Course 212: Hilary Term 2001 Part III: Normed Vector Spaces and Functional Analysis

D. R. Wilkins

Copyright © David R. Wilkins 1997–2001

Contents

9	Normed Vector Spaces		2
	9.1	Bounded Linear Transformations	7
	9.2	The Equivalence of Norms on a Finite-Dimensional Vector Space	11
10	Intr	oduction to Functional Analysis	14
	10.1	The Contraction Mapping Theorem and Picard's Theorem	16

9 Normed Vector Spaces

A set X is a *vector space* over some field \mathbb{F} if

- given any $x, y \in X$ and $\lambda \in \mathbb{F}$, there are well-defined elements x + y and λx of X,
- X is an Abelian group with respect to the operation + of addition,
- the identities

$$\lambda(x+y) = \lambda x + \lambda y, \qquad (\lambda+\mu)x = \lambda x + \mu x,$$
$$(\lambda\mu)x = \lambda(\mu x), \qquad 1x = x$$

are satisfied for all $x, y \in X$ and $\lambda, \mu \in \mathbb{F}$.

Elements of the field \mathbb{F} are referred to as *scalars*. We consider here only *real* vector spaces and complex vector spaces: these are vector spaces over the fields of real numbers and complex numbers respectively.

Definition A norm $\|.\|$ on a real or complex vector space X is a function, associating to each element x of X a corresponding real number $\|x\|$, such that the following conditions are satisfied:—

- (i) $||x|| \ge 0$ for all $x \in X$,
- (ii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$,
- (iii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and for all scalars λ ,
- (iv) ||x|| = 0 if and only if x = 0.

A normed vector space $(X, \|.\|)$ consists of a real or complex vector space X, together with a norm $\|.\|$ on X.

Note that any normed complex vector space can also be regarded as a normed real vector space.

Example The field \mathbb{R} is a one-dimensional normed vector space over itself: the norm |t| of $t \in \mathbb{R}$ is the absolute value of t.

Example The field \mathbb{C} is a one-dimensional normed vector space over itself: the norm |z| of $z \in \mathbb{C}$ is the modulus of z. The field \mathbb{C} is also a twodimensional normed vector space over \mathbb{R} . **Example** Let $\|.\|_1, \|.\|_2$ and $\|.\|_{\infty}$ be the real-valued functions on \mathbb{C}^n defined by

$$\|\mathbf{z}\|_{1} = \sum_{j=1}^{n} |z_{j}|,$$

$$\|\mathbf{z}\|_{2} = \left(\sum_{j=1}^{n} |z_{j}|^{2}\right)^{\frac{1}{2}},$$

$$\|\mathbf{z}\|_{\infty} = \max(|z_{1}|, |z_{2}|, \dots, |z_{n}|),$$

for each $\mathbf{z} \in \mathbb{C}^n$, where $\mathbf{z} = (z_1, z_2, \ldots, z_n)$. Then $\|.\|_1$, $\|.\|_2$ and $\|.\|_{\infty}$ are norms on \mathbb{C}^n . In particular, if we regard \mathbb{C}^n as a 2*n*-dimensional real vector space naturally isomorphic to \mathbb{R}^{2n} (via the isomorphism

$$(z_1, z_2, \ldots, z_n) \mapsto (x_1, y_1, x_2, y_2, \ldots, x_n, y_n),$$

where x_j and y_j are the real and imaginary parts of z_j for j = 1, 2, ..., n) then $\|.\|_2$ represents the Euclidean norm on this space. The inequality $\|\mathbf{z} + \mathbf{w}\|_2 \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$ satisfied for all $\mathbf{z}, \mathbf{w} \in \mathbb{C}^n$ is therefore just the standard Triangle Inequality for the Euclidean norm.

Example The space \mathbb{R}^n is also an *n*-dimensional real normed vector space with respect to the norms $\|.\|_1$, $\|.\|_2$ and $\|.\|_\infty$ defined above. Note that $\|.\|_2$ is the standard Euclidean norm on \mathbb{R}^n .

Example Let

$$\ell_1 = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : |z_1| + |z_2| + |z_3| + \cdots \text{ converges}\}, \\ \ell_2 = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : |z_1|^2 + |z_2|^2 + |z_3|^2 + \cdots \text{ converges}\}, \\ \ell_{\infty} = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : \text{the sequence } |z_1|, |z_2|, |z_3|, \ldots \text{ is bounded}\}.$$

where \mathbb{C}^{∞} denotes the set of all sequences $(z_1, z_2, z_3, ...)$ of complex numbers. Then ℓ_1, ℓ_2 and ℓ_{∞} are infinite-dimensional normed vector spaces, with norms $\|.\|_1, \|.\|_2$ and $\|.\|_{\infty}$ respectively, where

$$\|\mathbf{z}\|_{1} = \sum_{j=1}^{+\infty} |z_{j}|,$$

$$\|\mathbf{z}\|_{2} = \left(\sum_{j=1}^{+\infty} |z_{j}|^{2}\right)^{\frac{1}{2}},$$

$$\|\mathbf{z}\|_{\infty} = \sup\{|z_{1}|, |z_{2}|, |z_{3}|, \ldots\}$$

(For example, to show that $\|\mathbf{z} + \mathbf{w}\|_2 \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$ for all $\mathbf{z}, \mathbf{w} \in \ell_2$, we note that

$$\left(\sum_{j=1}^{n} |z_j + w_j|^2\right)^{\frac{1}{2}} \le \left(\sum_{j=1}^{n} |z_j|^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} |w_j|^2\right)^{\frac{1}{2}} \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$$

for all natural numbers n, by the Triangle Inequality in \mathbb{C}^n . Taking limits as $n \to +\infty$, we deduce that $\|\mathbf{z} + \mathbf{w}\|_2 \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$, as required.)

