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6 Cauchy’s Theorem

6.1 Path Integrals of Polynomial Functions

A function f : C → C is said to be a polynomial function of degree n if it can
be represented by an expression of the form

f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n,

where a0, a1, . . . , an are complex numbers and an 6= 0.
Let z0 and z1 be complex numbers, and let γ: [a, b] → C be a piecewise

continuously differentiable path from z0 to z1. If n is an integer and n 6= −1
then an immediate application of Lemma 5.5 shows that∫

γ

zn dz =

∫
γ

d

dz

(
zn+1

n + 1

)
dz =

zn+1
1 − zn+1

0

n + 1
.

It follows from this that
∫

γ
zn dz = 0 for all piecewise continuously differ-

entiable closed paths γ, provided that n is an integer and n 6= −1. The
following result is an immediate consequence of this.

Lemma 6.1 Let f : C → C be a polynomial function. Then
∫

γ
f(z) dz = 0

for all piecewise continuously differentiable closed paths γ in the complex
plane.

6.2 Winding Numbers and Path Integrals

Proposition 6.2 Let γ: [a, b] → C be a piecewise continuously differentiable
closed path in the complex plane, and let w be a complex number that does
not lie on γ. Then the winding number n(γ, w) of the closed path γ about w
satisfies the identity

n(γ, w) =
1

2πi

∫
γ

dz

z − w
.

Proof There exists a path ϕ: [a, b] → C such that γ(t)− w = exp(ϕ(t)) for
all t ∈ [a, b]. It is easy to see that this path ϕ is piecewise continuously
differentiable. Now γ′(t) = exp(ϕ(t))ϕ′(t) for all t ∈ [a, b]. (This is an imme-
diate consequence of Lemma 5.4, given that the derivative of the exponential
function is the exponential function itself.) It follows from the definition of
the winding number n(γ, w) that∫

γ

dz

z − w
=

∫ b

a

γ′(t)

γ(t)− w
dt =

∫ b

a

γ′(t)

exp(ϕ(t))
dt =

∫ b

a

ϕ′(t) dt

= ϕ(b)− ϕ(a) = 2πin(γ, w),
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as required.

Corollary 6.3 Let X be a closed polygonal set in the complex plane with
interior int(X). Then∫

∂X

dz

z − w
=

{
2πi if w ∈ int(X);
0 if w ∈ C \X.

Proof We can represent the closed polygonal set X as the union of a finite
collection T1, T2, . . . , Tr finite collection of distinct triangles in the complex
plane that intersect regularly. Moreover these triangles may be chosen such
that the complex number w belongs to the interior of exactly one of those
triangles. Let w ∈ int(T1). A straightforward application of Proposition 6.2
shows that ∫

∂T1

dz

z − w
= 2πi.

Also a closed path round the boundary of the triangle Tj has zero winding
number about w when j 6= 1, and therefore∫

∂Tj

dz

z − w
= 0 when j 6= 1.

It follows from Proposition 4.3 that∫
∂X

dz

z − w
=

r∑
j=1

∫
∂Tj

dz

z − w
= 2πi,

as required.

6.3 Cauchy’s Theorem for a Triangle

Theorem 6.4 (Cauchy’s Theorem for a Triangle) Let f : D → C be a holo-
morphic function defined over an open set D in C, and let T be a closed
triangle contained in D. Then∫

∂T

f(z) dz = 0.

Proof The line segments joining the midpoints of the three edges of the
triangular region T divide T into four triangular regions S1, S2, S3 and S4.
An edge of any one of the triangles Sj is half the length of the edge of T that
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is parallel to it, and the area of each triangle Si is a quarter of the area of T .
Moreover ∫

∂T

f(z) dz =
4∑

j=1

∫
∂Si

f(z) dz,

and therefore ∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ ≤ 4∑
j=1

∣∣∣∣∫
∂Si

f(z) dz

∣∣∣∣ ,
Suppose that

∫
∂T

f(z) dz 6= 0. Then there would exist some real number ε0

satisfying ε0 > 0 such that∣∣∣∣∫
∂T

f(z) dz

∣∣∣∣ ≥ ε0 area(T ).

