Course 214 Section 6: Cauchy's Theorem Second Semester 2008

David R. Wilkins

Copyright © David R. Wilkins 1989–2008

Contents

6	Cau	chy's Theorem	57
	6.1	Path Integrals of Polynomial Functions	57
	6.2	Winding Numbers and Path Integrals	57
	6.3	Cauchy's Theorem for a Triangle	58
	6.4	Cauchy's Theorem for Star-Shaped Domains	60
	6.5	Cauchy's Theorem for Closed Polygonal Sets	62
	6.6	Cauchy's Theorem for Arbitrary Domains	64
	6.7	Cauchy's Theorem for Simply-Connected Domains	66
	6.8	Residues	66
	6.9	Cauchy's Residue Theorem	68

6 Cauchy's Theorem

6.1 Path Integrals of Polynomial Functions

A function $f: \mathbb{C} \to \mathbb{C}$ is said to be a *polynomial function* of degree n if it can be represented by an expression of the form

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n,$$

where a_0, a_1, \ldots, a_n are complex numbers and $a_n \neq 0$.

Let z_0 and z_1 be complex numbers, and let $\gamma: [a, b] \to \mathbb{C}$ be a piecewise continuously differentiable path from z_0 to z_1 . If n is an integer and $n \neq -1$ then an immediate application of Lemma 5.5 shows that

$$\int_{\gamma} z^n \, dz = \int_{\gamma} \frac{d}{dz} \left(\frac{z^{n+1}}{n+1} \right) \, dz = \frac{z_1^{n+1} - z_0^{n+1}}{n+1}$$

It follows from this that $\int_{\gamma} z^n dz = 0$ for all piecewise continuously differentiable closed paths γ , provided that n is an integer and $n \neq -1$. The following result is an immediate consequence of this.

Lemma 6.1 Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial function. Then $\int_{\gamma} f(z) dz = 0$ for all piecewise continuously differentiable closed paths γ in the complex plane.

6.2 Winding Numbers and Path Integrals

Proposition 6.2 Let $\gamma: [a, b] \to \mathbb{C}$ be a piecewise continuously differentiable closed path in the complex plane, and let w be a complex number that does not lie on γ . Then the winding number $n(\gamma, w)$ of the closed path γ about w satisfies the identity

$$n(\gamma, w) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - w}.$$

Proof There exists a path $\varphi: [a, b] \to \mathbb{C}$ such that $\gamma(t) - w = \exp(\varphi(t))$ for all $t \in [a, b]$. It is easy to see that this path φ is piecewise continuously differentiable. Now $\gamma'(t) = \exp(\varphi(t))\varphi'(t)$ for all $t \in [a, b]$. (This is an immediate consequence of Lemma 5.4, given that the derivative of the exponential function is the exponential function itself.) It follows from the definition of the winding number $n(\gamma, w)$ that

$$\int_{\gamma} \frac{dz}{z-w} = \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)-w} dt = \int_{a}^{b} \frac{\gamma'(t)}{\exp(\varphi(t))} dt = \int_{a}^{b} \varphi'(t) dt$$
$$= \varphi(b) - \varphi(a) = 2\pi i n(\gamma, w),$$

as required.

Corollary 6.3 Let X be a closed polygonal set in the complex plane with interior int(X). Then

$$\int_{\partial X} \frac{dz}{z - w} = \begin{cases} 2\pi i & \text{if } w \in \operatorname{int}(X); \\ 0 & \text{if } w \in \mathbb{C} \setminus X. \end{cases}$$

Proof We can represent the closed polygonal set X as the union of a finite collection T_1, T_2, \ldots, T_r finite collection of distinct triangles in the complex plane that intersect regularly. Moreover these triangles may be chosen such that the complex number w belongs to the interior of exactly one of those triangles. Let $w \in int(T_1)$. A straightforward application of Proposition 6.2 shows that

$$\int_{\partial T_1} \frac{dz}{z-w} = 2\pi i.$$

Also a closed path round the boundary of the triangle T_j has zero winding number about w when $j \neq 1$, and therefore

$$\int_{\partial T_j} \frac{dz}{z-w} = 0 \text{ when } j \neq 1.$$

It follows from Proposition 4.3 that

$$\int_{\partial X} \frac{dz}{z-w} = \sum_{j=1}^r \int_{\partial T_j} \frac{dz}{z-w} = 2\pi i,$$

as required.

