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9 Normed Vector Spaces

A set X is a vector space over some field F if

• given any x, y ∈ X and λ ∈ F, there are well-defined elements x + y
and λx of X,

• X is an Abelian group with respect to the operation + of addition,

• the identities

λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx,

(λµ)x = λ(µx), 1x = x

are satisfied for all x, y ∈ X and λ, µ ∈ F.

Elements of the field F are referred to as scalars. We consider here only real
vector spaces and complex vector spaces : these are vector spaces over the
fields of real numbers and complex numbers respectively.

Definition A norm ‖.‖ on a real or complex vector space X is a function,
associating to each element x of X a corresponding real number ‖x‖, such
that the following conditions are satisfied:—

(i) ‖x‖ ≥ 0 for all x ∈ X,

(ii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X,

(iii) ‖λx‖ = |λ| ‖x‖ for all x ∈ X and for all scalars λ,

(iv) ‖x‖ = 0 if and only if x = 0.

A normed vector space (X, ‖.‖) consists of a a real or complex vector space X,
together with a norm ‖.‖ on X.

Note that any normed complex vector space can also be regarded as a
normed real vector space.

Example The field R is a one-dimensional normed vector space over itself:
the norm |t| of t ∈ R is the absolute value of t.

Example The field C is a one-dimensional normed vector space over itself:
the norm |z| of z ∈ C is the modulus of z. The field C is also a two-
dimensional normed vector space over R.
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Example Let ‖.‖1, ‖.‖2 and ‖.‖∞ be the real-valued functions on Cn defined
by

‖z‖1 =
n∑

j=1

|zj|,

‖z‖2 =

(
n∑

j=1

|zj|2
) 1

2

,

‖z‖∞ = max(|z1|, |z2|, . . . , |zn|),

for each z ∈ Cn, where z = (z1, z2, . . . , zn). Then ‖.‖1, ‖.‖2 and ‖.‖∞ are
norms on Cn. In particular, if we regard Cn as a 2n-dimensional real vector
space naturally isomorphic to R2n (via the isomorphism

(z1, z2, . . . , zn) 7→ (x1, y1, x2, y2, . . . , xn, yn),

where xj and yj are the real and imaginary parts of zj for j = 1, 2, . . . , n) then
‖.‖2 represents the Euclidean norm on this space. The inequality ‖z+w‖2 ≤
‖z‖2 +‖w‖2 satisfied for all z,w ∈ Cn is therefore just the standard Triangle
Inequality for the Euclidean norm.

Example The space Rn is also an n-dimensional real normed vector space
with respect to the norms ‖.‖1, ‖.‖2 and ‖.‖∞ defined above. Note that ‖.‖2
is the standard Euclidean norm on Rn.

Example Let

`1 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|+ |z2|+ |z3|+ · · · converges},
`2 = {(z1, z2, z3, . . .) ∈ C∞ : |z1|2 + |z2|2 + |z3|2 + · · · converges},
`∞ = {(z1, z2, z3, . . .) ∈ C∞ : the sequence |z1|, |z2|, |z3|, . . . is bounded}.

where C∞ denotes the set of all sequences (z1, z2, z3, . . .) of complex numbers.
Then `1, `2 and `∞ are infinite-dimensional normed vector spaces, with norms
‖.‖1, ‖.‖2 and ‖.‖∞ respectively, where

‖z‖1 =
+∞∑
j=1

|zj|,

‖z‖2 =

(
+∞∑
j=1

|zj|2
) 1

2

,

‖z‖∞ = sup{|z1|, |z2|, |z3|, . . .}.
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(For example, to show that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2 for all z,w ∈ `2, we
note that(

n∑
j=1

|zj + wj|2
) 1

2

≤

(
n∑

j=1

|zj|2
) 1

2

+

(
n∑

j=1

|wj|2
) 1

2

≤ ‖z‖2 + ‖w‖2

for all natural numbers n, by the Triangle Inequality in Cn. Taking limits as
n→ +∞, we deduce that ‖z + w‖2 ≤ ‖z‖2 + ‖w‖2, as required.)

If x1, x2, . . . , xm are elements of a normed vector space X then∥∥∥∥∥
m∑
k=1

xk

∥∥∥∥∥ ≤
m∑
k=1

‖xk‖,

where ‖.‖ denotes the norm on X. (This can be verified by induction on m,
using the inequality ‖x+ y‖ ≤ ‖x‖+ ‖y‖.)

A norm ‖.‖ on a vector space X induces a corresponding distance function
on X: the distance d(x, y) between elements x and y of X is defined by
d(x, y) = ‖x − y‖. This distance function satisfies the metric space axioms.
Thus any vector space with a given norm can be regarded as a metric space.
A norm on a vector space X therefore generates a topology on X: a subset U
of X is an open set if and only if, given any point u of U , there exists some
δ > 0 such that

{x ∈ X : ‖x− u‖ < δ} ⊂ U.