There would then exist at least one triangle Sj for which∣∣∣∣∣
∫

∂Sj

f(z) dz

∣∣∣∣∣ ≥ 1

4
ε0 area(T ) = ε0 area(Sj).

It follows from repeated applications of this observation that there would
exist an infinite sequence T0, T1, T2, T3, . . . of closed triangles, where T0 = T ,
such that, for each positive integer j, the triangle Tj is one of the four triangles
obtained by dividing the triangle Tj−1 along the line segments joining the
midpoints of its edges, and∣∣∣∣∣

∫
∂Tj

f(z) dz

∣∣∣∣∣ ≥ ε0 area(Tj).

Moreover area(Tj) = area(T )/4j, and the length of any side of the triangle Tj

is half the length of the side of the triangle Tj−1 that is parallel to it. There-
fore the sides of the triangle Tj would have length at most L/2j, where L is
the length of the longest side of the triangle T , and therefore the length lj of
the perimeter of the triangle Tj would satisfy lj ≤ 3L/2j.

Let (wj : j ∈ N) be a sequence of complex numbers satisfying wj ∈ Tj

for each positive integer j. Then wk ∈ Tj whenever k > j, and therefore
|wk − wj| ≤ L/2j whenever k ≥ j. It follows from this that the sequence
(wj : j ∈ N) would be a Cauchy sequence, and would therefore converge to
some limit w, where w ∈ Tj for all positive integers j. The function f would
be holomorphic at w, and therefore, given any positive real number ε1, there
would exist some positive number δ such that |f(z)−f(w)− (z−w)f ′(w)| ≤
ε1|z − w| whenever |z − w| < δ (Lemma 5.1). But the triangle Tj would be
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wholly contained within the open disk of radius δ centred on w, provided
that j were chosen sufficiently large, in which case |z − w| ≤ L/2j and
|f(z)− f(w)− (z − w)f ′(w)| ≤ ε1L/2j for all z ∈ Tj. Now∫

∂Tj

(f(w) + (z − w)f ′(w)) dz = 0,

(see Lemma 6.1). Thus if j were chosen sufficiently large then∣∣∣∣∣
∫

∂Tj

f(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫

∂Tj

(f(z)− f(w)− (z − w)f ′(w)) dz

∣∣∣∣∣
≤ lj sup

z∈Tj

|f(z)− f(w)− (z − w)f ′(w)| ≤ 3L2ε1

4j
.

But this would not be possible, had ε1 been chosen small enough to ensure
that 3L2ε1 < ε0 area(T ). Thus the assumption that∣∣∣∣∫

∂T

f(z) dz

∣∣∣∣ ≥ ε0 area(T )

for some real number ε0 satisfying ε0 > 0 leads to a contradiction. We
conclude that

∫
∂T

f(z) dz = 0, as required.

6.4 Cauchy’s Theorem for Star-Shaped Domains

We recall that an open set D in the complex plane is star-shaped if there exists
some element z0 of D chosen such that the line segment {(1− t)z0 + tz : t ∈
[0, 1]} joining z0 to z is contained in D for all z ∈ D.

Proposition 6.5 Let f : D → R be a continuous function defined over a
star-shaped open set D in C. Suppose that∫

∂T

f(z) dz = 0

for all closed triangles T contained in D. Then there exists a holomorphic
function F : D → R such that f(z) = F ′(z) for all z ∈ D.

Proof Let z0 be an element of D chosen such that the line segment joining
z0 to z is contained in D for all z ∈ D, and let F : D → C be the function
defined by

F (z) =

∫
[z0,z]

f(ζ) dζ.
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Let z be some complex number belonging to D. Then there exists some
positive number δ0 such that z + h ∈ D for all complex numbers h satisfying
|h| < δ0. The choice of z0 then ensures that if |h| < δ0 then the closed
triangle with vertices z0, z and z + h is contained in D. But then∫

[z0,z]

f(ζ) dζ +

∫
[z,z+h]

f(ζ) dζ +

∫
[z+h,z0]

f(ζ) dζ = 0,

and thus

F (z + h)− F (z) =

∫
[z,z+h]

f(ζ) dζ = h

∫ 1

0

f(z + th) dt.