6.3 Cauchy's Theorem for a Triangle

Theorem 6.4 (Cauchy's Theorem for a Triangle) Let $f: D \to \mathbb{C}$ be a holomorphic function defined over an open set D in \mathbb{C} , and let T be a closed triangle contained in D. Then

$$\int_{\partial T} f(z) \, dz = 0.$$

Proof The line segments joining the midpoints of the three edges of the triangular region T divide T into four triangular regions S_1 , S_2 , S_3 and S_4 . An edge of any one of the triangles S_j is half the length of the edge of T that

is parallel to it, and the area of each triangle S_i is a quarter of the area of T. Moreover

$$\int_{\partial T} f(z) \, dz = \sum_{j=1}^{4} \int_{\partial S_i} f(z) \, dz,$$

and therefore

$$\left| \int_{\partial T} f(z) \, dz \right| \le \sum_{j=1}^{4} \left| \int_{\partial S_i} f(z) \, dz \right|,$$

Suppose that $\int_{\partial T} f(z) dz \neq 0$. Then there would exist some real number ε_0 satisfying $\varepsilon_0 > 0$ such that

$$\left| \int_{\partial T} f(z) \, dz \right| \ge \varepsilon_0 \operatorname{area}(T).$$

There would then exist at least one triangle S_j for which

$$\left| \int_{\partial S_j} f(z) \, dz \right| \ge \frac{1}{4} \varepsilon_0 \operatorname{area}(T) = \varepsilon_0 \operatorname{area}(S_j).$$

It follows from repeated applications of this observation that there would exist an infinite sequence $T_0, T_1, T_2, T_3, \ldots$ of closed triangles, where $T_0 = T$, such that, for each positive integer j, the triangle T_j is one of the four triangles obtained by dividing the triangle T_{j-1} along the line segments joining the midpoints of its edges, and

$$\left| \int_{\partial T_j} f(z) \, dz \right| \ge \varepsilon_0 \operatorname{area}(T_j).$$

Moreover $\operatorname{area}(T_j) = \operatorname{area}(T)/4^j$, and the length of any side of the triangle T_j is half the length of the side of the triangle T_{j-1} that is parallel to it. Therefore the sides of the triangle T_j would have length at most $L/2^j$, where L is the length of the longest side of the triangle T, and therefore the length l_j of the perimeter of the triangle T_j would satisfy $l_j \leq 3L/2^j$.

Let $(w_j : j \in \mathbb{N})$ be a sequence of complex numbers satisfying $w_j \in T_j$ for each positive integer j. Then $w_k \in T_j$ whenever k > j, and therefore $|w_k - w_j| \leq L/2^j$ whenever $k \geq j$. It follows from this that the sequence $(w_j : j \in \mathbb{N})$ would be a Cauchy sequence, and would therefore converge to some limit w, where $w \in T_j$ for all positive integers j. The function f would be holomorphic at w, and therefore, given any positive real number ε_1 , there would exist some positive number δ such that $|f(z) - f(w) - (z - w)f'(w)| \leq \varepsilon_1 |z - w|$ whenever $|z - w| < \delta$ (Lemma 5.1). But the triangle T_j would be wholly contained within the open disk of radius δ centred on w, provided that j were chosen sufficiently large, in which case $|z - w| \leq L/2^j$ and $|f(z) - f(w) - (z - w)f'(w)| \leq \varepsilon_1 L/2^j$ for all $z \in T_j$. Now

$$\int_{\partial T_j} (f(w) + (z - w)f'(w)) \, dz = 0.$$

(see Lemma 6.1). Thus if j were chosen sufficiently large then

$$\begin{aligned} \left| \int_{\partial T_j} f(z) \, dz \right| &= \left| \int_{\partial T_j} (f(z) - f(w) - (z - w) f'(w)) \, dz \right| \\ &\leq \left| l_j \sup_{z \in T_j} |f(z) - f(w) - (z - w) f'(w)| \leq \frac{3L^2 \varepsilon_1}{4^j}. \end{aligned}$$

But this would not be possible, had ε_1 been chosen small enough to ensure that $3L^2\varepsilon_1 < \varepsilon_0 \operatorname{area}(T)$. Thus the assumption that

$$\left| \int_{\partial T} f(z) \, dz \right| \ge \varepsilon_0 \operatorname{area}(T)$$

for some real number ε_0 satisfying $\varepsilon_0 > 0$ leads to a contradiction. We conclude that $\int_{\partial T} f(z) dz = 0$, as required.

6.4 Cauchy's Theorem for Star-Shaped Domains

We recall that an open set D in the complex plane is *star-shaped* if there exists some element z_0 of D chosen such that the line segment $\{(1-t)z_0 + tz : t \in [0,1]\}$ joining z_0 to z is contained in D for all $z \in D$.