The function x 7→ ‖x‖ is a continuous function from X to R, since

‖x‖ − ‖y‖ = ‖(x− y) + y‖ − ‖y‖ ≤ (‖x− y‖+ ‖y‖)− ‖y‖ = ‖x− y‖,

and ‖y‖ − ‖x‖ ≤ ‖x− y‖, and therefore |‖x‖ − ‖y‖| ≤ ‖x− y‖.
The Cartesian product X1×X2×· · ·×Xn of vector spaces X1, X2, . . . , Xn

can itself be regarded as a vector space: if (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
are points of X1 ×X2 × · · · ×Xn, and if λ is any scalar, then

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn),

λ(x1, x2, . . . , xn) = (λx1, λx2, . . . , λxn).

Lemma 9.1 Let X1, X2, . . . , Xn be normed vector spaces, and let ‖.‖max be
the norm on X1 ×X2 × · · · ×Xn defined by

‖(x1, x2, . . . , xn)‖max = max(‖x1‖1, ‖x2‖2, . . . , ‖xn‖n),

where ‖.‖i is the norm on Xi for i = 1, 2, . . . , n. Then the topology on
X1 ×X2 × · · · ×Xn generated by the norm ‖.‖max is the product topology on
X1 ×X2 × · · · ×Xn.
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Proof It is a straightforward exercise to verify that ‖.‖max is indeed a norm
on X, where X = X1 ×X2 × · · · ×Xn.

Let U be a subset of X. Suppose that U is open with respect to the
product topology. Let u be any point of U , given by u = (u1, u2, . . . , un).
We must show that there exists some δ > 0 such that

{x ∈ X : ‖x− u‖max < δ} ⊂ U.

Now it follows from the definition of the product topology that there exist
open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn such that ui ∈ Vi for all i and
V1×V2×· · ·×Vn ⊂ U . We can then take δ to be the minimum of δ1, δ2, . . . , δn,
where δ1, δ2, . . . , δn are chosen such that

{xi ∈ Xi : ‖xi − ui‖ < δi} ⊂ Vi

for i = 1, 2, . . . , n.
Conversely suppose that U is open with respect to the topology generated

by the norm ‖.‖max. Let u be any point of U . Then there exists δ > 0 such
that

{x ∈ X : ‖x− u‖max < δ} ⊂ U.

Let Vi = {xi ∈ Xi : ‖xi − ui‖ < δ} for i = 1, 2, . . . , n. Then, for each i, Vi is
an open set in Xi, ui ∈ Vi, and V1 × V2 × · · · × Vn ⊂ U . We deduce that U
is also open with respect to the product topology, as required.

Proposition 9.2 Let X be a normed vector space over the field F, where
F = R or C. Then the function from X ×X to X sending (x, y) ∈ X ×X to
x+y is continuous. Also the function from F×X to X sending (λ, x) ∈ F×X
to λx is continuous.

Proof Let (u, v) ∈ X ×X, and let ε > 0 be given. Let δ = 1
2
ε. If (x, y) ∈

X ×X satisfies ‖(x, y)− (u, v)‖max < δ, then ‖x− u‖ < δ and ‖y − v‖ < δ,
and hence

‖(x+ y)− (u+ v)‖ ≤ ‖x− u‖+ ‖y − v‖ < ε.

This shows that the function (x, y) 7→ x+ y is continuous at (u, v) ∈ X ×X.
Next let (µ, u) ∈ F×X, and let ε > 0 be given. Let

δ = minimum

(
ε

2(‖u‖+ 1)
,

ε

2(|µ|+ 1)
, 1

)
.

Now λx − µu = λ(x − u) + (λ − µ)u for all λ ∈ F and x ∈ X. Thus if
(λ, x) ∈ F×X satisfies ‖(λ, x)− (µ, u)‖max < δ, then

|λ− µ| < ε

2(‖u‖+ 1)
, ‖x− u‖ < ε

2(|µ|+ 1)
, |λ| < |µ|+ 1,
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and hence

‖λx− µu‖ ≤ |λ| ‖x− u‖+ |λ− µ| ‖u‖ < ε

2
+
ε

2
= ε.

This shows that the function (λ, x) 7→ λx is continuous at (µ, u) ∈ F×X, as
required.

Corollary 9.3 Let X be a normed vector space over the field F, where F = R
or C. Let (xn) and (yn) be convergent sequences in X, and let (λn) be a
convergent sequence in F. Then the sequences (xn + yn) and (λnxn) are
convergent in X, and

lim
n→+∞

(xn + yn) = lim
n→+∞

xn + lim
n→+∞

yn,

lim
n→+∞

(λnxn) =

(
lim

n→+∞
λn

)(
lim

n→+∞
xn

)
.

Proof Let x = lim
n→+∞

xn, y = lim
n→+∞

yn and λ = lim
n→+∞

λn. Using Lemma 9.1,

together with the definition of convergence in metric spaces, it follows easily
that the sequences (xn, yn) and (λn, xn) converge to (x, y) and (λ, x) in X×X
and F×X respectively. The convergence of (xn + yn) and λnxn to x+ y and
λx respectively now follows from Proposition 9.2.