Now the continuity of the function f ensures that, given any positive real
number ε, there exists some real number δ satisfying 0 < δ ≤ δ0 such that
|f(z + h)− f(z)| ≤ ε whenever |h| < δ. But then∣∣∣∣F (z + h)− F (z)

h
− f(z)

∣∣∣∣ =

∣∣∣∣∫ 1

0

(f(z + th)− f(z)) dt

∣∣∣∣
≤

∫ 1

0

|f(z + th)− f(z)| dt ≤ ε

whenever |h| < δ. It follows that the function F has a well-defined derivative
F ′(z) at z, and

F ′(z) = lim
h→0

F (z + h)− F (z)

h
= f(z).

Thus the function F : D → C is holomorphic on D, and F ′(z) = f(z) for all
z ∈ D, as required.

Theorem 6.6 (Cauchy’s Theorem for Star-Shaped Domains) Let f : D → R
be a holomorphic function defined over a star-shaped open set D in C. Then∫

γ

f(z) dz = 0.

for all piecewise continuously differentiable closed paths γ in D.

Proof Cauchy’s Theorem for a Triangle (Theorem 6.4) ensures that∫
∂T

f(z) dz = 0
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for all closed triangles T contained in D. It then follows from Proposition 6.5
that there exists a holomorphic function F : D → R such that f(z) = F ′(z)
for all z ∈ D. But then it follows from Lemma 5.5 that∫

γ

f(z) dz =

∫
γ

F ′(z) dz = F (γ(b))− F (γ(a)) = 0

for any piecewise continuously differentiable closed path γ: [a, b] → D in
D.

6.5 Cauchy’s Theorem for Closed Polygonal Sets

Lemma 6.7 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, and let f : D → C be a holomorphic function
defined throughout D. Then

∫
∂X

f(z) dz = 0.

Proof Any closed polygonal set the complex plane may be represented as the
union of a finite collection T1, T2, . . . , Tr finite collection of distinct triangles
in the complex plane that intersect regularly. Moreover∫

∂X

f(z) dz =
r∑

j=1

∫
∂Tj

f(z) dz.

(Proposition 4.3). The result is therefore an immediate consequence of
Cauchy’s Theorem for a Triangle (Theorem 6.4).

Lemma 6.8 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, let w be a complex number in the interior of
X, and let f : D → C be a complex-valued function that is continuous on D
and holomorphic on D \ {w}. Then

∫
∂X

f(z) dz = 0.

Proof The continuity of the function f at w ensures that there exist some
positive real numbers M and δ0 such that the open disk of radius δ0 about w
is contained in the interior of X and |f(z)| ≤ M for all complex numbers z
satisfying |z − w| < δ0. Moreover, given any positive real number ε there
exists a closed triangle Tε such that w ∈ int(Tε), Tε is contained in the open
disk of radius δ0 about w, and the perimeter of Tε is of length less than ε.

Then
∣∣∣∫∂Tε

f(z) dz
∣∣∣ ≤ Mε (see Lemma 4.2). Let Y = X \ int(Tε), where

int(Tε) denotes the interior of the triangle Tε. Then Y is a closed polygonal
set, and the function f is holomorphic over an open set that contains Y , and
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therefore
∫

∂Y
f(z) dz = 0. But the boundary of Y is the disjoint union of the

boundary of X and the boundary of Tε, and∫
∂Y

f(z) dz =

∫
∂X

f(z) dz −
∫

∂Tε

f(z) dz,

(The contribution to
∫

∂Y
f(z) dz arising from the boundary of the triangle

Tε is −
∫

∂Tε
f(z) dz on account of the fact that the closed polygonal set Y

lies to the right of the line segments making up the boundary of the triangle
as those line segments are traversed in an anticlockwise direction.) It follows
that ∫

∂X

f(z) dz =

∫
∂Tε

f(z) dz

and therefore ∣∣∣∣∫
∂X

f(z) dz

∣∣∣∣ ≤ Mε.