Proposition 6.5 Let $f: D \to \mathbb{R}$ be a continuous function defined over a star-shaped open set D in \mathbb{C} . Suppose that

$$\int_{\partial T} f(z) \, dz = 0$$

for all closed triangles T contained in D. Then there exists a holomorphic function $F: D \to \mathbb{R}$ such that f(z) = F'(z) for all $z \in D$.

Proof Let z_0 be an element of D chosen such that the line segment joining z_0 to z is contained in D for all $z \in D$, and let $F: D \to \mathbb{C}$ be the function defined by

$$F(z) = \int_{[z_0, z]} f(\zeta) \, d\zeta.$$

Let z be some complex number belonging to D. Then there exists some positive number δ_0 such that $z + h \in D$ for all complex numbers h satisfying $|h| < \delta_0$. The choice of z_0 then ensures that if $|h| < \delta_0$ then the closed triangle with vertices z_0 , z and z + h is contained in D. But then

$$\int_{[z_0,z]} f(\zeta) \, d\zeta + \int_{[z,z+h]} f(\zeta) \, d\zeta + \int_{[z+h,z_0]} f(\zeta) \, d\zeta = 0,$$

and thus

$$F(z+h) - F(z) = \int_{[z,z+h]} f(\zeta) \, d\zeta = h \int_0^1 f(z+th) \, dt.$$

Now the continuity of the function f ensures that, given any positive real number ε , there exists some real number δ satisfying $0 < \delta \leq \delta_0$ such that $|f(z+h) - f(z)| \leq \varepsilon$ whenever $|h| < \delta$. But then

$$\left|\frac{F(z+h) - F(z)}{h} - f(z)\right| = \left|\int_0^1 (f(z+th) - f(z)) dt\right|$$
$$\leq \int_0^1 |f(z+th) - f(z)| dt \leq \varepsilon$$

whenever $|h| < \delta$. It follows that the function F has a well-defined derivative F'(z) at z, and

$$F'(z) = \lim_{h \to 0} \frac{F(z+h) - F(z)}{h} = f(z).$$

Thus the function $F: D \to \mathbb{C}$ is holomorphic on D, and F'(z) = f(z) for all $z \in D$, as required.

Theorem 6.6 (Cauchy's Theorem for Star-Shaped Domains) Let $f: D \to \mathbb{R}$ be a holomorphic function defined over a star-shaped open set D in \mathbb{C} . Then

$$\int_{\gamma} f(z) \, dz = 0.$$

for all piecewise continuously differentiable closed paths γ in D.

Proof Cauchy's Theorem for a Triangle (Theorem 6.4) ensures that

$$\int_{\partial T} f(z) \, dz = 0$$

for all closed triangles T contained in D. It then follows from Proposition 6.5 that there exists a holomorphic function $F: D \to \mathbb{R}$ such that f(z) = F'(z) for all $z \in D$. But then it follows from Lemma 5.5 that

$$\int_{\gamma} f(z) dz = \int_{\gamma} F'(z) dz = F(\gamma(b)) - F(\gamma(a)) = 0$$

for any piecewise continuously differentiable closed path $\gamma:[a,b] \to D$ in D.

6.5 Cauchy's Theorem for Closed Polygonal Sets

Lemma 6.7 Let D be an open set in the complex plane, let X be a closed polygonal set contained in D, and let $f: D \to \mathbb{C}$ be a holomorphic function defined throughout D. Then $\int_{\partial X} f(z) dz = 0$.

Proof Any closed polygonal set the complex plane may be represented as the union of a finite collection T_1, T_2, \ldots, T_r finite collection of distinct triangles in the complex plane that intersect regularly. Moreover

$$\int_{\partial X} f(z) \, dz = \sum_{j=1}^r \int_{\partial T_j} f(z) \, dz.$$

(Proposition 4.3). The result is therefore an immediate consequence of Cauchy's Theorem for a Triangle (Theorem 6.4).

Lemma 6.8 Let D be an open set in the complex plane, let X be a closed polygonal set contained in D, let w be a complex number in the interior of X, and let $f: D \to \mathbb{C}$ be a complex-valued function that is continuous on D and holomorphic on $D \setminus \{w\}$. Then $\int_{\partial X} f(z) dz = 0$.