If x_1, x_2, \ldots, x_m are elements of a normed vector space X then

$$\left\|\sum_{k=1}^m x_k\right\| \le \sum_{k=1}^m \|x_k\|,$$

where $\|.\|$ denotes the norm on X. (This can be verified by induction on m, using the inequality $||x + y|| \le ||x|| + ||y||$.)

A norm $\|.\|$ on a vector space X induces a corresponding distance function on X: the distance d(x, y) between elements x and y of X is defined by $d(x, y) = \|x - y\|$. This distance function satisfies the metric space axioms. Thus any vector space with a given norm can be regarded as a metric space. A norm on a vector space X therefore generates a topology on X: a subset U of X is an open set if and only if, given any point u of U, there exists some $\delta > 0$ such that

$$\{x \in X : \|x - u\| < \delta\} \subset U.$$

The function $x \mapsto ||x||$ is a continuous function from X to \mathbb{R} , since

$$||x|| - ||y|| = ||(x - y) + y|| - ||y|| \le (||x - y|| + ||y||) - ||y|| = ||x - y||,$$

and $||y|| - ||x|| \le ||x - y||$, and therefore $|||x|| - ||y||| \le ||x - y||$.

The Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ of vector spaces X_1, X_2, \ldots, X_n can itself be regarded as a vector space: if (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are points of $X_1 \times X_2 \times \cdots \times X_n$, and if λ is any scalar, then

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

Lemma 9.1 Let X_1, X_2, \ldots, X_n be normed vector spaces, and let $\|.\|_{\max}$ be the norm on $X_1 \times X_2 \times \cdots \times X_n$ defined by

$$||(x_1, x_2, \dots, x_n)||_{\max} = \max(||x_1||_1, ||x_2||_2, \dots, ||x_n||_n),$$

where $\|.\|_i$ is the norm on X_i for i = 1, 2, ..., n. Then the topology on $X_1 \times X_2 \times \cdots \times X_n$ generated by the norm $\|.\|_{\max}$ is the product topology on $X_1 \times X_2 \times \cdots \times X_n$.

Proof It is a straightforward exercise to verify that $\|.\|_{\text{max}}$ is indeed a norm on X, where $X = X_1 \times X_2 \times \cdots \times X_n$.

Let U be a subset of X. Suppose that U is open with respect to the product topology. Let \mathbf{u} be any point of U, given by $\mathbf{u} = (u_1, u_2, \ldots, u_n)$. We must show that there exists some $\delta > 0$ such that

$$\{\mathbf{x} \in X : \|\mathbf{x} - \mathbf{u}\|_{\max} < \delta\} \subset U.$$

Now it follows from the definition of the product topology that there exist open sets V_1, V_2, \ldots, V_n in X_1, X_2, \ldots, X_n such that $u_i \in V_i$ for all i and $V_1 \times V_2 \times \cdots \times V_n \subset U$. We can then take δ to be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$, where $\delta_1, \delta_2, \ldots, \delta_n$ are chosen such that

$$\{x_i \in X_i : \|x_i - u_i\| < \delta_i\} \subset V_i$$

for i = 1, 2, ..., n.

Conversely suppose that U is open with respect to the topology generated by the norm $\|.\|_{\text{max}}$. Let **u** be any point of U. Then there exists $\delta > 0$ such that

$$\{\mathbf{x} \in X : \|\mathbf{x} - \mathbf{u}\|_{\max} < \delta\} \subset U.$$

Let $V_i = \{x_i \in X_i : ||x_i - u_i|| < \delta\}$ for i = 1, 2, ..., n. Then, for each i, V_i is an open set in $X_i, u_i \in V_i$, and $V_1 \times V_2 \times \cdots \times V_n \subset U$. We deduce that Uis also open with respect to the product topology, as required.

Proposition 9.2 Let X be a normed vector space over the field \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then the function from $X \times X$ to X sending $(x, y) \in X \times X$ to x+y is continuous. Also the function from $\mathbb{F} \times X$ to X sending $(\lambda, x) \in \mathbb{F} \times X$ to λx is continuous.

Proof Let $(u, v) \in X \times X$, and let $\varepsilon > 0$ be given. Let $\delta = \frac{1}{2}\varepsilon$. If $(x, y) \in X \times X$ satisfies $||(x, y) - (u, v)||_{\max} < \delta$, then $||x - u|| < \delta$ and $||y - v|| < \delta$, and hence

$$||(x+y) - (u+v)|| \le ||x-u|| + ||y-v|| < \varepsilon.$$

This shows that the function $(x, y) \mapsto x + y$ is continuous at $(u, v) \in X \times X$. Next let $(\mu, u) \in \mathbb{F} \times X$, and let $\varepsilon > 0$ be given. Let

$$\delta = \min\left(\frac{\varepsilon}{2(\|u\|+1)}, \frac{\varepsilon}{2(|\mu|+1)}, 1\right).$$

Now $\lambda x - \mu u = \lambda(x - u) + (\lambda - \mu)u$ for all $\lambda \in \mathbb{F}$ and $x \in X$. Thus if $(\lambda, x) \in \mathbb{F} \times X$ satisfies $\|(\lambda, x) - (\mu, u)\|_{\max} < \delta$, then

$$|\lambda - \mu| < \frac{\varepsilon}{2(||u|| + 1)}, \qquad ||x - u|| < \frac{\varepsilon}{2(|\mu| + 1)}, \qquad |\lambda| < |\mu| + 1,$$

and hence

$$\|\lambda x - \mu u\| \le |\lambda| \|x - u\| + |\lambda - \mu| \|u\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This shows that the function $(\lambda, x) \mapsto \lambda x$ is continuous at $(\mu, u) \in \mathbb{F} \times X$, as required.

