Course 212: Academic Year 1998–9 Problems I

1. Let $I_1, I_2, I_3, I_4, I_5, \ldots$ be an infinite sequence of closed intervals in \mathbb{R} , where each interval I_n is given by

$$I_n = [a_n, b_n] = \{x \in \mathbb{R} : a_n \le x \le b_n\}$$

for some real numbers a_n and b_n satisfying $a_n \leq b_n$. Suppose that $I_{n+1} \subset I_n$ for each natural number n and that $b_n - a_n \to 0$ as $n \to +\infty$. Prove that there exists exactly one real number c with the property that c belongs to I_n for each natural number n. [Hint: use the theorem on the convergence of bounded monotonic sequences.]

- 2. Determine which of the following functions are homeomorphisms:—
 - (a) the function $c: \mathbb{R} \to \mathbb{R}$ defined by $c(t) = t^3$;
 - (b) the function $g: H \to H$ defined by $g(x, y) = (x, y^2)$, where $H = \{(x, y) \in \mathbb{R}^2 : y > 0\}$;
 - (c) the function $h: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $h(x, y) = (x, y^2)$;
 - (d) the function $p: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $p(x, y) = (x, x^2 + 3y);$
 - (e) the function $q: D_1 \to D_2$ defined by $q(x, y) = (e^{-y} \cos x, e^{-y} \sin x)$, where

$$D_1 = \{(x, y) \in \mathbb{R}^2 : y > 0 \text{ and } 0 < x < \pi\}, D_2 = \{(x, y) \in \mathbb{R}^2 : y > 0 \text{ and } x^2 + y^2 < 1\}.$$

- 3. Consider the following subsets of \mathbb{R}^3 . Determine which are open and which are closed in \mathbb{R}^3 . [Fully justify your answers.]
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \ge 3\},\$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 4 \text{ and } z < 1\},\$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \ge 7 \text{ and } z \le 0\},\$
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 7 \text{ or } z > 2\},\$
 - (e) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } x^2 y^2 z^2 = 1\},\$
 - (f) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } y^2 + z^2 = 1/x\}.$
- 4. Let $D = \{(x, y) \in \mathbb{R}^2 : y < f(x)\}$, where $f: \mathbb{R} \to \mathbb{R}$ is continuous. Prove that D is open in \mathbb{R}^2 .

- 5. Let X be a subset of \mathbb{R}^n , let **x** be a point of X, and let **p** be a point of \mathbb{R}^n that does not belong to X. Let S be the set of all non-negative real numbers t with the property that $(1 \tau)\mathbf{x} + \tau \mathbf{p} \in X$ for all $\tau \in [0, t]$ (i.e., the line segment joining the point **x** to the point $(1 t)\mathbf{x} + t\mathbf{p}$ is contained within the set X). Let $s = \sup S$, and let $\mathbf{y} = (1 s)\mathbf{x} + s\mathbf{p}$.
 - (a) Explain why $0 \le s \le 1$.
 - (b) Show that if the set X is closed in \mathbb{R}^n then $\mathbf{y} \in X$.
 - (c) Show that if the set X is open in \mathbb{R}^n then $\mathbf{y} \in \mathbb{R}^n \setminus X$.
 - (d) Using (a) and (b), show that the only subsets of ℝⁿ that are both open and closed in ℝⁿ are the empty set Ø and ℝⁿ itself.
- 6. Let $d_1: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ and $d_2: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be the functions defined by

$$d_1((x,y),(u,v)) = |x-u| + |y-v|,d_2((x,y),(u,v)) = \max(|x-u|,|y-v|)$$

for all real numbers x, y, u and v. Verify that the metric space axioms are satisfied by the distance functions d_1 and d_2 on \mathbb{R}^2 . What are the shapes of the open balls in \mathbb{R}^2 defined using these distance functions.

- 7. Let X be a non-empty set. Let $d: X \times X \to \mathbb{R}$ be defined so that d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y. Verify that the distance function d on X satisfies the metric space axioms.
- 8. Let X be a metric space with distance function d, and let A be a non-empty subset of X. Let $f: X \to \mathbb{R}$ be the function defined by $f(x) = \inf\{d(x, a) : a \in A\}$ (i.e., f(x) is the largest real number with the property that $f(x) \leq d(x, a)$ for all $a \in A$). Use the Triangle Inequality to prove that $f(x) \leq f(y) + d(x, y)$ for all $x, y \in X$, and hence show that |f(x) - f(y)| < d(x, y). (Note that this implies that the function $f: X \to \mathbb{R}$ is continuous.) Prove that A is closed in X if and only if $A = \{x \in X : f(x) = 0\}$.