Let X be a normed vector space, and let x1, x2, x3, . . . be elements of X.

The infinite series
+∞∑
n=1

xn is said to converge to some element s of X if, given

any ε > 0, there exists some natural number N such that

‖s−
m∑

n=1

xn‖ < ε

for all m ≥ N (where ‖.‖ denotes the norm on X).
We say that a normed vector space X is complete if and only if every

Cauchy sequence in X is convergent. (A sequence x1, x2, x3, . . . is a Cauchy
sequence if and only if, given any ε > 0, there exists some natural number N
such that ‖xj − xk‖ < ε for all j and k satisfying j ≥ N and k ≥ N .)
A complete normed vector space is referred to as a Banach space. (The
basic theory of such spaces was extensively developed by the famous Polish
mathematician Stefan Banach and his co-workers.)

Lemma 9.4 Let X be a Banach space, and let x1, x2, x3, . . . be elements of

X. Suppose that
+∞∑
n=1

‖xn‖ is convergent. Then
+∞∑
n=1

xn is convergent, and∥∥∥∥∥
+∞∑
n=1

xn

∥∥∥∥∥ ≤
+∞∑
n=1

‖xn‖.
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Proof For each natural number n, let

sn = x1 + x2 + · · ·+ xn.

Let ε > 0 be given. We can find N such that
+∞∑
n=N

‖xn‖ < ε, since
+∞∑
n=1

‖xn‖ is

convergent. Let sn = x1 + x2 + · · ·+ xn. If j ≥ N , k ≥ N and j < k then

‖sk − sj‖ =

∥∥∥∥∥
k∑

n=j+1

xn

∥∥∥∥∥ ≤
k∑

n=j+1

‖xn‖ ≤
+∞∑
n=N

‖xn‖ < ε.

Thus s1, s2, s3, . . . is a Cauchy sequence in X, and therefore converges to

some element s of X, since X is complete. But then s =
+∞∑
j=1

xj. Moreover,

on choosing m large enough to ensure that ‖s− sm‖ < ε, we deduce that

‖s‖ ≤

∥∥∥∥∥
m∑

n=1

xn

∥∥∥∥∥+

∥∥∥∥∥s−
m∑

n=1

xn

∥∥∥∥∥ ≤
m∑

n=1

‖xn‖+

∥∥∥∥∥s−
m∑

n=1

xn

∥∥∥∥∥ <
+∞∑
n=1

‖xn‖+ ε.

Since this inequality holds for all ε > 0, we conclude that

‖s‖ ≤
+∞∑
n=1

‖xn‖,

as required.

9.1 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function T :X → Y is said
to be a linear transformation if T (x + y) = Tx + Ty and T (λx) = λTx for
all elements x and y of X and scalars λ. A linear transformation mapping
X into itself is referred to as a linear operator on X.

Definition Let X and Y be normed vector spaces. A linear transformation
T :X → Y is said to be bounded if there exists some non-negative real num-
ber C with the property that ‖Tx‖ ≤ C‖x‖ for all x ∈ X. If T is bounded,
then the smallest non-negative real number C with this property is referred
to as the operator norm of T , and is denoted by ‖T‖.

Lemma 9.5 Let X and Y be normed vector spaces, and let S:X → Y and
T :X → Y be bounded linear transformations. Then S + T and λS are
bounded linear transformations for all scalars λ, and

‖S + T‖ ≤ ‖S‖+ ‖T‖, ‖λS‖ = |λ|‖S‖.
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Moreover ‖S‖ = 0 if and only if S = 0. Thus the vector space B(X, Y ) of
bounded linear transformations from X to Y is a normed vector space (with
respect to the operator norm).

Proof ‖(S+T )x‖ ≤ ‖Sx‖+‖Tx‖ ≤ (‖S‖+‖T‖)‖x‖ for all x ∈ X. Therefore
S+T is bounded, and ‖S+T‖ ≤ ‖S‖+‖T‖. Using the fact that ‖(λS)x‖ =
|λ| ‖Sx‖ for all x ∈ X, we see that λS is bounded, and ‖λS‖ = |λ| ‖S‖. If
S = 0 then ‖S‖ = 0. Conversely if ‖S‖ = 0 then ‖Sx‖ ≤ ‖S‖ ‖x‖ = 0 for all
x ∈ X, and hence S = 0. The result follows.

Lemma 9.6 Let X, Y and Z be normed vector spaces, and let S:X → Y
and T :Y → Z be bounded linear transformations. Then the composition TS
of S and T is also bounded, and ‖TS‖ ≤ ‖T‖ ‖S‖.

Proof ‖TSx‖ ≤ ‖T‖ ‖Sx‖ ≤ ‖T‖ ‖S‖ ‖x‖ for all x ∈ X. The result fol-
lows.