Proof The continuity of the function f at w ensures that there exist some positive real numbers M and δ_0 such that the open disk of radius δ_0 about wis contained in the interior of X and $|f(z)| \leq M$ for all complex numbers zsatisfying $|z - w| < \delta_0$. Moreover, given any positive real number ε there exists a closed triangle T_{ε} such that $w \in int(T_{\varepsilon})$, T_{ε} is contained in the open disk of radius δ_0 about w, and the perimeter of T_{ε} is of length less than ε . Then $\left|\int_{\partial T_{\varepsilon}} f(z) dz\right| \leq M \varepsilon$ (see Lemma 4.2). Let $Y = X \setminus int(T_{\varepsilon})$, where $int(T_{\varepsilon})$ denotes the interior of the triangle T_{ε} . Then Y is a closed polygonal set, and the function f is holomorphic over an open set that contains Y, and therefore $\int_{\partial Y} f(z) dz = 0$. But the boundary of Y is the disjoint union of the boundary of X and the boundary of T_{ε} , and

$$\int_{\partial Y} f(z) \, dz = \int_{\partial X} f(z) \, dz - \int_{\partial T_{\varepsilon}} f(z) \, dz,$$

(The contribution to $\int_{\partial Y} f(z) dz$ arising from the boundary of the triangle T_{ε} is $-\int_{\partial T_{\varepsilon}} f(z) dz$ on account of the fact that the closed polygonal set Y lies to the right of the line segments making up the boundary of the triangle as those line segments are traversed in an anticlockwise direction.) It follows that

$$\int_{\partial X} f(z) \, dz = \int_{\partial T_{\varepsilon}} f(z) \, dz$$

and therefore

$$\left| \int_{\partial X} f(z) \, dz \right| \le M \varepsilon.$$

This inequality holds no matter how small the value of ε that was chosen. It follows that $\int_{\partial X} f(z) dz = 0$, as required.

Lemma 6.9 Let D be an open set in the complex plane, let X be a closed polygonal set contained in D, let w be a complex number in the interior of X, and let $f: D \to \mathbb{C}$ be a holomorphic function defined throughout D. Then

$$\int_{\partial X} \frac{f(z)}{z - w} \, dz = 2\pi i f(w)$$

Proof Let $g: D \to \mathbb{C}$ be the function defined such that

$$g(z) = \begin{cases} \frac{f(z) - f(w)}{z - w} & \text{if } z \in D \setminus \{w\};\\ f'(w) & \text{if } z = w. \end{cases}$$

Then the function $g: D \to \mathbb{C}$ is continuous on D and holomorphic on $D \setminus \{w\}$. It follows from Lemma 6.8 that $\int_{\partial X} g(z) dz = 0$. Therefore

$$\int_{\partial X} \frac{f(z)}{z - w} \, dz = f(w) \int_{\partial X} \frac{dz}{z - w}$$

But $\int_{\partial X} \frac{dz}{z-w} = 2\pi i$. (Corollary 6.3). The result follows.

6.6 Cauchy's Theorem for Arbitrary Domains

Lemma 6.10 Let K be a closed bounded subset of \mathbb{C} , and let D be an open set in \mathbb{C} . Suppose that $K \subset D$. Then there exists a closed polygonal set X such that $X \subset D$ and $K \subset \text{int } X$, where int X denotes the interior of X.

Proof There exists some positive number δ such that $|z - w| \geq 2\delta$ for all $z \in K$ and $w \in \mathbb{C} \setminus D$ (see Lemma 1.27). Now the complex plane may be subdivided by lines parallel to the real and imaginary axes into closed squares that are of the form

$$\{x + iy \in \mathbb{C} : k\delta \le x \le (k+1)\delta \text{ and } l\delta \le y \le (l+1)\delta\}$$

for some integers k and l. The number of such squares that intersect the closed bounded set K is finite; let X_1, X_2, \ldots, X_r be the squares of the above form that intersect K, and let $X = X_1 \cup X_2 \cup \cdots \cup X_r$. Then X is a closed polygonal set. Moreover $K \subset \text{int } X$ and $X \subset D$, as required.

The following theorem is a very general form of Cauchy's Theorem.

Theorem 6.11 Let D be an open set in \mathbb{C} , and let $\gamma_1, \gamma_2, \ldots, \gamma_m$ be piecewise continuously differentiable closed paths in D. Suppose that $\sum_{j=0}^m n(\gamma_j, w) = 0$ for all $w \in \mathbb{C} \setminus D$, where $n(\gamma_j, w)$ denotes the winding number of the closed path γ_j about w. Then

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz = 0$$

for all holomorphic functions $f: D \to \mathbb{C}$ defined throughout the open set D.

