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6 Cauchy’s Theorem

6.1 Path Integrals of Polynomial Functions

A function f:C — C is said to be a polynomial function of degree n if it can
be represented by an expression of the form

f(2) =ag+ a1z +ag2* + -+ ap2"™,

where ag, aq, ..., a, are complex numbers and a,, # 0.

Let zo and z; be complex numbers, and let +: [a,b] — C be a piecewise
continuously differentiable path from zy to z;. If n is an integer and n # —1
then an immediate application of Lemma 5.5 shows that

/anz:/i(zn—i—l) dZ:ZILJrl_Z(T]Hrl'
. ydz \n+1 n+1

It follows from this that f7 2" dz = 0 for all piecewise continuously differ-
entiable closed paths ~, provided that n is an integer and n # —1. The
following result is an immediate consequence of this.

Lemma 6.1 Let f:C — C be a polynomial function. Then fy f(z)dz=0
for all piecewise continuously differentiable closed paths v in the complex
plane.

6.2 Winding Numbers and Path Integrals

Proposition 6.2 Let v:[a,b] — C be a piecewise continuously differentiable
closed path in the complex plane, and let w be a complex number that does
not lie on . Then the winding number n(y,w) of the closed path v about w

satisfies the identity
1 dz
n(y,w) = %Az_w-

Proof There exists a path ¢: [a,b] — C such that v(t) — w = exp(p(t)) for
all t € [a,b]. It is easy to see that this path ¢ is piecewise continuously
differentiable. Now 7/(t) = exp(¢(t))¢'(t) for all t € [a,b]. (This is an imme-
diate consequence of Lemma 5.4, given that the derivative of the exponential
function is the exponential function itself.) It follows from the definition of
the winding number n(vy, w) that

/vzcizw - /abﬂg%dt:/ab%dh/jw'(ﬂdt

= (b)) — p(a) = 2min(y,w),
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as required. Jj

Corollary 6.3 Let X be a closed polygonal set in the complex plane with
interior int(X). Then

/ dz [ 2mi ifw € int(X);
ox z—w |0 ifweC\X.

Proof We can represent the closed polygonal set X as the union of a finite
collection T, 75, ..., T, finite collection of distinct triangles in the complex
plane that intersect regularly. Moreover these triangles may be chosen such
that the complex number w belongs to the interior of exactly one of those
triangles. Let w € int(77). A straightforward application of Proposition 6.2

shows that
/ dz )
= 2m1.
on < — W

Also a closed path round the boundary of the triangle 7; has zero winding
number about w when j # 1, and therefore

d
/ : = 0 when j # 1.
0

T, 7= W

It follows from Proposition 4.3 that

dz : dz ,
/ z—wzz/ z—w:2m’
ax = Jory

as required. |}

6.3 Cauchy’s Theorem for a Triangle

Theorem 6.4 (Cauchy’s Theorem for a Triangle) Let f: D — C be a holo-
morphic function defined over an open set D in C, and let T be a closed
triangle contained in D. Then

f(z)dz = 0.
or

Proof The line segments joining the midpoints of the three edges of the
triangular region T' divide T' into four triangular regions Sy, S, S3 and Sy.
An edge of any one of the triangles S; is half the length of the edge of T" that
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is parallel to it, and the area of each triangle S; is a quarter of the area of T
Moreover

| f()dz = ; @) ds

and therefore A

< f(z)d=

0S;

Y

/() d=
aT

j=1

Suppose that [, f(z)dz # 0. Then there would exist some real number &
satisfying €y > 0 such that

> ggarea(T).

/() d=
aT

There would then exist at least one triangle S; for which

(2)dz| > iao area(T") = g area(9S;).