This inequality holds no matter how small the value of ε that was chosen. It
follows that

∫
∂X

f(z) dz = 0, as required.

Lemma 6.9 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, let w be a complex number in the interior of
X, and let f : D → C be a holomorphic function defined throughout D. Then∫

∂X

f(z)

z − w
dz = 2πif(w)

Proof Let g: D → C be the function defined such that

g(z) =

{
f(z)− f(w)

z − w
if z ∈ D \ {w};

f ′(w) if z = w.

Then the function g: D → C is continuous on D and holomorphic on D\{w}.
It follows from Lemma 6.8 that

∫
∂X

g(z) dz = 0. Therefore∫
∂X

f(z)

z − w
dz = f(w)

∫
∂X

dz

z − w
.

But

∫
∂X

dz

z − w
= 2πi. (Corollary 6.3). The result follows.
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6.6 Cauchy’s Theorem for Arbitrary Domains

Lemma 6.10 Let K be a closed bounded subset of C, and let D be an open
set in C. Suppose that K ⊂ D. Then there exists a closed polygonal set X
such that X ⊂ D and K ⊂ int X, where int X denotes the interior of X.

Proof There exists some positive number δ such that |z − w| ≥ 2δ for all
z ∈ K and w ∈ C \ D (see Lemma 1.27). Now the complex plane may be
subdivided by lines parallel to the real and imaginary axes into closed squares
that are of the form

{x + iy ∈ C : kδ ≤ x ≤ (k + 1)δ and lδ ≤ y ≤ (l + 1)δ}

for some integers k and l. The number of such squares that intersect the
closed bounded set K is finite; let X1, X2, . . . , Xr be the squares of the above
form that intersect K, and let X = X1 ∪X2 ∪ · · · ∪Xr. Then X is a closed
polygonal set. Moreover K ⊂ int X and X ⊂ D, as required.

The following theorem is a very general form of Cauchy’s Theorem.

Theorem 6.11 Let D be an open set in C, and let γ1, γ2, . . . , γm be piecewise

continuously differentiable closed paths in D. Suppose that
m∑

j=0

n(γj, w) = 0

for all w ∈ C \D, where n(γj, w) denotes the winding number of the closed
path γj about w. Then

m∑
j=1

∫
γj

f(z) dz = 0

for all holomorphic functions f : D → C defined throughout the open set D.

Proof Let K = F ∪G, where F = [γ1] ∪ [γ2] ∪ · · · ∪ [γm] and

G =

{
z ∈ C \ F :

m∑
j=1

n(γj, z) 6= 0

}
.

Then

C \K =

{
z ∈ C \ F :

m∑
j=1

n(γj, z) = 0

}
.

Now, for each closed path γj, the function mapping z ∈ C \ F to n(γj, z) is
a continuous integer-valued function on C \ F . (Corollary 3.4). It follows
that, given any z0 ∈ C \K, there exists an open subset V of C \F such that
n(γj, z) = n(γj, z0) for all z ∈ V . But then

∑m
j=1 n(γj, z) = 0 for all z ∈ V ,
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and thus V ⊂ C \K. This shows that C \K is an open set, and thus K is a
closed set.

Next we show that the set K is bounded. Now there exists some real
number R0 such that [γj] is contained in the open disk of radius R0 about the
origin for j = 1, 2, . . . ,m (see Lemma 1.31). It then follows from Corollary 3.5
that n(γj, w) = 0 when |w| ≥ R0. Thus the closed set K is contained in the
open disk of radius R0 about zero, and is therefore bounded. Moreover
the conditions in the statement of the theorem ensure that K ⊂ D. It
follows from Lemma 6.10 that there exists a closed polygonal set X such
that K ⊂ int X and X ⊂ D. Now [γj] ⊂ K ⊂ int X for j = 1, 2, . . . ,m, and

f(z) =
1

2πi

∫
∂X

f(w)

w − z
dw

for all z ∈ int X (Lemma 6.9). Therefore∫
γj

f(z) dz =
1

2πi

∫
γj

(∫
∂X

f(w)

w − z
dw

)
dz

=
1

2πi

∫
∂X

(
f(w)

∫
γj

dz

w − z

)
dw

=

∫
∂X

f(w)n(γj, w) dw

Now the boundary of the closed polygonal set X is contained in the comple-

ment C\K of K, and therefore
m∑

j=1

n(γj, w) = 0 at all points of the boundary

of X. It follows that

m∑
j=1

∫
γj

f(z) dz =

∫
∂X

(
f(w)

m∑
j=1

n(γj, w)

)
dw = 0,

as required.