Corollary 9.3 Let X be a normed vector space over the field \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let (x_n) and (y_n) be convergent sequences in X, and let (λ_n) be a convergent sequence in \mathbb{F} . Then the sequences $(x_n + y_n)$ and $(\lambda_n x_n)$ are convergent in X, and

$$\lim_{n \to +\infty} (x_n + y_n) = \lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n,$$
$$\lim_{n \to +\infty} (\lambda_n x_n) = \left(\lim_{n \to +\infty} \lambda_n\right) \left(\lim_{n \to +\infty} x_n\right).$$

Proof Let $x = \lim_{n \to +\infty} x_n$, $y = \lim_{n \to +\infty} y_n$ and $\lambda = \lim_{n \to +\infty} \lambda_n$. Using Lemma 9.1, together with the definition of convergence in metric spaces, it follows easily that the sequences (x_n, y_n) and (λ_n, x_n) converge to (x, y) and (λ, x) in $X \times X$ and $\mathbb{F} \times X$ respectively. The convergence of $(x_n + y_n)$ and $\lambda_n x_n$ to x + y and λx respectively now follows from Proposition 9.2.

Let X be a normed vector space, and let x_1, x_2, x_3, \ldots be elements of X. The infinite series $\sum_{n=1}^{+\infty} x_n$ is said to *converge* to some element s of X if, given any $\varepsilon > 0$, there exists some natural number N such that

$$\|s - \sum_{n=1}^m x_n\| < \varepsilon$$

for all $m \ge N$ (where $\|.\|$ denotes the norm on X).

We say that a normed vector space X is *complete* if and only if every Cauchy sequence in X is convergent. (A sequence x_1, x_2, x_3, \ldots is a *Cauchy* sequence if and only if, given any $\varepsilon > 0$, there exists some natural number N such that $||x_j - x_k|| < \varepsilon$ for all j and k satisfying $j \ge N$ and $k \ge N$.) A complete normed vector space is referred to as a *Banach space*. (The basic theory of such spaces was extensively developed by the famous Polish mathematician Stefan Banach and his co-workers.)

Lemma 9.4 Let X be a Banach space, and let x_1, x_2, x_3, \ldots be elements of X. Suppose that $\sum_{n=1}^{+\infty} \|x_n\|$ is convergent. Then $\sum_{n=1}^{+\infty} x_n$ is convergent, and $\left\|\sum_{n=1}^{+\infty} x_n\right\| \le \sum_{n=1}^{+\infty} \|x_n\|.$

Proof For each natural number n, let

$$s_n = x_1 + x_2 + \dots + x_n$$

Let $\varepsilon > 0$ be given. We can find N such that $\sum_{n=N}^{+\infty} ||x_n|| < \varepsilon$, since $\sum_{n=1}^{+\infty} ||x_n||$ is convergent. Let $s_n = x_1 + x_2 + \cdots + x_n$. If $j \ge N$, $k \ge N$ and j < k then

$$||s_k - s_j|| = \left|\left|\sum_{n=j+1}^k x_n\right|\right| \le \sum_{n=j+1}^k ||x_n|| \le \sum_{n=N}^{+\infty} ||x_n|| < \varepsilon.$$

Thus s_1, s_2, s_3, \ldots is a Cauchy sequence in X, and therefore converges to some element s of X, since X is complete. But then $s = \sum_{j=1}^{+\infty} x_j$. Moreover, on choosing m large enough to ensure that $||s - s_m|| < \varepsilon$, we deduce that

$$||s|| \le \left\|\sum_{n=1}^{m} x_n\right\| + \left\|s - \sum_{n=1}^{m} x_n\right\| \le \sum_{n=1}^{m} ||x_n|| + \left\|s - \sum_{n=1}^{m} x_n\right\| < \sum_{n=1}^{+\infty} ||x_n|| + \varepsilon.$$

Since this inequality holds for all $\varepsilon > 0$, we conclude that

$$||s|| \le \sum_{n=1}^{+\infty} ||x_n||$$

as required.

9.1 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function $T: X \to Y$ is said to be a *linear transformation* if T(x + y) = Tx + Ty and $T(\lambda x) = \lambda Tx$ for all elements x and y of X and scalars λ . A linear transformation mapping X into itself is referred to as a *linear operator* on X.

Definition Let X and Y be normed vector spaces. A linear transformation $T: X \to Y$ is said to be *bounded* if there exists some non-negative real number C with the property that $||Tx|| \leq C||x||$ for all $x \in X$. If T is bounded, then the smallest non-negative real number C with this property is referred to as the *operator norm* of T, and is denoted by ||T||.

Lemma 9.5 Let X and Y be normed vector spaces, and let $S: X \to Y$ and $T: X \to Y$ be bounded linear transformations. Then S + T and λS are bounded linear transformations for all scalars λ , and

$$||S + T|| \le ||S|| + ||T||, \qquad ||\lambda S|| = |\lambda|||S||.$$

Moreover ||S|| = 0 if and only if S = 0. Thus the vector space B(X, Y) of bounded linear transformations from X to Y is a normed vector space (with respect to the operator norm).

Proof $||(S+T)x|| \leq ||Sx|| + ||Tx|| \leq (||S|| + ||T||)||x||$ for all $x \in X$. Therefore S+T is bounded, and $||S+T|| \leq ||S|| + ||T||$. Using the fact that $||(\lambda S)x|| = |\lambda| ||Sx||$ for all $x \in X$, we see that λS is bounded, and $||\lambda S|| = |\lambda| ||S||$. If S = 0 then ||S|| = 0. Conversely if ||S|| = 0 then $||Sx|| \leq ||S|| ||x|| = 0$ for all $x \in X$, and hence S = 0. The result follows.

Lemma 9.6 Let X, Y and Z be normed vector spaces, and let $S: X \to Y$ and $T: Y \to Z$ be bounded linear transformations. Then the composition TS of S and T is also bounded, and $||TS|| \leq ||T|| ||S||$.

Proof $||TSx|| \leq ||T|| ||Sx|| \leq ||T|| ||S|| ||x||$ for all $x \in X$. The result follows.