Course 212: Academic Year 1998–9 Problems II

- 1. The Zariski topology on the real numbers \mathbb{R} is the topology whose open sets are the empty set, the set \mathbb{R} itself and those subsets of \mathbb{R} whose complements are finite. [Note added in 2016: this topology is also known as the *cofinite topology* on \mathbb{R} .]
 - (a) Prove that any polynomial function from \mathbb{R} to itself is continuous with respect to the Zariski topology in \mathbb{R} .
 - (b) Give an example of a function from \mathbb{R} to itself which is continuous with respect to the usual topology on \mathbb{R} but is not continuous with respect to the Zariski topology on \mathbb{R} .
- 2. (a) Let f: X → Y be a function from a topological space X to a topological space Y, and let A and B be subsets of X for which X = A∪B. Suppose that the restrictions f|A and f|B of f to the sets A and B are continuous. Is f: X → Y necessarily continuous on X? [Give proof or counterexample.]
 - (b) Let $f: X \to Y$ be a function from a topological space X to a topological space Y, and let \mathcal{F} be a (not necessarily finite) collection of closed subsets of X whose union is the whole of X. Suppose that the restriction f|A of f to A is continuous for all closed sets A in the collection \mathcal{F} . Is $f: X \to Y$ necessarily continuous on X? [Give proof or counterexample.]
- 3. Let $f: X \to Y$ be a function from a topological space X to a topological space Y, and let \mathcal{U} be a collection of open subsets of X whose union is the whole of X. Suppose that the restriction f|W of f to W is continuous for all open sets W in the collection \mathcal{U} . Prove that $f: X \to Y$ is continuous on X.
- 4. Let X be a topological space, let A be a subset of X, and let B be the complement $X \setminus A$ of A in X. Prove that the interior of B is the complement of the closure of A.
- 5. (a) Let X and Y be metric spaces, and let $d_1: X \times Y \to \mathbb{R}$ and $d_y: X \times Y \to \mathbb{R}$ be the functions defined by

$$d_1((x,y),(u,v)) = d(x,u) + d(y,v), d_2((x,y),(u,v)) = \max(d(x,u),d(y,v))$$

for all real numbers x, y, u and v. Verify that the metric space axioms are satisfied by the distance functions d_1 and d_2 on $X \times Y$.

- (b) Show that the topology on $X \times Y$ generated by the distance functions d_1 and d_2 defined in (a) is the product topology on $X \times Y$.
- 6. Let S^1 be the unit circle in \mathbb{R}^2 . Prove that the map $r: [0,1] \times [0,1] \rightarrow S^1 \times [0,1]$ that sends (t,τ) to $((\cos 2\pi t, \sin 2\pi t), \tau)$ for all $t \in [0,1]$ and $\tau \in [0,1]$ is an identification map.
- 7. Determine which of the following subsets of \mathbb{R}^3 are compact:—
 - (i) the x-axis $\{(x, y, z) \in \mathbb{R}^3 : y = z = 0\};$
 - (ii) the surface of a tetrahedron in \mathbb{R}^3 ;
 - (iii) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } x^2 + y^2 z^2 \le 1\}.$
- 8. Let X be a topological space. Suppose that $X = A \cup B$, where A and B are path-connected subsets of X and $A \cap B$ is non-empty. Show that X is path-connected.
- 9. Let $f: X \to Y$ be a continuous map between topological spaces X and Y. Suppose that X is path-connected. Prove that the image f(X) of the map f is also path-connected.
- 10. Let X and Y be path-connected topological spaces. Explain why the Cartesian product $X \times Y$ of X and Y is path-connected.
- 11. Determine the connected components of the following subsets of \mathbb{R}^2 :
 - (i) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\},\$
 - (ii) $\{(x, y) \in \mathbb{R}^2 : x^2 y^2 = 1\},\$
 - (iii) $\{(x, y) \in \mathbb{R}^2 : y^2 = x(x^2 1)\},\$
 - (iv) $\{(x,y) \in \mathbb{R}^2 : (x-n)^2 + y^2 > \frac{1}{4} \text{ for all } n \in \mathbb{Z}\}.$

[Fully justify your answers.]