Proof Let $K = F \cup G$, where $F = [\gamma_1] \cup [\gamma_2] \cup \cdots \cup [\gamma_m]$ and

$$G = \left\{ z \in \mathbb{C} \setminus F : \sum_{j=1}^{m} n(\gamma_j, z) \neq 0 \right\}.$$

Then

$$\mathbb{C} \setminus K = \left\{ z \in \mathbb{C} \setminus F : \sum_{j=1}^{m} n(\gamma_j, z) = 0 \right\}.$$

Now, for each closed path γ_j , the function mapping $z \in \mathbb{C} \setminus F$ to $n(\gamma_j, z)$ is a continuous integer-valued function on $\mathbb{C} \setminus F$. (Corollary 3.4). It follows that, given any $z_0 \in \mathbb{C} \setminus K$, there exists an open subset V of $\mathbb{C} \setminus F$ such that $n(\gamma_j, z) = n(\gamma_j, z_0)$ for all $z \in V$. But then $\sum_{j=1}^m n(\gamma_j, z) = 0$ for all $z \in V$, and thus $V \subset \mathbb{C} \setminus K$. This shows that $\mathbb{C} \setminus K$ is an open set, and thus K is a closed set.

Next we show that the set K is bounded. Now there exists some real number R_0 such that $[\gamma_j]$ is contained in the open disk of radius R_0 about the origin for $j = 1, 2, \ldots, m$ (see Lemma 1.31). It then follows from Corollary 3.5 that $n(\gamma_j, w) = 0$ when $|w| \ge R_0$. Thus the closed set K is contained in the open disk of radius R_0 about zero, and is therefore bounded. Moreover the conditions in the statement of the theorem ensure that $K \subset D$. It follows from Lemma 6.10 that there exists a closed polygonal set X such that $K \subset \text{int } X$ and $X \subset D$. Now $[\gamma_j] \subset K \subset \text{int } X$ for $j = 1, 2, \ldots, m$, and

$$f(z) = \frac{1}{2\pi i} \int_{\partial X} \frac{f(w)}{w - z} \, dw$$

for all $z \in \text{int } X$ (Lemma 6.9). Therefore

$$\int_{\gamma_j} f(z) dz = \frac{1}{2\pi i} \int_{\gamma_j} \left(\int_{\partial X} \frac{f(w)}{w - z} dw \right) dz$$
$$= \frac{1}{2\pi i} \int_{\partial X} \left(f(w) \int_{\gamma_j} \frac{dz}{w - z} \right) dw$$
$$= \int_{\partial X} f(w) n(\gamma_j, w) dw$$

Now the boundary of the closed polygonal set X is contained in the complement $\mathbb{C} \setminus K$ of K, and therefore $\sum_{j=1}^{m} n(\gamma_j, w) = 0$ at all points of the boundary of X. It follows that

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz = \int_{\partial X} \left(f(w) \sum_{j=1}^{m} n(\gamma_j, w) \right) \, dw = 0,$$

as required.

Corollary 6.12 Let D be an open set in \mathbb{C} , let $\gamma_1, \gamma_2, \ldots, \gamma_s$ be piecewise continuously differentiable closed paths in D, and let r be an integer satisfying $1 \le r < s$. Suppose that $\sum_{j=0}^r n(\gamma_j, w) = \sum_{j=r+1}^s n(\gamma_j, w)$ for all $w \in \mathbb{C} \setminus D$. Then $\sum_{j=1}^r \int_{\gamma_j} f(z) dz = \sum_{j=r+1}^s \int_{\gamma_j} f(z) dz$

for all holomorphic functions $f: D \to \mathbb{C}$ defined throughout the open set D.

Proof For each of the paths $\gamma_j: [a_j, b_j] \to \mathbb{C}$ with j > r, let $\theta_j: [a_j, b_j] \to \mathbb{C}$ be the reversed path defined so that $\theta_j(t) = \gamma_j(a_j + b_j - t)$ for all $t \in [a_j, b_j]$. Then $n(\theta_j, w) = -n(\gamma_j, w)$ for all $w \in \mathbb{C} \setminus [\gamma_j]$, and $\int_{\theta_j} f(z) dz = -\int_{\gamma_j} f(z) dz$ for all continuous functions f defined along $[\gamma_j]$.

for all continuous functions f defined along $[\gamma_j]$. If $\sum_{j=1}^r n(\gamma_j, w) = \sum_{j=r+1}^s n(\gamma_j, w)$ then $\sum_{j=1}^r n(\gamma_j, w) + \sum_{j=r+1}^s n(\theta_j, w) = 0$ for all $w \in \mathbb{C} \setminus D$. It therefore follows from Theorem 6.11 that

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz - \sum_{j=r+1}^{s} \int_{\gamma_j} f(z) \, dz = \sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz + \sum_{j=r+1}^{s} \int_{\theta_j} f(z) \, dz = 0$$

for all holomorphic functions f defined over D, as required.