Corollary 6.12 Let D be an open set in C, let γ1, γ2, . . . , γs be piecewise
continuously differentiable closed paths in D, and let r be an integer satisfying

1 ≤ r < s. Suppose that
r∑

j=0

n(γj, w) =
s∑

j=r+1

n(γj, w) for all w ∈ C\D. Then

r∑
j=1

∫
γj

f(z) dz =
s∑

j=r+1

∫
γj

f(z) dz

for all holomorphic functions f : D → C defined throughout the open set D.
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Proof For each of the paths γj: [aj, bj] → C with j > r, let θj: [aj, bj] → C
be the reversed path defined so that θj(t) = γj(aj + bj − t) for all t ∈ [aj, bj].
Then n(θj, w) = −n(γj, w) for all w ∈ C\ [γj], and

∫
θj

f(z) dz = −
∫

γj
f(z) dz

for all continuous functions f defined along [γj].

If
r∑

j=1

n(γj, w) =
s∑

j=r+1

n(γj, w) then
r∑

j=1

n(γj, w) +
s∑

j=r+1

n(θj, w) = 0 for

all w ∈ C \D. It therefore follows from Theorem 6.11 that

m∑
j=1

∫
γj

f(z) dz −
s∑

j=r+1

∫
γj

f(z) dz =
m∑

j=1

∫
γj

f(z) dz +
s∑

j=r+1

∫
θj

f(z) dz = 0

for all holomorphic functions f defined over D, as required.

6.7 Cauchy’s Theorem for Simply-Connected Domains

Corollary 6.13 (Cauchy’s Theorem for Simply-Connected Domains) Let
f : D → R be a holomorphic function defined over a simply-connected open
set D in C. Then ∫

γ

f(z) dz = 0.

for all piecewise continuously differentiable closed paths γ in D.

Proof The requirement that the open set D be simply-connected ensures
that the winding number of any closed curve in D about any element of
the complement of D is zero (see Proposition 3.9). The result thus follows
immediately from Theorem 6.11.

6.8 Residues

Proposition 6.14 Let w be a complex number, let r be a positive real num-
ber, and let f be a complex-valued function that is defined and holomor-
phic throughout Dw,r \ {w}, where Dw,r is the open disk of radius r about
w. Then there exists some complex number Resw(f) with the property that∫

γ
f(z) dz = 2πin(γ, w) Resw(f) for all piecewise continuously differentiable

closed paths γ in Dw,r \ {w}.

Proof Let D∗
w,r = Dw,r \ {w}, and let γ1: [0, 1] → D∗

w,r be the closed path
defined such that γ1(t) = w + 1

2
re2πit for all t ∈ [0, 1]. Now n(γ, z) = 0

and n(γ1, z) = 0 whenever |z − w| ≥ r (see Corollary 3.5). Thus n(γ, z) −
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kn(γ1, z) = 0 for all z ∈ C \ D∗
w,r, where k = n(γ, w). It follows from

Theorem 6.11 (and Corollary 6.12) that∫
γ

f(z) dz − k

∫
γ1

f(z) dz = 0

for any holomorphic function f defined throughout D∗
w,r. Let

Resw(f) =
1

2πi

∫
γ1

f(z) dz.

Then
∫

γ
f(z) dz = 2πin(γ, w) Resw(f) for all holomorphic functions f de-

fined throughout D∗
w,r and for all piecewise continuously differentiable closed

paths γ in D∗
w,r, as required.