Proposition 9.7 Let X and Y be normed vector spaces, and let $T: X \to Y$ be a linear transformation from X to Y. Then the following conditions are equivalent:—

- (i) $T: X \to Y$ is continuous,
- (ii) $T: X \to Y$ is continuous at 0,
- (iii) $T: X \to Y$ is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii) implies (i). The equivalence of the three conditions then follows immediately.

Suppose that $T: X \to Y$ is continuous at 0. Then there exists $\delta > 0$ such that ||Tx|| < 1 for all $x \in X$ satisfying $||x|| < \delta$. Let C be any positive real number satisfying $C > 1/\delta$. If x is any non-zero element of X then $||\lambda x|| < \delta$, where $\lambda = 1/(C||x||)$, and hence

$$||Tx|| = C||x|| ||\lambda Tx|| = C||x|| ||T(\lambda x)|| < C||x||.$$

Thus $||Tx|| \leq C ||x||$ for all $x \in X$, and hence $T: X \to Y$ is bounded. Thus (ii) implies (iii).

Finally suppose that $T: X \to Y$ is bounded. Let x be a point of X, and let $\varepsilon > 0$ be given. Choose $\delta > 0$ satisfying $||T||\delta < \varepsilon$. If $x' \in X$ satisfies $||x' - x|| < \delta$ then

$$||Tx' - Tx|| = ||T(x' - x)|| \le ||T|| ||x' - x|| < ||T||\delta < \varepsilon.$$

Thus $T: X \to Y$ is continuous. Thus (iii) implies (i), as required.

Proposition 9.8 Let X be a normed vector space and let Y be a Banach space. Then the space B(X, Y) of bounded linear transformations from X to Y is also a Banach space.

Proof We have already shown that B(X, Y) is a normed vector space (see Lemma 9.5). Thus it only remains to show that B(X, Y) is complete.

Let S_1, S_2, S_3, \ldots be a Cauchy sequence in B(X, Y). Let $x \in X$. We claim that S_1x, S_2x, S_3x, \ldots is a Cauchy sequence in Y. This result is trivial if x = 0. If $x \neq 0$, and if $\varepsilon > 0$ is given then there exists some natural number N such that $||S_j - S_k|| < \varepsilon/||x||$ whenever $j \ge N$ and $k \ge N$. But then $||S_jx - S_kx|| \le ||S_j - S_k|| ||x|| < \varepsilon$ whenever $j \ge N$ and $k \ge N$. This shows that S_1x, S_2x, S_3x, \ldots is indeed a Cauchy sequence. It therefore converges to some element of Y, since Y is a Banach space.

Let the function $S: X \to Y$ be defined by $Sx = \lim_{n \to +\infty} S_n x$. Then

$$S(x+y) = \lim_{n \to +\infty} (S_n x + S_n y) = \lim_{n \to +\infty} S_n x + \lim_{n \to +\infty} S_n y = Sx + Sy,$$

(see Corollary 9.3), and

$$S(\lambda x) = \lim_{n \to +\infty} S_n(\lambda x) = \lambda \lim_{n \to +\infty} S_n x = \lambda S x,$$

Thus $S: X \to Y$ is a linear transformation.

Next we show that $S_n \to S$ in B(X, Y) as $n \to +\infty$. Let $\varepsilon > 0$ be given. Then there exists some natural number N such that $||S_j - S_n|| < \frac{1}{2}\varepsilon$ whenever $j \ge N$ and $n \ge N$, since the sequence S_1, S_2, S_3, \ldots is a Cauchy sequence in B(X, Y). But then $||S_j x - S_n x|| \le \frac{1}{2}\varepsilon ||x||$ for all $j \ge N$ and $n \ge N$, and thus

$$\|Sx - S_n x\| = \left\| \lim_{j \to +\infty} (S_j x - S_n x) \right\| \le \lim_{j \to +\infty} \|S_j x - S_n x\|$$
$$\le \quad \lim_{j \to +\infty} \|S_j - S_n\| \|x\| \le \frac{1}{2}\varepsilon \|x\|$$

for all $n \ge N$ (since the norm is a continuous function on Y). But then

$$||Sx|| \le ||S_nx|| + ||Sx - S_nx|| \le \left(||S_n|| + \frac{1}{2}\varepsilon\right) ||x||$$

for any $n \ge N$, showing that $S: X \to Y$ is a bounded linear transformation, and $||S - S_n|| \le \frac{1}{2}\varepsilon < \varepsilon$ for all $n \ge N$, showing that $S_n \to S$ in B(X, Y) as $n \to +\infty$. Thus the Cauchy sequence S_1, S_2, S_3, \ldots is convergent in B(X, Y), as required. **Corollary 9.9** Let X and Y be Banach spaces, and let T_1, T_2, T_3, \ldots be bounded linear transformations from X to Y. Suppose that $\sum_{n=0}^{+\infty} ||T_n||$ is con-

vergent. Then $\sum_{n=0}^{+\infty} T_n$ is convergent, and

$$\left\|\sum_{n=0}^{+\infty} T_n\right\| \le \sum_{n=0}^{+\infty} \|T_n\|.$$

Proof The space B(X, Y) of bounded linear maps from X to Y is a Banach space by Proposition 9.8. The result therefore follows immediately on applying Lemma 9.4.

Example Let T be a bounded linear operator on a Banach space X (i.e., a bounded linear transformation from X to itself). The infinite series

$$\sum_{n=0}^{+\infty} \frac{\|T\|^n}{n!}$$

converges to $\exp(||T||)$. It follows immediately from Lemma 9.6 (using induction on *n*) that $||T^n|| \leq ||T||^n$ for all $n \geq 0$ (where T^0 is the identity operator on *X*). It therefore follows from Corollary 9.9 that there is a well-defined bounded linear operator $\exp T$ on *X*, defined by

$$\exp T = \sum_{n=0}^{+\infty} \frac{1}{n!} T^n$$

(where T^0 is the identity operator I on X).