6.7 Cauchy's Theorem for Simply-Connected Domains

Corollary 6.13 (Cauchy's Theorem for Simply-Connected Domains) Let $f: D \to \mathbb{R}$ be a holomorphic function defined over a simply-connected open set D in \mathbb{C} . Then

$$\int_{\gamma} f(z) \, dz = 0.$$

for all piecewise continuously differentiable closed paths γ in D.

Proof The requirement that the open set D be simply-connected ensures that the winding number of any closed curve in D about any element of the complement of D is zero (see Proposition 3.9). The result thus follows immediately from Theorem 6.11.

6.8 Residues

Proposition 6.14 Let w be a complex number, let r be a positive real number, and let f be a complex-valued function that is defined and holomorphic throughout $D_{w,r} \setminus \{w\}$, where $D_{w,r}$ is the open disk of radius r about w. Then there exists some complex number $\operatorname{Res}_w(f)$ with the property that $\int_{\gamma} f(z) dz = 2\pi i n(\gamma, w) \operatorname{Res}_w(f)$ for all piecewise continuously differentiable closed paths γ in $D_{w,r} \setminus \{w\}$.

Proof Let $D_{w,r}^* = D_{w,r} \setminus \{w\}$, and let $\gamma_1: [0,1] \to D_{w,r}^*$ be the closed path defined such that $\gamma_1(t) = w + \frac{1}{2}re^{2\pi i t}$ for all $t \in [0,1]$. Now $n(\gamma,z) = 0$ and $n(\gamma_1, z) = 0$ whenever $|z - w| \ge r$ (see Corollary 3.5). Thus $n(\gamma, z) - 1$

 $kn(\gamma_1, z) = 0$ for all $z \in \mathbb{C} \setminus D^*_{w,r}$, where $k = n(\gamma, w)$. It follows from Theorem 6.11 (and Corollary 6.12) that

$$\int_{\gamma} f(z) \, dz - k \int_{\gamma_1} f(z) \, dz = 0$$

for any holomorphic function f defined throughout $D_{w,r}^*$. Let

$$\operatorname{Res}_w(f) = \frac{1}{2\pi i} \int_{\gamma_1} f(z) \, dz.$$

Then $\int_{\gamma} f(z) dz = 2\pi i n(\gamma, w) \operatorname{Res}_w(f)$ for all holomorphic functions f defined throughout $D^*_{w,r}$ and for all piecewise continuously differentiable closed paths γ in $D^*_{w,r}$, as required.

Definition Let w be a complex number, and let f be a complex-valued function that is defined and holomorphic throughout the open set $D_{w,r} \setminus \{w\}$ for some positive real number r, where $D_{w,r}$ denotes the open disk of radius rabout w. The *residue* of f at w is defined to be the complex number $\operatorname{Res}_w(f)$ characterized by the property that that $\int_{\gamma} f(z) dz = 2\pi i n(\gamma, w) \operatorname{Res}_w(f)$ for all piecewise continuously differentiable closed paths γ in $D_{w,r} \setminus \{w\}$.

Let w be a complex number, let r be a positive real number, and let f be a complex-valued function that is holomorphic throughout $D_{w,r'} \setminus \{w\}$ for some real number r' satisfying r' > r. Then

$$\operatorname{Res}_{w}(f) = \frac{r}{2\pi} \int_{0}^{2\pi} f(w + re^{i\theta})e^{i\theta} \, d\theta.$$

This formula may be derived on evaluating the path integral of f along the closed path $\gamma_{w,r}: [0, 2\pi] \to \mathbb{C}$, where $\gamma_{w,r}(\theta) = w + re^{i\theta}$ for all $\theta \in [0, 2\pi]$.

Lemma 6.15 Let w be a complex number, let r be a positive real number, and let f be a complex-valued function that is holomorphic throughout $D_{w,r} \setminus \{w\}$, where $D_{w,r}$ is the open disk of radius r about w. Suppose that there exist complex numbers b_1, b_2, \ldots, b_m and a holomorphic function $g: D_{w,r} \to \mathbb{C}$ defined throughout the open disk $D_{w,r}$ such that

$$f(z) = \sum_{j=1}^{m} \frac{b_j}{(z-w)^j} + g(z)$$

for all $z \in D_{w,r} \setminus \{w\}$. Then $\operatorname{Res}_w(f) = b_1$.