Definition Let w be a complex number, and let f be a complex-valued
function that is defined and holomorphic throughout the open set Dw,r \{w}
for some positive real number r, where Dw,r denotes the open disk of radius r
about w. The residue of f at w is defined to be the complex number Resw(f)
characterized by the property that that

∫
γ
f(z) dz = 2πin(γ, w) Resw(f) for

all piecewise continuously differentiable closed paths γ in Dw,r \ {w}.

Let w be a complex number, let r be a positive real number, and let f
be a complex-valued function that is holomorphic throughout Dw,r′ \{w} for
some real number r′ satisfying r′ > r. Then

Resw(f) =
r

2π

∫ 2π

0

f(w + reiθ)eiθ dθ.

This formula may be derived on evaluating the path integral of f along the
closed path γw,r: [0, 2π] → C, where γw,r(θ) = w + reiθ for all θ ∈ [0, 2π].

Lemma 6.15 Let w be a complex number, let r be a positive real number,
and let f be a complex-valued function that is holomorphic throughout Dw,r \
{w}, where Dw,r is the open disk of radius r about w. Suppose that there
exist complex numbers b1, b2, . . . , bm and a holomorphic function g: Dw,r → C
defined throughout the open disk Dw,r such that

f(z) =
m∑

j=1

bj

(z − w)j
+ g(z)

for all z ∈ Dw,r \ {w}. Then Resw(f) = b1.
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Proof Let γ: [a, b] → Dw,r \ {w} be a closed path in Dw,r \ {w}, where
Dw,r \{w} = {z ∈ C : 0 < |z−w| < r}, and let h: Dw,r \{w} → C be defined
by

h(z) =
m∑

j=2

bj

(z − w)j
.

Then h(z) = H ′(z) for all z ∈ Dw,r \ {w}, where

H(z) = −
m∑

j=2

bj

(j − 1)(z − w)j−1

for all z ∈ Dw,r \ {w}. Therefore∫
γ

h(z) dz =

∫
γ

H ′(z)dz = H(γ(b))−H(γ(a)) = 0.

(see Lemma 5.5). Also Cauchy’s Theorem for simply-connected open sets
ensures that ∫

γ

g(z) dz = 0

(see Corollary 6.13). It follows that∫
γ

f(z) dz =

∫
γ

(
h(z) +

b1

z − w
+ g(z)

)
dz = b1

∫
γ

dz

z − w
= 2πib1n(γ, w)

(see Proposition 6.2). Thus Resw(f) = b1, as required.

6.9 Cauchy’s Residue Theorem

We prove a very general form of Cauchy’s Residue Theorem.

Theorem 6.16 Let D be an open set in C, and let γ1, γ2, . . . , γm be piecewise

continuously differentiable closed paths in D. Suppose that
m∑

j=0

n(γj, w) = 0

for all w ∈ C \D, where n(γj, w) denotes the winding number of the closed
path γj about w. Let w1, w2, . . . , ws be complex numbers in D that do not lie
on any of the paths γ1, γ2, . . . , γm. Then

m∑
j=1

∫
γj

f(z) dz = 2πi
m∑

j=1

s∑
k=1

n(γj, wk) Reswk
(f)

for all complex-valued functions f that are defined and holomorphic through-
out the open set D \ {w1, w2, . . . , ws}, where n(γj, wk) denotes the winding
number of the closed path γj about wk, and Reswk

(f) denotes the residue of
f at wk.
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Proof Let r be a positive real number chosen such that Dwk,r ⊂ D and
Dwk,r ∩ {w1, w2, . . . , ws} = {wk} for k = 1, 2, . . . , s, where Dwk,r denotes
the open disk Dwk,r of radius r about wk. We can then find continuously
differentiable closed paths ϕ1, ϕ2, . . . , . . . , ϕs in D such that [ϕk] is contained
Dwk,r \ {wk} and

n(ϕk, wk) = −
m∑

j=1

n(γj, wk).