Proposition 9.7 Let X and Y be normed vector spaces, and let T :X → Y
be a linear transformation from X to Y . Then the following conditions are
equivalent:—

(i) T :X → Y is continuous,

(ii) T :X → Y is continuous at 0,

(iii) T :X → Y is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii)
implies (i). The equivalence of the three conditions then follows immediately.

Suppose that T :X → Y is continuous at 0. Then there exists δ > 0 such
that ‖Tx‖ < 1 for all x ∈ X satisfying ‖x‖ < δ. Let C be any positive real
number satisfying C > 1/δ. If x is any non-zero element of X then ‖λx‖ < δ,
where λ = 1/(C‖x‖), and hence

‖Tx‖ = C‖x‖ ‖λTx‖ = C‖x‖ ‖T (λx)‖ < C‖x‖.

Thus ‖Tx‖ ≤ C‖x‖ for all x ∈ X, and hence T :X → Y is bounded. Thus
(ii) implies (iii).

Finally suppose that T :X → Y is bounded. Let x be a point of X, and
let ε > 0 be given. Choose δ > 0 satisfying ‖T‖δ < ε. If x′ ∈ X satisfies
‖x′ − x‖ < δ then

‖Tx′ − Tx‖ = ‖T (x′ − x)‖ ≤ ‖T‖ ‖x′ − x‖ < ‖T‖δ < ε.

Thus T :X → Y is continuous. Thus (iii) implies (i), as required.
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Proposition 9.8 Let X be a normed vector space and let Y be a Banach
space. Then the space B(X, Y ) of bounded linear transformations from X to
Y is also a Banach space.

Proof We have already shown that B(X, Y ) is a normed vector space (see
Lemma 9.5). Thus it only remains to show that B(X, Y ) is complete.

Let S1, S2, S3, . . . be a Cauchy sequence in B(X, Y ). Let x ∈ X. We
claim that S1x, S2x, S3x, . . . is a Cauchy sequence in Y . This result is trivial
if x = 0. If x 6= 0, and if ε > 0 is given then there exists some natural
number N such that ‖Sj − Sk‖ < ε/‖x‖ whenever j ≥ N and k ≥ N .
But then ‖Sjx − Skx‖ ≤ ‖Sj − Sk‖ ‖x‖ < ε whenever j ≥ N and k ≥ N .
This shows that S1x, S2x, S3x, . . . is indeed a Cauchy sequence. It therefore
converges to some element of Y , since Y is a Banach space.

Let the function S:X → Y be defined by Sx = lim
n→+∞

Snx. Then

S(x+ y) = lim
n→+∞

(Snx+ Sny) = lim
n→+∞

Snx+ lim
n→+∞

Sny = Sx+ Sy,

(see Corollary 9.3), and

S(λx) = lim
n→+∞

Sn(λx) = λ lim
n→+∞

Snx = λSx,

Thus S:X → Y is a linear transformation.
Next we show that Sn → S in B(X, Y ) as n→ +∞. Let ε > 0 be given.

Then there exists some natural number N such that ‖Sj−Sn‖ < 1
2
ε whenever

j ≥ N and n ≥ N , since the sequence S1, S2, S3, . . . is a Cauchy sequence in
B(X, Y ). But then ‖Sjx−Snx‖ ≤ 1

2
ε‖x‖ for all j ≥ N and n ≥ N , and thus

‖Sx− Snx‖ =

∥∥∥∥ lim
j→+∞

(Sjx− Snx)

∥∥∥∥ ≤ lim
j→+∞

‖Sjx− Snx‖

≤ lim
j→+∞

‖Sj − Sn‖ ‖x‖ ≤ 1
2
ε‖x‖

for all n ≥ N (since the norm is a continuous function on Y ). But then

‖Sx‖ ≤ ‖Snx‖+ ‖Sx− Snx‖ ≤
(
‖Sn‖+ 1

2
ε
)
‖x‖

for any n ≥ N , showing that S:X → Y is a bounded linear transformation,
and ‖S − Sn‖ ≤ 1

2
ε < ε for all n ≥ N , showing that Sn → S in B(X, Y ) as

n→ +∞. Thus the Cauchy sequence S1, S2, S3, . . . is convergent in B(X, Y ),
as required.
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Corollary 9.9 Let X and Y be Banach spaces, and let T1, T2, T3, . . . be

bounded linear transformations from X to Y . Suppose that
+∞∑
n=0

‖Tn‖ is con-

vergent. Then
+∞∑
n=0

Tn is convergent, and

∥∥∥∥∥
+∞∑
n=0

Tn

∥∥∥∥∥ ≤
+∞∑
n=0

‖Tn‖.

Proof The space B(X, Y ) of bounded linear maps from X to Y is a Ba-
nach space by Proposition 9.8. The result therefore follows immediately on
applying Lemma 9.4.