Proof Let $\gamma: [a, b] \to D_{w,r} \setminus \{w\}$ be a closed path in $D_{w,r} \setminus \{w\}$, where $D_{w,r} \setminus \{w\} = \{z \in \mathbb{C} : 0 < |z - w| < r\}$, and let $h: D_{w,r} \setminus \{w\} \to \mathbb{C}$ be defined by

$$h(z) = \sum_{j=2}^{m} \frac{b_j}{(z-w)^j}.$$

Then h(z) = H'(z) for all $z \in D_{w,r} \setminus \{w\}$, where

$$H(z) = -\sum_{j=2}^{m} \frac{b_j}{(j-1)(z-w)^{j-1}}$$

for all $z \in D_{w,r} \setminus \{w\}$. Therefore

$$\int_{\gamma} h(z) dz = \int_{\gamma} H'(z) dz = H(\gamma(b)) - H(\gamma(a)) = 0.$$

(see Lemma 5.5). Also Cauchy's Theorem for simply-connected open sets ensures that

$$\int_{\gamma} g(z) \, dz = 0$$

(see Corollary 6.13). It follows that

$$\int_{\gamma} f(z) dz = \int_{\gamma} \left(h(z) + \frac{b_1}{z - w} + g(z) \right) dz = b_1 \int_{\gamma} \frac{dz}{z - w} = 2\pi i b_1 n(\gamma, w)$$

(see Proposition 6.2). Thus $\operatorname{Res}_w(f) = b_1$, as required.

6.9 Cauchy's Residue Theorem

We prove a very general form of Cauchy's Residue Theorem.

Theorem 6.16 Let D be an open set in \mathbb{C} , and let $\gamma_1, \gamma_2, \ldots, \gamma_m$ be piecewise continuously differentiable closed paths in D. Suppose that $\sum_{j=0}^m n(\gamma_j, w) = 0$ for all $w \in \mathbb{C} \setminus D$, where $n(\gamma_j, w)$ denotes the winding number of the closed path γ_j about w. Let w_1, w_2, \ldots, w_s be complex numbers in D that do not lie on any of the paths $\gamma_1, \gamma_2, \ldots, \gamma_m$. Then

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz = 2\pi i \sum_{j=1}^{m} \sum_{k=1}^{s} n(\gamma_j, w_k) \operatorname{Res}_{w_k}(f)$$

for all complex-valued functions f that are defined and holomorphic throughout the open set $D \setminus \{w_1, w_2, \ldots, w_s\}$, where $n(\gamma_j, w_k)$ denotes the winding number of the closed path γ_j about w_k , and $\operatorname{Res}_{w_k}(f)$ denotes the residue of f at w_k . **Proof** Let r be a positive real number chosen such that $D_{w_k,r} \subset D$ and $D_{w_k,r} \cap \{w_1, w_2, \ldots, w_s\} = \{w_k\}$ for $k = 1, 2, \ldots, s$, where $D_{w_k,r}$ denotes the open disk $D_{w_k,r}$ of radius r about w_k . We can then find continuously differentiable closed paths $\varphi_1, \varphi_2, \ldots, \varphi_s$ in D such that $[\varphi_k]$ is contained $D_{w_k,r} \setminus \{w_k\}$ and

$$n(\varphi_k, w_k) = -\sum_{j=1}^m n(\gamma_j, w_k).$$

Then

$$\sum_{j=1}^{m} n(\gamma_j, w) + \sum_{k=1}^{s} n(\varphi_k, w) = 0$$

for all complex numbers w that do not belong to $D \setminus \{w_1, w_2, \ldots, w_s\}$. It follows from Cauchy's Theorem (Theorem 6.11) that

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz + \sum_{k=1}^{s} \int_{\varphi_k} f(z) \, dz = 0.$$

But it follows from Proposition 6.14 that

$$\int_{\varphi_k} f(z) dz = 2\pi i n(\varphi_k, w_k) \operatorname{Res}_{w_k}(f) = -2\pi i \sum_{j=1}^m n(\gamma_j, w_k) \operatorname{Res}_{w_k}(f).$$

Therefore

$$\sum_{j=1}^{m} \int_{\gamma_j} f(z) \, dz = 2\pi i \sum_{j=1}^{m} \sum_{k=1}^{s} n(\gamma_j, w_k) \operatorname{Res}_{w_k}(f),$$

as required.