Proposition 9.10 Let T be a bounded linear operator on a Banach space X. Suppose that ||T|| < 1. Then the operator I - T has a bounded inverse $(I - T)^{-1}$ (where I denotes the identity operator on X). Moreover

$$(I - T)^{-1} = I + T + T^{2} + T^{3} + \cdots$$

Proof $||T^n|| \le ||T||^n$ for all n, and the geometric series

$$1 + ||T|| + ||T||^2 + ||T||^3 + \cdots$$

is convergent (since ||T|| < 1). It follows from Corollary 9.9 that the infinite series

$$I + T + T^2 + T^3 + \cdots$$

converges to some bounded linear operator S on X. Now

$$(I - T)S = \lim_{n \to +\infty} (I - T)(I + T + T^2 + \dots + T^n) = \lim_{n \to +\infty} (I - T^{n+1})$$

= $I - \lim_{n \to +\infty} T^{n+1} = I$,

since $||T||^{n+1} \to 0$ and therefore $T^{n+1} \to 0$ as $n \to +\infty$. Similarly S(I-T) = I. This shows that I - T is invertible, with inverse S, as required.

9.2 The Equivalence of Norms on a Finite-Dimensional Vector Space

Let $\|.\|$ and $\|.\|_*$ be norms on a real or complex vector space X. The norms $\|.\|$ and $\|.\|_*$ are said to be *equivalent* if and only if there exist constants c and C, where $0 < c \leq C$, such that

$$c||x|| \le ||x||_* \le C||x||$$

for all $x \in X$.

Lemma 9.11 Two norms $\|.\|$ and $\|.\|_*$ on a real or complex vector space X are equivalent if and only if they induce the same topology on X.

Proof Suppose that the norms $\|.\|$ and $\|.\|_*$ induce the same topology on X. Then there exists some $\delta > 0$ such that

$$\{x \in X : \|x\| < \delta\} \subset \{x \in X : \|x\|_* < 1\},\$$

since the set $\{x \in X : ||x||_* < 1\}$ is open with respect to the topology on X induced by both $||.||_*$ and ||.||. Let C be any positive real number satisfying $C\delta > 1$. Then

$$\left\|\frac{1}{C\|x\|}x\right\| = \frac{1}{C} < \delta,$$

and hence

$$||x||_* = C||x|| \left\| \frac{1}{C||x||} x \right\|_* < C||x||.$$

for all non-zero elements x of X, and thus $||x||_* \leq C||x||$ for all $x \in X$. On interchanging the roles of the two norms, we deduce also that there exists a positive real number c such that $||x|| \leq (1/c)||x||_*$ for all $x \in X$. But then $c||x|| \leq ||x||_* \leq C||x||$ for all $x \in X$. We conclude that the norms ||.|| and $||.||_*$ are equivalent. Conversely suppose that the norms $\|.\|$ and $\|.\|_*$ are equivalent. Then there exist constants c and C, where $0 < c \leq C$, such that $c\|x\| \leq \|x\|_* \leq C\|x\|$ for all $x \in X$. Let U be a subset of X that is open with respect to the topology on X induced by the norm $\|.\|_*$, and let $u \in U$. Then there exists some $\delta > 0$ such that

$$\{x \in X : \|x - u\|_* < C\delta\} \subset U.$$

But then

$$\{x \in X : \|x - u\| < \delta\} \subset \{x \in X : \|x - u\|_* < C\delta\} \subset U,$$

showing that U is open with respect to the topology induced by the norm $\|.\|$. Similarly any subset of X that is open with respect to the topology induced by the norm $\|.\|$ must also be open with respect to the topology induced by $\|.\|_*$. Thus equivalent norms induce the same topology on X.

It follows immediately from Lemma 9.11 that if $\|.\|$, $\|.\|_*$ and $\|.\|_{\sharp}$ are norms on a real (or complex) vector space X, if the norms $\|.\|$ and $\|.\|_*$ are equivalent, and if the norms $\|.\|_*$ and $\|.\|_{\sharp}$ are equivalent, then the norms $\|.\|$ and $\|.\|_{\sharp}$ are also equivalent. This fact can easily be verified directly from the definition of equivalence of norms.

We recall that the usual topology on \mathbb{R}^n is that generated by the Euclidean norm on \mathbb{R}^n .

Lemma 9.12 Let $\|.\|$ be a norm on \mathbb{R}^n . Then the function $\mathbf{x} \mapsto \|\mathbf{x}\|$ is continuous with respect to the usual topology on on \mathbb{R}^n .

Proof Let $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ denote the basis of \mathbb{R}^n given by

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1).$$

Let \mathbf{x} and \mathbf{y} be points of \mathbb{R}^n , given by

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \qquad \mathbf{y} = (y_1, y_2, \dots, y_n).$$

Using Schwarz' Inequality, we see that

$$\|\mathbf{x} - \mathbf{y}\| = \left\| \sum_{j=1}^{n} (x_j - y_j) \mathbf{e}_j \right\| \le \sum_{j=1}^{n} |x_j - y_j| \|\mathbf{e}_j\|$$
$$\le \left(\sum_{j=1}^{n} (x_j - y_j)^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} \|\mathbf{e}_j\|^2 \right)^{\frac{1}{2}} = C \|\mathbf{x} - \mathbf{y}\|_2,$$

where

$$C^{2} = \|\mathbf{e}_{1}\|^{2} + \|\mathbf{e}_{2}\|^{2} + \dots + \|\mathbf{e}_{n}\|^{2}$$

and $\|\mathbf{x} - \mathbf{y}\|_2$ denotes the Euclidean norm of $\mathbf{x} - \mathbf{y}$, defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left(\sum_{j=1}^n (x_j - y_j)^2\right)^{\frac{1}{2}}.$$

Also $|||\mathbf{x}|| - ||\mathbf{y}||| \le ||\mathbf{x} - \mathbf{y}||$, since

$$\|\mathbf{x}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y}\|, \qquad \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{x}\|.$$

We conclude therefore that

$$|\|\mathbf{x}\| - \|\mathbf{y}\|| \le C \|\mathbf{x} - \mathbf{y}\|_2,$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and thus the function $\mathbf{x} \mapsto ||\mathbf{x}||$ is continuous on \mathbb{R}^n (with respect to the usual topology on \mathbb{R}^n).