8S;

It follows from repeated applications of this observation that there would
exist an infinite sequence Ty, Ty, T5, T3, . . . of closed triangles, where Ty = T,
such that, for each positive integer j, the triangle 77 is one of the four triangles
obtained by dividing the triangle T;_; along the line segments joining the
midpoints of its edges, and

(2) dz| > g area(T}).

oty

Moreover area(T}) = area(T) /47, and the length of any side of the triangle T}
is half the length of the side of the triangle 7T;_; that is parallel to it. There-
fore the sides of the triangle T; would have length at most L/27, where L is
the length of the longest side of the triangle 7", and therefore the length [; of
the perimeter of the triangle T; would satisfy [; < 3L/27.

Let (w; : j € N) be a sequence of complex numbers satisfying w; € 7
for each positive integer j. Then wy € T; whenever £ > j, and therefore
\w, —w;| < L/ 2/ whenever k > j. It follows from this that the sequence
(wj : j € N) would be a Cauchy sequence, and would therefore converge to
some limit w, where w € T} for all positive integers j. The function f would
be holomorphic at w, and therefore, given any positive real number £, there
would exist some positive number 6 such that |f(z) — f(w) — (z —w) f'(w)| <
1]z — w| whenever |z — w| < ¢ (Lemma 5.1). But the triangle 7} would be
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wholly contained within the open disk of radius d centred on w, provided
that j were chosen sufficiently large, in which case |z — w| < L/2’ and
1f(z) = f(w) — (z —w) f'(w)| <e1L/2 for all z € T;. Now

|+ = wprwys o,

(see Lemma 6.1). Thus if j were chosen sufficiently large then

[ 1@ = | G- rw - - o))
< supl£(e) = flu) = (2 = w)w)] < 25

But this would not be possible, had €; been chosen small enough to ensure
that 3L%; < gparea(T). Thus the assumption that

(z)dz
oT

> gparea(T)

for some real number ¢y satisfying ¢y > 0 leads to a contradiction. We
conclude that [, f(z)dz =0, as required. |

6.4 Cauchy’s Theorem for Star-Shaped Domains

We recall that an open set D in the complex plane is star-shaped if there exists
some element zy of D chosen such that the line segment {(1 —¢)zo +tz : t €
[0,1]} joining zj to z is contained in D for all z € D.

Proposition 6.5 Let f: D — R be a continuous function defined over a
star-shaped open set D in C. Suppose that

f(2)dz=0
oT
for all closed triangles T' contained in D. Then there exists a holomorphic

function F: D — R such that f(z) = F'(z) for all z € D.

Proof Let zy be an element of D chosen such that the line segment joining
2o to z is contained in D for all z € D, and let F: D — C be the function
defined by

F(z) = f(¢) dg.

[ZO 74
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Let z be some complex number belonging to D. Then there exists some
positive number dy such that z +h € D for all complex numbers h satisfying
|h| < dp. The choice of z; then ensures that if |h| < dp then the closed
triangle with vertices 2y, 2 and z 4 h is contained in D. But then

foac+ [

[z,24h]

£(0)de + / £(¢)dc =0,

[20,7] [z+h,20]

and thus
1
F(z+h)—F(z) = /[szJrh]f(C) d¢ = h/o f(z +th)dt.

Now the continuity of the function f ensures that, given any positive real
number ¢, there exists some real number ¢ satisfying 0 < d < Jy such that
|f(z+h)— f(2)] <e whenever |h| < . But then

F(z+h)— F(z)
h

el = |f (e 4 th) — (=) i

< / 2t th) — f(2)]dt < e

whenever |h| < §. It follows that the function F' has a well-defined derivative
F'(z2) at z, and

F(2) = }L{% F<Z+h2l_F(Z)

= f(2).

Thus the function F: D — C is holomorphic on D, and F'(z) = f(z) for all
z € D, as required. |}

Theorem 6.6 (Cauchy’s Theorem for Star-Shaped Domains) Let f: D — R
be a holomorphic function defined over a star-shaped open set D in C. Then

A (=) dz = 0.

for all piecewise continuously differentiable closed paths v in D.