Corollary 6.17 Let D be a simply-connected open set in \mathbb{C} , let γ be a piecewise continuously differentiable closed path in D, and let w_1, w_2, \ldots, w_s be complex numbers in D that do not lie on the path γ . Then

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{k=1}^{s} n(\gamma, w_k) \operatorname{Res}_{w_k}(f)$$

for all complex-valued functions f that are defined and holomorphic throughout $D \setminus \{w_1, w_2, \ldots, w_s\}$.

Proof The requirement that the open set D be simply-connected ensures that the winding number of any closed curve in D about any element of the complement of D is zero (see Proposition 3.9). The result therefore follows directly on applying Theorem 6.16.

Corollary 6.18 Let D be a simply-connected open set in \mathbb{C} , let $f: D \to \mathbb{C}$ be a holomorphic function defined throughout D, and let γ be a piecewise continuously differentiable closed path in D.

$$\int_{\gamma} \frac{f(z)}{z - w} \, dz = 2\pi i n(\gamma, w) f(w)$$

for all $w \in D$.

Proof Let $w \in D$. The integrand $\frac{f(z)}{z-w}$ is a holomorphic function on $D \setminus \{w\}$ and its residue at w is f(w). (This follows directly on applying Lemma 6.9 to some triangle in D that contains the point w in its interior.) The required result therefore follows on applying Corollary 6.17.

Example Let $D = \mathbb{C} \setminus \{-ia, ia\}$, where *a* is a positive real number, and let f be the holomorphic function on *D* defined such that $f(z) = (z^2 + a^2)^{-1}$ for all $z \in D$. Let *R* be a real number satisfying R > a, let $\rho_R: [-R, R] \to \mathbb{C}$ and $\sigma_R: [0, 1] \to \mathbb{C}$ be the continuously differentiable paths defined such that $\rho_R(t) = t$ for all $t \in [-R, R]$ and $\sigma_R(t) = Re^{\pi i t}$ for all $t \in [0, 1]$, and let $\varphi_R: [-R, R+1]$ be the closed path defined such that

$$\varphi_R(t) = \begin{cases} \rho_R(t) & \text{if } -R \le t \le R; \\ \sigma_R(t-R) & \text{if } R \le t \le R+1 \end{cases}$$

Then φ_R is a piecewise continuously differentiable closed path which traverses the boundary of the semicircle

$$\{z \in \mathbb{C} : |z| \le R \text{ and } \operatorname{Im} z \ge 0\}.$$

Moreover

$$\int_{\varphi_R} f(z) \, dz = \int_{\rho_R} f(z) \, dz + \int_{\sigma_R} f(z) \, dz$$

Now $|f(z)| \leq (R^2 - a^2)^{-1}$ for all $z \in [\sigma_R]$, and the length of the path σ_R is πR . It follows from Lemma 4.2 that

$$\left| \int_{\sigma_R} f(z) \, dz \right| \le \frac{\pi R}{R^2 - a^2}.$$

Therefore

$$\lim_{R \to +\infty} \int_{\sigma_R} f(z) \, dz = 0$$

It follows that

$$\lim_{R \to +\infty} \int_{\varphi_R} f(z) \, dz = \lim_{R \to +\infty} \int_{\rho_R} f(z) \, dz = \int_{-\infty}^{+\infty} \frac{dt}{t^2 + a^2}.$$

The function f is holomorphic except at ia and -ia. The singularity ia lies in the interior of the semicircle bounded by $[\varphi_R]$, and the singularity -ia lies outside this semicircle. The boundary of the semicircle is traversed by the closed path φ_R once in the anticlockwise direction. It easily follows from this that $n(\varphi_R, ia) = 1$ and $n(\varphi_R, -ia) = 0$, since R > a. It then follows from Corollary 6.17 that

$$\int_{\varphi_R} f(z) \, dz = 2\pi i \operatorname{Res}_{ia}(f).$$

Now

$$f(z) = \frac{1}{2ia(z-ia)} - \frac{1}{2ia(z+ia)},$$

and therefore $\operatorname{Res}_{ia}(f) = (2ia)^{-1}$. It follows that It follows from that

$$\int_{-\infty}^{+\infty} \frac{dt}{t^2 + a^2} = \int_{\varphi_R} f(z) \, dz = 2\pi i \operatorname{Res}_{ia}(f) = \frac{\pi}{a}.$$