Theorem 9.13 Any two norms on \mathbb{R}^n are equivalent, and induce the usual topology on \mathbb{R}^n .

Proof Let $\|.\|$ be any norm on \mathbb{R}^n . We show that $\|.\|$ is equivalent to the Euclidean norm $\|.\|_2$. Let S^{n-1} denote the unit sphere in \mathbb{R}^n , defined by

$$S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 = 1 \}$$

Now S^{n-1} is a compact subset of \mathbb{R}^n , since it is both closed and bounded. Also the function $\mathbf{x} \mapsto ||\mathbf{x}||$ is continuous (Lemma 9.12). But any continuous realvalued function on a compact topological space attains both its maximum and minimum values on that space. Therefore there exist points \mathbf{u} and \mathbf{v} of S^{n-1} such that $||\mathbf{u}|| \leq ||\mathbf{x}|| \leq ||\mathbf{v}||$ for all $\mathbf{x} \in S^{n-1}$. Set $c = ||\mathbf{u}||$ and $C = ||\mathbf{v}||$. Then $0 < c \leq C$ (since it follows from the definition of norms that the norm of any non-zero element of \mathbb{R}^n is necessarily non-zero).

If \mathbf{x} is any non-zero element of \mathbb{R}^n then $\lambda \mathbf{x} \in S^{n-1}$, where $\lambda = 1/||\mathbf{x}||_2$. But $||\lambda \mathbf{x}|| = |\lambda| ||\mathbf{x}||$ (see the the definition of norms). Therefore $c \leq |\lambda| ||\mathbf{x}|| \leq C$, and hence $c ||\mathbf{x}||_2 \leq ||\mathbf{x}|| \leq C ||\mathbf{x}||_2$ for all $\mathbf{x} \in \mathbb{R}^n$, showing that the norm ||.|| is equivalent to the Euclidean norm $||.||_2$ on \mathbb{R}^n . Therefore any two norms on \mathbb{R}^n are equivalent, and thus generate the same topology on \mathbb{R}^n (Lemma 9.11). This topology must then be the usual topology on \mathbb{R}^n .

Let X be a finite-dimensional real vector space. Then X is isomorphic to \mathbb{R}^n , where n is the dimension of X. It follows immediately from Theorem 9.13 and Lemma 9.11 that all norms on X are equivalent and therefore generate the same topology on X. This result does not generalize to infinitedimensional vector spaces.

10 Introduction to Functional Analysis

Let X be a topological space. We say that a function $f: X \to \mathbb{R}^n$ from X to \mathbb{R}^n is *bounded* if there exists some non-negative constant K such that $|f(x)| \leq K$ for all $x \in X$. If f and g are bounded continuous functions from X to \mathbb{R}^n , then so is f + g. Also λf is bounded and continuous for any real number λ . It follows from this that the space $C(X, \mathbb{R}^n)$ of bounded continuous functions from X to \mathbb{R}^n is a vector space over \mathbb{R} . Given $f \in$ $C(X, \mathbb{R}^n)$, we define the *supremum norm* ||f|| of f by the formula

$$||f|| = \sup_{x \in X} |f(x)|.$$

One can readily verify that $\|.\|$ is a norm on the vector space $C(X, \mathbb{R}^n)$. We shall show that $C(X, \mathbb{R}^n)$, with the supremum norm, is a Banach space (i.e., the supremum norm on $C(X, \mathbb{R}^n)$ is complete). The proof of this result will make use of the following characterization of continuity for functions whose range is \mathbb{R}^n .

Lemma 10.1 A function $f: X \to \mathbb{R}^n$ mapping a topological space X into \mathbb{R}^n is continuous if and only if it satisfies the following criterion: given any point x of X and given any $\varepsilon > 0$, there exists some open set U_x in X such that $x \in U_x$ and $|f(u) - f(x)| < \varepsilon$ for all $u \in U_x$.

Proof Suppose that $f: X \to \mathbb{R}^n$ is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Let

$$U_x = \{ u \in X : |f(u) - f(x)| < \varepsilon \}.$$

Then U_x is open in X, since it is the preimage under f of the open ball of radius ε about f(x) in \mathbb{R}^n . Thus U_x is the required open set.

Conversely suppose that $f: X \to \mathbb{R}^n$ is a function satisfying the given criterion. We must show that f is continuous. Let V be an open set in \mathbb{R}^n , and let $x \in f^{-1}(V)$. Then there exists some $\varepsilon > 0$ with the property that

$$\{\mathbf{y} \in \mathbb{R}^n : |\mathbf{y} - f(x)| < \varepsilon\} \subset V.$$

Now the criterion satisfied by f ensures the existence of some open set U_x in X such that $x \in U_x$ and $|f(u) - f(x)| < \varepsilon$ for all $u \in U_x$, and moreover the choice of ε ensures that $U_x \subset f^{-1}(V)$. Therefore the preimage $f^{-1}(V)$ of the open set V is the union of the open sets U_x as x ranges over all points of $f^{-1}(V)$, and is thus itself an open set. Thus $f: X \to \mathbb{R}^n$ is continuous, as required. **Theorem 10.2** The normed vector space $C(X, \mathbb{R}^n)$ of all bounded continuous functions from some topological space X to \mathbb{R}^n , with the supremum norm, is a Banach space.

Proof Let f_1, f_2, f_3, \ldots be a Cauchy sequence in $C(X, \mathbb{R}^n)$. Then, for each $x \in X$, the sequence $f_1(x), f_2(x), f_3(x), \ldots$ is a Cauchy sequence in \mathbb{R}^n (since $|f_j(x) - f_k(x)| \leq ||f_j - f_k||$ for all natural numbers j and k), and \mathbb{R}^n is a complete metric space. Thus, for each $x \in X$, the sequence $f_1(x), f_2(x), f_3(x), \ldots$ converges to some point f(x) of \mathbb{R}^n . We must show that the limit function f defined in this way is bounded and continuous.