Proof Cauchy’s Theorem for a Triangle (Theorem 6.4) ensures that

f(2)dz=0
oT
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for all closed triangles T' contained in D. It then follows from Proposition 6.5
that there exists a holomorphic function F: D — R such that f(z) = F'(z)
for all z € D. But then it follows from Lemma 5.5 that

/f(z) dz = /F’(z) dz = F(y(b)) — F(y(a)) =0

for any piecewise continuously differentiable closed path v:[a,b] — D in
D. |

6.5 Cauchy’s Theorem for Closed Polygonal Sets

Lemma 6.7 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, and let f: D — C be a holomorphic function
defined throughout D. Then [, f(z)dz = 0.

Proof Any closed polygonal set the complex plane may be represented as the
union of a finite collection T}, T5, ..., T, finite collection of distinct triangles
in the complex plane that intersect regularly. Moreover

Xf(z) dz = Z - f(z)dz.

(Proposition 4.3). The result is therefore an immediate consequence of
Cauchy’s Theorem for a Triangle (Theorem 6.4). |}

Lemma 6.8 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, let w be a complex number in the interior of
X, and let f: D — C be a complex-valued function that is continuous on D

and holomorphic on D\ {w}. Then [, f(z)dz=0.

Proof The continuity of the function f at w ensures that there exist some
positive real numbers M and Jy such that the open disk of radius oy about w
is contained in the interior of X and |f(z)| < M for all complex numbers z
satisfying |z — w| < dp. Moreover, given any positive real number ¢ there
exists a closed triangle T. such that w € int(7%), T. is contained in the open
disk of radius dy about w, and the perimeter of 7. is of length less than e.

Then ’faTg f(2) dz’ < Me (see Lemma 4.2). Let Y = X \ int(7%.), where

int(7%.) denotes the interior of the triangle 7.. Then Y is a closed polygonal
set, and the function f is holomorphic over an open set that contains Y, and
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therefore [, f(z)dz = 0. But the boundary of Y is the disjoint union of the
boundary of X and the boundary of 7., and

[ J@dz= | fea- | fG)a,

0X oT:

(The contribution to [, f(2)dz arising from the boundary of the triangle
T. is — |, or. J (z) dz on account of the fact that the closed polygonal set YV
lies to the right of the line segments making up the boundary of the triangle
as those line segments are traversed in an anticlockwise direction.) It follows
that
)z = [ f(2)dz
oX oT:
and therefore

f(2)dz

0X

< Me.

This inequality holds no matter how small the value of € that was chosen. It
follows that [, f(z)dz =0, as required. [

Lemma 6.9 Let D be an open set in the complex plane, let X be a closed
polygonal set contained in D, let w be a complex number in the interior of

X, and let f: D — C be a holomorphic function defined throughout D. Then
(2)

ax £ — W

dz = 2rif(w)

Proof Let g: D — C be the function defined such that

z—w
f(w) if z=w.

g(z):{—f(z)_f(“’) if 2 € D\ {w);

Then the function g: D — C is continuous on D and holomorphic on D\ {w}.
It follows from Lemma 6.8 that [, g(z) dz = 0. Therefore

T g ) [

ax 2 — W Y Z—w

d
But/ S (Corollary 6.3). The result follows. |
9x < — W
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6.6 Cauchy’s Theorem for Arbitrary Domains

Lemma 6.10 Let K be a closed bounded subset of C, and let D be an open
set in C. Suppose that K C D. Then there exists a closed polygonal set X
such that X C D and K C int X, where int X denotes the interior of X.

Proof There exists some positive number 0 such that |z — w| > 26 for all
z € K and w € C\ D (see Lemma 1.27). Now the complex plane may be
subdivided by lines parallel to the real and imaginary axes into closed squares
that are of the form

{r+iyeC:ki<z<(k+1)dand 1§ <y < (I+1)§}

for some integers k£ and [. The number of such squares that intersect the
closed bounded set K is finite; let X7, X, ..., X, be the squares of the above
form that intersect K, and let X = X; U X, U---UX,. Then X is a closed
polygonal set. Moreover K C int X and X C D, as required. |}

The following theorem is a very general form of Cauchy’s Theorem.