Example Let T be a bounded linear operator on a Banach space X (i.e., a
bounded linear transformation from X to itself). The infinite series

+∞∑
n=0

‖T‖n

n!

converges to exp(‖T‖). It follows immediately from Lemma 9.6 (using induc-
tion on n) that ‖T n‖ ≤ ‖T‖n for all n ≥ 0 (where T 0 is the identity operator
on X). It therefore follows from Corollary 9.9 that there is a well-defined
bounded linear operator expT on X, defined by

expT =
+∞∑
n=0

1

n!
T n

(where T 0 is the identity operator I on X).

Proposition 9.10 Let T be a bounded linear operator on a Banach space X.
Suppose that ‖T‖ < 1. Then the operator I − T has a bounded inverse
(I − T )−1 (where I denotes the identity operator on X). Moreover

(I − T )−1 = I + T + T 2 + T 3 + · · · .

Proof ‖T n‖ ≤ ‖T‖n for all n, and the geometric series

1 + ‖T‖+ ‖T‖2 + ‖T‖3 + · · ·

is convergent (since ‖T‖ < 1). It follows from Corollary 9.9 that the infinite
series

I + T + T 2 + T 3 + · · ·
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converges to some bounded linear operator S on X. Now

(I − T )S = lim
n→+∞

(I − T )(I + T + T 2 + · · ·+ T n) = lim
n→+∞

(I − T n+1)

= I − lim
n→+∞

T n+1 = I,

since ‖T‖n+1 → 0 and therefore T n+1 → 0 as n→ +∞. Similarly S(I−T ) =
I. This shows that I − T is invertible, with inverse S, as required.

9.2 The Equivalence of Norms on a Finite-Dimensional
Vector Space

Let ‖.‖ and ‖.‖∗ be norms on a real or complex vector space X. The norms
‖.‖ and ‖.‖∗ are said to be equivalent if and only if there exist constants c
and C, where 0 < c ≤ C, such that

c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖

for all x ∈ X.

Lemma 9.11 Two norms ‖.‖ and ‖.‖∗ on a real or complex vector space X
are equivalent if and only if they induce the same topology on X.

Proof Suppose that the norms ‖.‖ and ‖.‖∗ induce the same topology on X.
Then there exists some δ > 0 such that

{x ∈ X : ‖x‖ < δ} ⊂ {x ∈ X : ‖x‖∗ < 1},

since the set {x ∈ X : ‖x‖∗ < 1} is open with respect to the topology on X
induced by both ‖.‖∗ and ‖.‖. Let C be any positive real number satisfying
Cδ > 1. Then ∥∥∥∥ 1

C‖x‖
x

∥∥∥∥ =
1

C
< δ,

and hence

‖x‖∗ = C‖x‖
∥∥∥∥ 1

C‖x‖
x

∥∥∥∥
∗
< C‖x‖.

for all non-zero elements x of X, and thus ‖x‖∗ ≤ C‖x‖ for all x ∈ X. On
interchanging the roles of the two norms, we deduce also that there exists a
positive real number c such that ‖x‖ ≤ (1/c)‖x‖∗ for all x ∈ X. But then
c‖x‖ ≤ ‖x‖∗ ≤ C‖x‖ for all x ∈ X. We conclude that the norms ‖.‖ and
‖.‖∗ are equivalent.
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Conversely suppose that the norms ‖.‖ and ‖.‖∗ are equivalent. Then
there exist constants c and C, where 0 < c ≤ C, such that c‖x‖ ≤ ‖x‖∗ ≤
C‖x‖ for all x ∈ X. Let U be a subset of X that is open with respect to the
topology on X induced by the norm ‖.‖∗, and let u ∈ U . Then there exists
some δ > 0 such that

{x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U.

But then

{x ∈ X : ‖x− u‖ < δ} ⊂ {x ∈ X : ‖x− u‖∗ < Cδ} ⊂ U,

showing that U is open with respect to the topology induced by the norm ‖.‖.
Similarly any subset of X that is open with respect to the topology induced
by the norm ‖.‖ must also be open with respect to the topology induced by
‖.‖∗. Thus equivalent norms induce the same topology on X.

It follows immediately from Lemma 9.11 that if ‖.‖, ‖.‖∗ and ‖.‖] are
norms on a real (or complex) vector space X, if the norms ‖.‖ and ‖.‖∗ are
equivalent, and if the norms ‖.‖∗ and ‖.‖] are equivalent, then the norms ‖.‖
and ‖.‖] are also equivalent. This fact can easily be verified directly from the
definition of equivalence of norms.

We recall that the usual topology on Rn is that generated by the Euclidean
norm on Rn.

Lemma 9.12 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is
continuous with respect to the usual topology on on Rn.

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).