Then
m∑

j=1

n(γj, w) +
s∑

k=1

n(ϕk, w) = 0

for all complex numbers w that do not belong to D \ {w1, w2, . . . , ws}. It
follows from Cauchy’s Theorem (Theorem 6.11) that

m∑
j=1

∫
γj

f(z) dz +
s∑

k=1

∫
ϕk

f(z) dz = 0.

But it follows from Proposition 6.14 that∫
ϕk

f(z) dz = 2πin(ϕk, wk) Reswk
(f) = −2πi

m∑
j=1

n(γj, wk) Reswk
(f).

Therefore
m∑

j=1

∫
γj

f(z) dz = 2πi
m∑

j=1

s∑
k=1

n(γj, wk) Reswk
(f),

as required.

Corollary 6.17 Let D be a simply-connected open set in C, let γ be a piece-
wise continuously differentiable closed path in D, and let w1, w2, . . . , ws be
complex numbers in D that do not lie on the path γ. Then∫

γ

f(z) dz = 2πi
s∑

k=1

n(γ, wk) Reswk
(f)

for all complex-valued functions f that are defined and holomorphic through-
out D \ {w1, w2, . . . , ws}.

Proof The requirement that the open set D be simply-connected ensures
that the winding number of any closed curve in D about any element of the
complement of D is zero (see Proposition 3.9). The result therefore follows
directly on applying Theorem 6.16.
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Corollary 6.18 Let D be a simply-connected open set in C, let f : D → C
be a holomorphic function defined throughout D, and let γ be a piecewise
continuously differentiable closed path in D.∫

γ

f(z)

z − w
dz = 2πin(γ, w)f(w)

for all w ∈ D.

Proof Let w ∈ D. The integrand
f(z)

z − w
is a holomorphic function on D\{w}

and its residue at w is f(w). (This follows directly on applying Lemma 6.9
to some triangle in D that contains the point w in its interior.) The required
result therefore follows on applying Corollary 6.17.

Example Let D = C \ {−ia, ia}, where a is a positive real number, and let
f be the holomorphic function on D defined such that f(z) = (z2 + a2)−1

for all z ∈ D. Let R be a real number satisfying R > a, let ρR: [−R,R] → C
and σR: [0, 1] → C be the continuously differentiable paths defined such that
ρR(t) = t for all t ∈ [−R,R] and σR(t) = Reπit for all t ∈ [0, 1], and let
ϕR: [−R,R + 1] be the closed path defined such that

ϕR(t) =

{
ρR(t) if −R ≤ t ≤ R;
σR(t−R) if R ≤ t ≤ R + 1.

Then ϕR is a piecewise continuously differentiable closed path which traverses
the boundary of the semicircle

{z ∈ C : |z| ≤ R and Im z ≥ 0}.

Moreover ∫
ϕR

f(z) dz =

∫
ρR

f(z) dz +

∫
σR

f(z) dz.

Now |f(z)| ≤ (R2 − a2)−1 for all z ∈ [σR], and the length of the path σR is
πR. It follows from Lemma 4.2 that∣∣∣∣∫

σR

f(z) dz

∣∣∣∣ ≤ πR

R2 − a2
.

Therefore

lim
R→+∞

∫
σR

f(z) dz = 0.
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It follows that

lim
R→+∞

∫
ϕR

f(z) dz = lim
R→+∞

∫
ρR

f(z) dz =

∫ +∞

−∞

dt

t2 + a2
.

The function f is holomorphic except at ia and −ia. The singularity ia lies
in the interior of the semicircle bounded by [ϕR], and the singularity −ia lies
outside this semicircle. The boundary of the semicircle is traversed by the
closed path ϕR once in the anticlockwise direction. It easily follows from this
that n(ϕR, ia) = 1 and n(ϕR,−ia) = 0, since R > a. It then follows from
Corollary 6.17 that ∫

ϕR

f(z) dz = 2πi Resia(f).

Now

f(z) =
1

2ia(z − ia)
− 1

2ia(z + ia)
,

and therefore Resia(f) = (2ia)−1. It follows that It follows from that∫ +∞

−∞

dt

t2 + a2
=

∫
ϕR

f(z) dz = 2πi Resia(f) =
π

a
.
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