Theorem 6.11 Let D be an open set in C, and let v1,7s, . . ., Ym be piecewise
continuously differentiable closed paths in D. Suppose that ) n(v;,w) = 0
7=0

for all w € C\ D, where n(v;,w) denotes the winding number of the closed
path v; about w. Then

Z f(2)dz=0
j=1“7
for all holomorphic functions f: D — C defined throughout the open set D.

Proof Let K = F UG, where F' = [y U [y%] U--- U [y, and

G:{ZGC\F:Zn(vj,z)%O}.

Then .
C\K:{ZGC\F:Zn(’yj,z)zo}.

Now, for each closed path ;, the function mapping z € C\ F to n(y;, 2) is
a continuous integer-valued function on C\ F. (Corollary 3.4). It follows
that, given any 2o € C\ K, there exists an open subset V' of C\ F' such that
n(7;,z) = n(v;, 20) for all z € V. But then 7" n(y;,2) =0 for all z € V,
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and thus V' C C\ K. This shows that C\ K is an open set, and thus K is a
closed set.

Next we show that the set K is bounded. Now there exists some real
number Ry such that [y,] is contained in the open disk of radius Ry about the
origin for j = 1,2,...,m (see Lemma 1.31). It then follows from Corollary 3.5
that n(y;, w) =0 When |w| > Ry. Thus the closed set K is contained in the
open disk of radius Ry about zero, and is therefore bounded. Moreover
the conditions in the statement of the theorem ensure that K C D. It
follows from Lemma 6.10 that there exists a closed polygonal set X such
that K Cint X and X C D. Now [y;] C K Cint X for j =1,2,...,m, and

L de

21 Jox w — 2

f(z) =

for all z € int X' (Lemma 6.9). Therefore

/f = %Lj(aX%dw) dz
N QLM ax (f(w)/w wdjz> "

= f(w)n(v;, w) dw

0X

Now the boundary of the closed polygonal set X is contained in the comple-

ment C\ K of K, and therefore ) n(v;,w) = 0 at all points of the boundary
7j=1

of X. It follows that

Z dz-/( gn%, )w:(),

as required. |}

Corollary 6.12 Let D be an open set in C, let vy1,72,...,7s be piecewise
continuously differentiable closed paths in D, and let r be an integer satisfying

1 <r <s. Suppose that > n(yj,w) = >, n(v;,w) forallw € C\D. Then
=0 =t

Z 'f(z)dz: Z

j=r+177

for all holomorphic functions f: D — C defined throughout the open set D.
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Proof For each of the paths ~;: [a;,b;] — C with j > r, let 6;: [a;,b;] — C
be the reversed path defined so that 6;(t) = v;(a; +b; — ) for all ¢ € [a;, b'].
Then n(0;, w) = —n(v;, w )foralleC\[% andfe dz-—f f(z

for all contlnuous functions f defined along [v4]-

Ifz n(yw) = 32 n(yw) then Y n(y,w)+ 30 n(f;,w) = 0 for

j=r+1 7j=1 j=r+1
all w G C \ D. It therefore follows from Theorem 6.11 that

PN RIOLEEDY dz—z f dz+Z/f

j=r+1 'Yj j=r+1

for all holomorphic functions f defined over D, as required. |}

6.7 Cauchy’s Theorem for Simply-Connected Domains

Corollary 6.13 (Cauchy’s Theorem for Simply-Connected Domains) Let
f:D — R be a holomorphic function defined over a simply-connected open

set D in C. Then
JECLE
5y

for all piecewise continuously differentiable closed paths v in D.

Proof The requirement that the open set D be simply-connected ensures
that the winding number of any closed curve in D about any element of
the complement of D is zero (see Proposition 3.9). The result thus follows
immediately from Theorem 6.11. |}

6.8 Residues

Proposition 6.14 Let w be a complex number, let r be a positive real num-
ber, and let f be a complex-valued function that is defined and holomor-
phic throughout D, \ {w}, where D, , is the open disk of radius r about
w. Then there exists some complex number Res,(f) with the property that
f7 f(z)dz = 2min(y,w) Resy(f) for all piecewise continuously differentiable
closed paths v in Dy, \ {w}.