Let x and y be points of Rn, given by

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Using Schwarz’ Inequality, we see that

‖x− y‖ =

∥∥∥∥∥
n∑

j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑

j=1

|xj − yj| ‖ej‖

≤

(
n∑

j=1

(xj − yj)2
) 1

2
(

n∑
j=1

‖ej‖2
) 1

2

= C‖x− y‖2,

12



where
C2 = ‖e1‖2 + ‖e2‖2 + · · ·+ ‖en‖2

and ‖x− y‖2 denotes the Euclidean norm of x− y, defined by

‖x− y‖2 =

(
n∑

j=1

(xj − yj)2
) 1

2

.

Also |‖x‖ − ‖y‖| ≤ ‖x− y‖, since

‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

We conclude therefore that

|‖x‖ − ‖y‖| ≤ C‖x− y‖2,

for all x,y ∈ Rn, and thus the function x 7→ ‖x‖ is continuous on Rn (with
respect to the usual topology on Rn).

Theorem 9.13 Any two norms on Rn are equivalent, and induce the usual
topology on Rn.

Proof Let ‖.‖ be any norm on Rn. We show that ‖.‖ is equivalent to the
Euclidean norm ‖.‖2. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : ‖x‖2 = 1}.

Now Sn−1 is a compact subset of Rn, since it is both closed and bounded. Also
the function x 7→ ‖x‖ is continuous (Lemma 9.12). But any continuous real-
valued function on a compact topological space attains both its maximum
and minimum values on that space. Therefore there exist points u and v
of Sn−1 such that ‖u‖ ≤ ‖x‖ ≤ ‖v‖ for all x ∈ Sn−1. Set c = ‖u‖ and
C = ‖v‖. Then 0 < c ≤ C (since it follows from the definition of norms that
the norm of any non-zero element of Rn is necessarily non-zero).

If x is any non-zero element of Rn then λx ∈ Sn−1, where λ = 1/‖x‖2. But
‖λx‖ = |λ| ‖x‖ (see the the definition of norms). Therefore c ≤ |λ| ‖x‖ ≤ C,
and hence c‖x‖2 ≤ ‖x‖ ≤ C‖x‖2 for all x ∈ Rn, showing that the norm ‖.‖
is equivalent to the Euclidean norm ‖.‖2 on Rn. Therefore any two norms on
Rn are equivalent, and thus generate the same topology on Rn (Lemma 9.11).
This topology must then be the usual topology on Rn.

Let X be a finite-dimensional real vector space. Then X is isomorphic
to Rn, where n is the dimension of X. It follows immediately from Theo-
rem 9.13 and Lemma 9.11 that all norms on X are equivalent and therefore
generate the same topology on X. This result does not generalize to infinite-
dimensional vector spaces.

13



10 Introduction to Functional Analysis

Let X be a topological space. We say that a function f :X → Rn from X
to Rn is bounded if there exists some non-negative constant K such that
|f(x)| ≤ K for all x ∈ X. If f and g are bounded continuous functions
from X to Rn, then so is f + g. Also λf is bounded and continuous for
any real number λ. It follows from this that the space C(X,Rn) of bounded
continuous functions from X to Rn is a vector space over R. Given f ∈
C(X,Rn), we define the supremum norm ‖f‖ of f by the formula

‖f‖ = sup
x∈X
|f(x)|.

One can readily verify that ‖.‖ is a norm on the vector space C(X,Rn). We
shall show that C(X,Rn), with the supremum norm, is a Banach space (i.e.,
the supremum norm on C(X,Rn) is complete). The proof of this result will
make use of the following characterization of continuity for functions whose
range is Rn.

Lemma 10.1 A function f :X → Rn mapping a topological space X into
Rn is continuous if and only if it satisfies the following criterion: given any
point x of X and given any ε > 0, there exists some open set Ux in X such
that x ∈ Ux and |f(u)− f(x)| < ε for all u ∈ Ux.

Proof Suppose that f :X → Rn is continuous. Let x ∈ X and ε > 0 be
given. Let

Ux = {u ∈ X : |f(u)− f(x)| < ε}.

Then Ux is open in X, since it is the preimage under f of the open ball of
radius ε about f(x) in Rn. Thus Ux is the required open set.

Conversely suppose that f :X → Rn is a function satisfying the given
criterion. We must show that f is continuous. Let V be an open set in Rn,
and let x ∈ f−1(V ). Then there exists some ε > 0 with the property that

{y ∈ Rn : |y − f(x)| < ε} ⊂ V.

Now the criterion satisfied by f ensures the existence of some open set Ux

in X such that x ∈ Ux and |f(u) − f(x)| < ε for all u ∈ Ux, and moreover
the choice of ε ensures that Ux ⊂ f−1(V ). Therefore the preimage f−1(V ) of
the open set V is the union of the open sets Ux as x ranges over all points
of f−1(V ), and is thus itself an open set. Thus f :X → Rn is continuous, as
required.
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Theorem 10.2 The normed vector space C(X,Rn) of all bounded continu-
ous functions from some topological space X to Rn, with the supremum norm,
is a Banach space.

Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,Rn). Then, for each
x ∈ X, the sequence f1(x), f2(x), f3(x), . . . is a Cauchy sequence in Rn (since
|fj(x)−fk(x)| ≤ ‖fj−fk‖ for all natural numbers j and k), and Rn is a com-
plete metric space. Thus, for each x ∈ X, the sequence f1(x), f2(x), f3(x), . . .
converges to some point f(x) of Rn. We must show that the limit function f
defined in this way is bounded and continuous.

Let ε > 0 be given. Then there exists some natural number N with the
property that ‖fj − fk‖ < 1

3
ε for all j ≥ N and k ≥ N , since f1, f2, f3, . . .

is a Cauchy sequence in C(X,Rn). But then, on taking the limit of the left
hand side of the inequality |fj(x)− fk(x)| < 1

3
ε as k → +∞, we deduce that

|fj(x)−f(x)| ≤ 1
3
ε for all x ∈ X and j ≥ N . In particular |fN(x)−f(x)| ≤ 1

3
ε

for all x ∈ X. It follows that |f(x)| ≤ ‖fN‖+ 1
3
ε for all x ∈ X, showing that

the limit function f is bounded.
Next we show that the limit function f is continuous. Let x ∈ X and ε > 0

be given. Let N be chosen large enough to ensure that |fN(u)− f(u)| ≤ 1
3
ε

for all u ∈ X. Now fN is continuous. It follows from Lemma 10.1 that there
exists some open set Ux in X such that x ∈ Ux and |fN(u)− fN(x)| < 1

3
ε for

all u ∈ Ux. Thus if u ∈ Ux then

|f(u)− f(x)| ≤ |f(u)− fN(u)|+ |fN(u)− fN(x)|+ |fN(x)− f(x)|
< 1

3
ε+ 1

3
ε+ 1

3
ε = ε.

It follows from Lemma 10.1 that the limit function f is continuous. Thus
f ∈ C(X,Rn).

Finally we observe that fj → f in C(X,Rn as j → +∞. Indeed we have
already seen that, given ε > 0 there exists some natural number N such that
|fj(x)− f(x)| ≤ 1

3
ε for all x ∈ X and for all j ≥ N . Thus ‖fj − f‖ ≤ 1

3
ε < ε

for all j ≥ N , showing that fj → f in C(X,Rn) as j → +∞. This shows
that C(X,Rn) is a complete metric space, as required.

Corollary 10.3 Let X be a metric space and let F be a closed subset of Rn.
Then the space C(X,F ) of bounded continuous functions from X to F is a
complete metric space with respect to the distance function ρ, where

ρ(f, g) = ‖f − g‖ = sup
x∈X
|f(x)− g(x)|

for all f, g ∈ C(X,F ).
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Proof Let f1, f2, f3, . . . be a Cauchy sequence in C(X,F ). Then f1, f2, f3, . . .
is a Cauchy sequence in C(X,Rn) and therefore converges in C(X,Rn) to
some function f :X → Rn. Let x be some point of X. Then fj(x)→ f(x) as
j → +∞. But then f(x) ∈ F , since fj(x) ∈ F for all j, and F is closed in Rn.
This shows that f ∈ C(X,F ), and thus the Cauchy sequence f1, f2, f3, . . .
converges in C(X,F ). We conclude that C(X,F ) is a complete metric space,
as required.

10.1 The Contraction Mapping Theorem and Picard’s
Theorem

Let X be a metric space with distance function d. A function T :X → X
mapping X to itself is said to be a contraction mapping if there exists some
constant λ satisfying 0 ≤ λ < 1 with the property that d(T (x), T (x′)) ≤
λd(x, x′) for all x, x′ ∈ X.

One can readily check that any contraction map T :X → X on a metric
space (X, d) is continuous. Indeed let x be a point of X, and let ε > 0 be
given. Then d(T (x), T (x′)) < ε for all points x′ of X satisfying d(x, x′) < ε.

Theorem 10.4 (Contraction Mapping Theorem) Let X be a complete met-
ric space, and let T :X → X be a contraction mapping defined on X. Then
T has a unique fixed point in X (i.e., there exists a unique point x of X for
which T (x) = x).

Proof Let λ be chosen such that 0 ≤ λ < 1 and d(T (u), T (u′)) ≤ λd(u, u′)
for all u, u′ ∈ X, where d is the distance function on X. First we show the
existence of the fixed point x. Let x0 be any point of X, and define a sequence
x0, x1, x2, x3, x4, . . . of points of X by the condition that xn = T (xn−1) for
all natural numbers n. It follows by induction on n that d(xn+1, xn) ≤
λnd(x1, x0). Using the Triangle Inequality, we deduce that if j and k are
natural numbers satisfying k > j then

d(xk, xj) ≤
k−1∑
n=j

d(xn+1, xn) ≤ λj − λk

1− λ
d(x1, x0) ≤

λj

1− λ
d(x1, x0).

(Here we have used the identity

λj + λj+1 + · · ·+ λk−1 =
λj − λk

1− λ
.)