Let $\varepsilon > 0$ be given. Then there exists some natural number N with the property that $||f_j - f_k|| < \frac{1}{3}\varepsilon$ for all $j \ge N$ and $k \ge N$, since f_1, f_2, f_3, \ldots is a Cauchy sequence in $C(X, \mathbb{R}^n)$. But then, on taking the limit of the left hand side of the inequality $|f_j(x) - f_k(x)| < \frac{1}{3}\varepsilon$ as $k \to +\infty$, we deduce that $|f_j(x) - f(x)| \le \frac{1}{3}\varepsilon$ for all $x \in X$ and $j \ge N$. In particular $|f_N(x) - f(x)| \le \frac{1}{3}\varepsilon$ for all $x \in X$. It follows that $|f(x)| \le ||f_N|| + \frac{1}{3}\varepsilon$ for all $x \in X$, showing that the limit function f is bounded.

Next we show that the limit function f is continuous. Let $x \in X$ and $\varepsilon > 0$ be given. Let N be chosen large enough to ensure that $|f_N(u) - f(u)| \leq \frac{1}{3}\varepsilon$ for all $u \in X$. Now f_N is continuous. It follows from Lemma 10.1 that there exists some open set U_x in X such that $x \in U_x$ and $|f_N(u) - f_N(x)| < \frac{1}{3}\varepsilon$ for all $u \in U_x$. Thus if $u \in U_x$ then

$$\begin{aligned} |f(u) - f(x)| &\leq |f(u) - f_N(u)| + |f_N(u) - f_N(x)| + |f_N(x) - f(x)| \\ &< \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon + \frac{1}{3}\varepsilon = \varepsilon. \end{aligned}$$

It follows from Lemma 10.1 that the limit function f is continuous. Thus $f \in C(X, \mathbb{R}^n)$.

Finally we observe that $f_j \to f$ in $C(X, \mathbb{R}^n \text{ as } j \to +\infty)$. Indeed we have already seen that, given $\varepsilon > 0$ there exists some natural number N such that $|f_j(x) - f(x)| \leq \frac{1}{3}\varepsilon$ for all $x \in X$ and for all $j \geq N$. Thus $||f_j - f|| \leq \frac{1}{3}\varepsilon < \varepsilon$ for all $j \geq N$, showing that $f_j \to f$ in $C(X, \mathbb{R}^n)$ as $j \to +\infty$. This shows that $C(X, \mathbb{R}^n)$ is a complete metric space, as required.

Corollary 10.3 Let X be a metric space and let F be a closed subset of \mathbb{R}^n . Then the space C(X, F) of bounded continuous functions from X to F is a complete metric space with respect to the distance function ρ , where

$$\rho(f,g) = \|f - g\| = \sup_{x \in X} |f(x) - g(x)|$$

for all $f, g \in C(X, F)$.

Proof Let f_1, f_2, f_3, \ldots be a Cauchy sequence in C(X, F). Then f_1, f_2, f_3, \ldots is a Cauchy sequence in $C(X, \mathbb{R}^n)$ and therefore converges in $C(X, \mathbb{R}^n)$ to some function $f: X \to \mathbb{R}^n$. Let x be some point of X. Then $f_j(x) \to f(x)$ as $j \to +\infty$. But then $f(x) \in F$, since $f_j(x) \in F$ for all j, and F is closed in \mathbb{R}^n . This shows that $f \in C(X, F)$, and thus the Cauchy sequence f_1, f_2, f_3, \ldots converges in C(X, F). We conclude that C(X, F) is a complete metric space, as required.

10.1 The Contraction Mapping Theorem and Picard's Theorem

Let X be a metric space with distance function d. A function $T: X \to X$ mapping X to itself is said to be a *contraction mapping* if there exists some constant λ satisfying $0 \leq \lambda < 1$ with the property that $d(T(x), T(x')) \leq \lambda d(x, x')$ for all $x, x' \in X$.

One can readily check that any contraction map $T: X \to X$ on a metric space (X, d) is continuous. Indeed let x be a point of X, and let $\varepsilon > 0$ be given. Then $d(T(x), T(x')) < \varepsilon$ for all points x' of X satisfying $d(x, x') < \varepsilon$.

Theorem 10.4 (Contraction Mapping Theorem) Let X be a complete metric space, and let $T: X \to X$ be a contraction mapping defined on X. Then T has a unique fixed point in X (i.e., there exists a unique point x of X for which T(x) = x).

Proof Let λ be chosen such that $0 \leq \lambda < 1$ and $d(T(u), T(u')) \leq \lambda d(u, u')$ for all $u, u' \in X$, where d is the distance function on X. First we show the existence of the fixed point x. Let x_0 be any point of X, and define a sequence $x_0, x_1, x_2, x_3, x_4, \ldots$ of points of X by the condition that $x_n = T(x_{n-1})$ for all natural numbers n. It follows by induction on n that $d(x_{n+1}, x_n) \leq \lambda^n d(x_1, x_0)$. Using the Triangle Inequality, we deduce that if j and k are natural numbers satisfying k > j then

$$d(x_k, x_j) \le \sum_{n=j}^{k-1} d(x_{n+1}, x_n) \le \frac{\lambda^j - \lambda^k}{1 - \lambda} d(x_1, x_0) \le \frac{\lambda^j}{1 - \lambda} d(x_1, x_0).$$

(Here we have used the identity

$$\lambda^{j} + \lambda^{j+1} + \dots + \lambda^{k-1} = \frac{\lambda^{j} - \lambda^{k}}{1 - \lambda}.$$

Using the fact that $0 \le \lambda < 1$, we deduce that the sequence (x_n) is a Cauchy sequence in X. This Cauchy sequence must converge to some point x of X,

since X is complete. But then we see that

$$T(x) = T\left(\lim_{n \to +\infty} x_n\right) = \lim_{n \to +\infty} T(x_n) = \lim_{n \to +\infty} x_{n+1} = x,$$

since $T: X \to X$ is a continuous function, and thus x is a fixed point of T.