Proof Let D} . = Dy, \ {w}, and let 71:(0,1] — Dj, . be the closed path
defined such that () = w + $re?™ for all ¢t € [0,1]. Now n(y,z) = 0
and n(v,z) = 0 whenever |z — w| > r (see Corollary 3.5). Thus n(v,z) —
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kn(v1,z) = 0 for all z € C\ D ., where k = n(y,w). It follows from

w,r?

Theorem 6.11 (and Corollary 6.12) that

[yf(z)dz—kllf(z)dzzo

for any holomorphic function f defined throughout D}, .. Let

Resy,(f) = %/ f(z)d=.

Then fw f(2)dz = 2min(y,w) Res,(f) for all holomorphic functions f de-
fined throughout Dy, . and for all piecewise continuously differentiable closed
paths v in D}, as required. |

Definition Let w be a complex number, and let f be a complex-valued
function that is defined and holomorphic throughout the open set D,,, \ {w}
for some positive real number r, where D,, , denotes the open disk of radius r
about w. The residue of f at w is defined to be the complex number Res,, ( f)
characterized by the property that that fw f(2)dz = 2min(y,w) Res,(f) for
all piecewise continuously differentiable closed paths 7 in D,,, \ {w}.

Let w be a complex number, let r be a positive real number, and let f
be a complex-valued function that is holomorphic throughout D, \ {w} for
some real number r’ satisfying ' > r. Then

2w
Res,(f) = %/0 flw+re?)e® do.

This formula may be derived on evaluating the path integral of f along the
closed path 7, ,: [0,27] — C, where 7,,,(0) = w + re? for all 0 € [0, 27].

Lemma 6.15 Let w be a complex number, let r be a positive real number,
and let f be a complez-valued function that is holomorphic throughout D, \
{w}, where D, , is the open disk of radius r about w. Suppose that there
exist complex numbers by, bs, ..., by, and a holomorphic function g: D,,, — C
defined throughout the open disk D, , such that

for all z € Dy, \ {w}. Then Res,(f) = b;.

67



Proof Let v:[a,b] — D,, \ {w} be a closed path in D,, \ {w}, where
Dy, \{w} ={2€C:0< |z—w| <r},and let h: D,,,\ {w} — C be defined

by
= (z —w)d
Then h(z) = H'(z) for all z € D,,, \ {w}, where

H(z)=—
=
for all z € D, \ {w}. Therefore

/ h(z)dz = / H'(2)dz = H(3(b)) — H(7(a)) = 0.

(see Lemma 5.5). Also Cauchy’s Theorem for simply-connected open sets

ensures that
/ g(z)dz=0
¥

(see Corollary 6.13). It follows that

/f dz—/( (2 )+Zi—1w+g(z)) dz:bllzizw:2wib1n(7,w)

(see Proposition 6.2). Thus Res,(f) = by, as required. |}

bj
— (j—1(z —w)i !

6.9 Cauchy’s Residue Theorem
We prove a very general form of Cauchy’s Residue Theorem.

Theorem 6.16 Let D be an open set in C, and let v1,7s, . . ., Ym be piecewise

continuously differentiable closed paths in D. Suppose that ) n(v;,w) = 0
7=0

for allw € C\ D, where n(~;,w) denotes the winding number of the closed

path v; about w. Let wy,ws, ..., ws be complex numbers in D that do not lie
on any of the paths v1,%2, ..., VYm. Then

Z dZ—QT(’ZZZn v, wi) Resy, (f)

7=1 k=1

for all complex—valued functions f that are defined and holomorphic through-
out the open set D \ {wy,ws, ..., ws}, where n(7y;,wy) denotes the winding
number of the closed path y; about wy, and Res,, (f) denotes the residue of
fat wy.
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Proof Let r be a positive real number chosen such that D,, , C D and
Dy, » N {wy,we, ... ,ws} = {w} for k = 1,2,... s, where D,, , denotes
the open disk D,, , of radius r about w;. We can then find continuously
differentiable closed paths @1, ¢, ..., ..., s in D such that [p] is contained