Using the fact that 0 ≤ λ < 1, we deduce that the sequence (xn) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,

16



since X is complete. But then we see that

T (x) = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn) = lim

n→+∞
xn+1 = x,

since T :X → X is a continuous function, and thus x is a fixed point of T .
If x′ were another fixed point of T then we would have

d(x′, x) = d(T (x′), T (x)) ≤ λd(x′, x).

But this is impossible unless x′ = x, since λ < 1. Thus the fixed point x of
the contraction map T is unique.

We use the Contraction Mapping Theorem in order to prove the following
existence theorem for solutions of ordinary differential equations.

Theorem 10.5 (Picard’s Theorem) Let F :U → R be a continuous function
defined over some open set U in the plane R2, and let (x0, t0) be an element
of U . Suppose that there exists some non-negative constant M such that

|F (u, t)− F (v, t)| ≤M |u− v| for all (u, t) ∈ U and (v, t) ∈ U .

Then there exists a continuous function ϕ: [t0− δ, t0 + δ]→ R defined on the
interval [t0 − δ, t0 + δ] for some δ > 0 such that x = ϕ(t) is a solution to the
differential equation

dx(t)

dt
= F (x(t), t)

with initial condition x(t0) = x0.

Proof Solving the differential equation with the initial condition x(t0) = x0
is equivalent to finding a continuous function ϕ: I → R satisfying the integral
equation

ϕ(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

where I denotes the closed interval [t0− δ, t0 + δ]. (Note that any continuous
function ϕ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)

Let K = |F (x0, t0)|+ 1. Using the continuity of the function F , together
with the fact that U is open in R2, one can find some δ0 > 0 such that the
open disk of radius δ0 about (x0, t0) is contained in U and |F (x, t)| ≤ K for
all points (x, t) in this open disk. Now choose δ > 0 such that

δ
√

1 +K2 < δ0 and Mδ < 1.
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Note that if |t − t0| ≤ δ and |x − x0| ≤ Kδ then (x, t) belongs to the open
disk of radius δ0 about (x0, t0), and hence (x, t) ∈ U and |F (x, t)| ≤ K.

Let J denote the closed interval [x0 − Kδ, x0 + Kδ]. The space C(I, J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 10.3. Define T :C(I, J)→ C(I, J) by

T (ϕ)(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

We claim that T does indeed map C(I, J) into itself and is a contraction
mapping.

Let ϕ: I → J be an element of C(I, J). Note that if |t− t0| ≤ δ then

|(ϕ(t), t)− (x0, t0)|2 = (ϕ(t)− x0)2 + (t− t0)2 ≤ δ2 +K2δ2 < δ20,

hence |F (ϕ(t), t)| ≤ K. It follows from this that

|T (ϕ)(t)− x0| ≤ Kδ

for all t satisfying |t − t0| < δ. The function T (ϕ) is continuous, and is
therefore a well-defined element of C(I, J) for all ϕ ∈ C(I, J).

We now show that T is a contraction mapping on C(I, J). Let ϕ and ψ
be elements of C(I, J). The hypotheses of the theorem ensure that

|F (ϕ(t), t)− F (ψ(t), t)| ≤M |ϕ(t)− ψ(t)| ≤Mρ(ϕ, ψ)

for all t ∈ I, where ρ(ϕ, ψ) = supt∈I |ϕ(t)− ψ(t)|. Therefore

|T (ϕ)(t)− T (ψ)(t)| =

∣∣∣∣∫ t

t0

(F (ϕ(s), s)− F (ψ(s), s)) ds

∣∣∣∣
≤ M |t− t0|ρ(ϕ, ψ)

for all t satisfying |t − t0| ≤ δ. Therefore ρ(T (ϕ), T (ψ)) ≤ Mδρ(ϕ, ψ) for
all ϕ, ψ ∈ C(I, J). But δ has been chosen such that Mδ < 1. This shows
that T :C(I, J) → C(I, J) is a contraction mapping on C(I, J). It follows
from the Contraction Mapping Theorem (Theorem 10.4) that there exists a
unique element ϕ of C(I, J) satisfying T (ϕ) = ϕ. This function ϕ is the
required solution to the differential equation.

A straightforward but somewhat technical least upper bound argument
can be used to show that if x = ψ(t) is any other continuous solution to the
differential equation

dx

dt
= F (x, t)
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on the interval [t0− δ, t0 + δ] satisfying the initial condition ψ(t0) = x0, then
|ψ(t)− x0| ≤ Kδ for all t satisfying |t− t0| ≤ δ. Thus such a solution to the
differential equation must belong to the space C(I, J) defined in the proof of
Theorem 10.5. The uniqueness of the fixed point of the contraction mapping
T :C(I, J) → C(I, J) then shows that ψ = ϕ, where ϕ: [t0 − δ, t0 + δ] → R
is the solution to the differential equation whose existence was proved in
Theorem 10.5. This shows that the solution to the differential equation is in
fact unique on the interval [t0 − δ, t0 + δ].
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