f(w) + (z - w)^m g(z)$ for all $z \in D$. If f(w) = 0 then w is not a local maximum for the function u, since $f(z) \neq 0$ for all complex numbers z that are distinct from w but sufficiently close to w. Suppose therefore that $f(w) \neq 0$. Then there exists a complex number α such that $|\alpha| = 1$ and $\alpha^m g(w) f(w)^{-1}$ is a positive real number. It then follows from the continuity of g that $\alpha^m g(z) f(w)^{-1}$ has a positive real part when z is sufficiently close to w. But then $|1 + t^m \alpha^m g(w + t\alpha) f(w)^{-1}| > 1$ for all sufficiently small positive real numbers t. It follows that $|f(w + t\alpha)| > |f(w)|$ for all sufficiently small positive real numbers t, and therefore the function u does not have a local maximum at w. Thus if f is not constant on D then the function u that sends $z \in D$ to |f(z)| does not have a local maximum at any element of D. The result follows.

7.8 The Argument Principle

Theorem 7.12 (The Argument Principle) Let D be a simply-connected open set in the complex plane and let f be a meromorphic function on D whose zeros and poles are located at w_1, w_2, \ldots, w_s . Let m_1, m_2, \ldots, m_s be integers, determined such that $m_j = k$ if f has a zero of order k at w_j , and $m_j = -k$ if f has a pole of order k at w_j . Let $\gamma: [a, b] \to D$ be a piecewise continuously differentiable closed path in D which does not pass through any zero or pole of f. Then

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{j=1}^{s} m_j n(\gamma, w_j).$$

Proof It follows from Proposition 6.2 that

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{f \circ \gamma} \frac{dz}{z} = \frac{1}{2\pi i} \int_{a}^{b} \frac{(f \circ \gamma)'(t)}{f(\gamma(t))} dt$$
$$= \frac{1}{2\pi i} \int_{a}^{b} \frac{f'(\gamma(t))\gamma'(t)}{f(\gamma(t))} dt = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$

Let $F(z) = f'(z)f(z)^{-1}$ for all $z \in D \setminus \{w_1, \ldots, w_s\}$. Suppose that $f(z) = (z - w_j)^{m_j}g_j(z)$, where g_j is holomorphic over some open disk of positive

radius centred on w_j and $g_j(w_j) \neq 0$. Then

$$\frac{f'(z)}{f(z)} = \frac{m_j}{z - w_j} + \frac{g'_j(z)}{g_j(z)}$$

for all complex numbers z that are not equal to w but are sufficiently close to w. Moreover the function sending z to $g'(z)g^{-1}(z)$ is holomorphic around w. It follows that the function F has a simple pole at w_j , and that the residue of F at w_j is m_j . It therefore follows from Corollary 6.17 that

$$n(f \circ \gamma, 0) = \frac{1}{2\pi i} \int_{\gamma} F(z) dz = \sum_{j=1}^{s} m_j n(\gamma, w_j),$$

as required.