Dy, » \ {wi} and

n(px, wy) Z n(7;, W)
7j=1
Then . ,
Zn Vi w) + n(pr, w) =0
Jj=1 k=1
for all complex numbers w that do not belong to D \ {wy,ws,...,ws}. Tt

follows from Cauchy’s Theorem (Theorem 6.11) that

Z f(Z)dZ+Z f(z)dz=0.
J=1Y7 k=1 Y Pk

But it follows from Proposition 6.14 that

/ f(z) dz = 2min(pg, wi) Resy, (f) = —2mi Zm:n('yj,wk) Resy, (f).
Pk

j=1
Therefore
Z 2)dz = 27rzz n(y;, wi) Resy, (f),

as required. l

Corollary 6.17 Let D be a simply-connected open set in C, let v be a piece-
wise continuously differentiable closed path in D, and let wyi,ws,...,w, be
complex numbers in D that do not lie on the path ~v. Then

/f(z) dz = ZWiZn(”y,wk) Resy, (f)

for all complex-valued functions f that are defined and holomorphic through-
out D\ {wy,ws, ..., ws}.

Proof The requirement that the open set D be simply-connected ensures
that the winding number of any closed curve in D about any element of the
complement of D is zero (see Proposition 3.9). The result therefore follows
directly on applying Theorem 6.16. |}
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Corollary 6.18 Let D be a simply-connected open set in C, let f:D — C
be a holomorphic function defined throughout D, and let v be a piecewise
continuously differentiable closed path in D.

(2)

,YZ—U}

dz = 2min(vy,w) f(w)

for allw € D.
f(z)

Z—w
and its residue at w is f(w). (This follows directly on applying Lemma 6.9
to some triangle in D that contains the point w in its interior.) The required
result therefore follows on applying Corollary 6.17. |}

Proof Let w € D. The integrand

is a holomorphic function on D\ {w}

Example Let D = C\ {—ia,ia}, where a is a positive real number, and let
f be the holomorphic function on D defined such that f(z) = (22 + a?)™!
for all z € D. Let R be a real number satisfying R > a, let pr:[-R, R] — C
and og: [0,1] — C be the continuously differentiable paths defined such that
pr(t) =t for all t € [-R, R] and og(t) = Re™ for all ¢ € [0,1], and let
vr: [—R, R+ 1] be the closed path defined such that

(1) = pr(t) if —-R<t<R;
PR =\ oplt—R) fR<t<R+1.

Then g is a piecewise continuously differentiable closed path which traverses
the boundary of the semicircle
{zeC:|z] <Rand Imz > 0}.

Moreover

/‘PRf(Z)dZ:/pr<Z)dz+/o—Rf(Z)dZ'

Now |f(2)| < (R? —a?)7! for all z € [og|, and the length of the path o is
mR. It follows from Lemma 4.2 that

/U ) £(2)dz

lim / f(z)dz =0.

R—+o0

TR
< R2 _ a2

Therefore
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It follows that

. . oot
RETOO/@RJ”(Z) dz = RETOO/pr<Z> dz = /_m Pra

The function f is holomorphic except at ia and —ia. The singularity za lies
in the interior of the semicircle bounded by [pg], and the singularity —ia lies
outside this semicircle. The boundary of the semicircle is traversed by the
closed path ¢g once in the anticlockwise direction. It easily follows from this
that n(pg,ia) = 1 and n(pgr, —ia) = 0, since R > a. It then follows from
Corollary 6.17 that

/ f(z)dz = 2mi Res;o(f).

Now
1 1

1(z) = 2ia(z —ia)  2ia(z +ia)’
and therefore Res;,(f) = (2ia)~!. It follows that It follows from that

/+0<> _dt :/ f(z)dz = 2miRes;o(f) = T
- o

o t2+a? a
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