If x' were another fixed point of T then we would have

$$d(x', x) = d(T(x'), T(x)) \le \lambda d(x', x).$$

But this is impossible unless x' = x, since $\lambda < 1$. Thus the fixed point x of the contraction map T is unique.

We use the Contraction Mapping Theorem in order to prove the following existence theorem for solutions of ordinary differential equations.

Theorem 10.5 (Picard's Theorem) Let $F: U \to \mathbb{R}$ be a continuous function defined over some open set U in the plane \mathbb{R}^2 , and let (x_0, t_0) be an element of U. Suppose that there exists some non-negative constant M such that

 $|F(u,t) - F(v,t)| \le M|u-v|$ for all $(u,t) \in U$ and $(v,t) \in U$.

Then there exists a continuous function $\varphi: [t_0 - \delta, t_0 + \delta] \to \mathbb{R}$ defined on the interval $[t_0 - \delta, t_0 + \delta]$ for some $\delta > 0$ such that $x = \varphi(t)$ is a solution to the differential equation

$$\frac{dx(t)}{dt} = F(x(t), t)$$

with initial condition $x(t_0) = x_0$.

Proof Solving the differential equation with the initial condition $x(t_0) = x_0$ is equivalent to finding a continuous function $\varphi: I \to \mathbb{R}$ satisfying the integral equation

$$\varphi(t) = x_0 + \int_{t_0}^t F(\varphi(s), s) \, ds$$

where I denotes the closed interval $[t_0 - \delta, t_0 + \delta]$. (Note that any continuous function φ satisfying this integral equation is automatically differentiable, since the indefinite integral of a continuous function is always differentiable.)

Let $K = |F(x_0, t_0)| + 1$. Using the continuity of the function F, together with the fact that U is open in \mathbb{R}^2 , one can find some $\delta_0 > 0$ such that the open disk of radius δ_0 about (x_0, t_0) is contained in U and $|F(x, t)| \leq K$ for all points (x, t) in this open disk. Now choose $\delta > 0$ such that

$$\delta\sqrt{1+K^2} < \delta_0$$
 and $M\delta < 1$

Note that if $|t - t_0| \leq \delta$ and $|x - x_0| \leq K\delta$ then (x, t) belongs to the open disk of radius δ_0 about (x_0, t_0) , and hence $(x, t) \in U$ and $|F(x, t)| \leq K$.

Let J denote the closed interval $[x_0 - K\delta, x_0 + K\delta]$. The space C(I, J) of continuous functions from the interval I to the interval J is a complete metric space, by Corollary 10.3. Define $T: C(I, J) \to C(I, J)$ by

$$T(\varphi)(t) = x_0 + \int_{t_0}^t F(\varphi(s), s) \, ds.$$

We claim that T does indeed map C(I, J) into itself and is a contraction mapping.

Let $\varphi: I \to J$ be an element of C(I, J). Note that if $|t - t_0| \leq \delta$ then

$$|(\varphi(t),t) - (x_0,t_0)|^2 = (\varphi(t) - x_0)^2 + (t - t_0)^2 \le \delta^2 + K^2 \delta^2 < \delta_0^2,$$

hence $|F(\varphi(t),t)| \leq K$. It follows from this that

$$|T(\varphi)(t) - x_0| \le K\delta$$

for all t satisfying $|t - t_0| < \delta$. The function $T(\varphi)$ is continuous, and is therefore a well-defined element of C(I, J) for all $\varphi \in C(I, J)$.

We now show that T is a contraction mapping on C(I, J). Let φ and ψ be elements of C(I, J). The hypotheses of the theorem ensure that

$$|F(\varphi(t),t) - F(\psi(t),t)| \le M |\varphi(t) - \psi(t)| \le M \rho(\varphi,\psi)$$

for all $t \in I$, where $\rho(\varphi, \psi) = \sup_{t \in I} |\varphi(t) - \psi(t)|$. Therefore

$$|T(\varphi)(t) - T(\psi)(t)| = \left| \int_{t_0}^t \left(F(\varphi(s), s) - F(\psi(s), s) \right) \, ds \right|$$

$$\leq M |t - t_0| \rho(\varphi, \psi)$$

for all t satisfying $|t - t_0| \leq \delta$. Therefore $\rho(T(\varphi), T(\psi)) \leq M\delta\rho(\varphi, \psi)$ for all $\varphi, \psi \in C(I, J)$. But δ has been chosen such that $M\delta < 1$. This shows that $T: C(I, J) \to C(I, J)$ is a contraction mapping on C(I, J). It follows from the Contraction Mapping Theorem (Theorem 10.4) that there exists a unique element φ of C(I, J) satisfying $T(\varphi) = \varphi$. This function φ is the required solution to the differential equation.

A straightforward but somewhat technical least upper bound argument can be used to show that if $x = \psi(t)$ is any other continuous solution to the differential equation

$$\frac{dx}{dt} = F(x,t)$$

on the interval $[t_0 - \delta, t_0 + \delta]$ satisfying the initial condition $\psi(t_0) = x_0$, then $|\psi(t) - x_0| \leq K\delta$ for all t satisfying $|t - t_0| \leq \delta$. Thus such a solution to the differential equation must belong to the space C(I, J) defined in the proof of Theorem 10.5. The uniqueness of the fixed point of the contraction mapping $T: C(I, J) \to C(I, J)$ then shows that $\psi = \varphi$, where $\varphi: [t_0 - \delta, t_0 + \delta] \to \mathbb{R}$ is the solution to the differential equation whose existence was proved in Theorem 10.5. This shows that the solution to the differential equation is in fact unique on the interval $[t_0 - \delta, t_0 + \delta]$.