- 12. A topological space X is said to be *locally path-connected* if, given any point x of X there exists a path-connected open set U in X such that $x \in U$.
 - (a) Let X be a locally path-connected topological space, and let p be a point of X. Let A be the set of all points x of X for which there exists a path from p to x, and let B be the complement of A in X. Prove that A and B are open in X.

(b) Use the result of (a) to show that any connected and locally pathconnected topological space is path-connected.

Course 212: Academic Year 1998–9 Problems III

- 1. (a) Let V be the real vector space consisting of all continuous functions from [-1, 1] to \mathbb{R} , and let $||f||_1 = \int_{-1}^{1} |f(x)| dx$ for all $f \in V$. Prove that $||.||_1$ is a norm on V.
 - (b) Prove that V, with the norm $\|.\|_1$ defined above, is not a Banach space. [Hint: consider the infinite sequence f_1, f_2, f_3, \ldots in V, where

$$f_j(x) = \begin{cases} -1 & \text{if } -1 \le x \le -1/j; \\ jx & \text{if } -1/j \le x \le 1/j; \\ 1 & \text{if } 1/j \le x \le 1. \end{bmatrix}$$

2. Let X be a Banach space, and let S be an invertible bounded linear operator on X (i.e., a bounded linear transformation from X to itself which is has a bounded inverse S^{-1} .) Prove that if T is a bounded linear operator on X satisfying $||T - S|| < ||S^{-1}||$ then T is invertible. (Note that this implies that the set of invertible operators is open in the space B(X) of bounded linear operators on X.)

Course 212: Academic Year 1998–9 Problems IV

- 1. What is the winding number about zero of the closed curve $\gamma_1: [0, 1] \rightarrow \mathbb{C}$, where $\gamma_1(t) = 2\cos 6\pi t e^{t^2 t} \sin 8\pi t + (3\sin 6\pi t + e^{t^2 t} \cos 8\pi t)i?$
- 2. Show that if a closed curve γ in the complex plane does not intersect the negative real axis $\{t \in \mathbb{R} : t \leq 0\}$ then $n(\gamma, 0) = 0$.
- 3. Let $\gamma_1: [0,1] \to \mathbb{C}$ and $\gamma_2: [0,1] \to \mathbb{C}$ be closed curves in the complex plane that do not pass through zero, and let $\eta: [0,1] \to \mathbb{C}$ be the closed curve given by $\eta(t) = \gamma_1(t)\gamma_2(t)$ for all $t \in [0,1]$. Prove that $n(\eta,0) =$ $n(\gamma_1,0) + n(\gamma_2,0)$.
- 4. Let $\gamma_1: [0,1] \to \mathbb{C}$ and $\gamma_2: [0,1] \to \mathbb{C}$ be closed curves in the complex plane satisfying $\gamma_1(0) = \gamma_1(1) = \gamma_2(0) = \gamma_2(1)$ that do not pass through some complex number w. The concatenation $\gamma_1.\gamma_2: [0,1] \to \mathbb{C}$ of γ_1 and γ_2 is defined by the formula

$$(\gamma_1.\gamma_2)(t) = \begin{cases} \gamma_1(2t) & \text{if } 0 \le t \le \frac{1}{2}; \\ \gamma_2(2t-1) & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Prove that $n(\gamma_1, \gamma_2, w) = n(\gamma_1, w) + n(\gamma_2, w)$.

5. Let $\gamma_0: [0,1] \to \mathbb{C}$ and $\gamma_1: [0,1] \to \mathbb{C}$ be closed curves in the complex plane that do not pass through some complex number w. Suppose that $n(\gamma_0, w) = n(\gamma_1, w)$. Prove that there exists a continuous function $F: [0,1] \times [0,1] \to \mathbb{C} \setminus \{w\}$ such that $F(t,0) = \gamma_0(t)$ and $F(t,1) = \gamma_1(t)$ for all $t \in [0,1]$ and $F(0,\tau) = F(1,\tau)$ for all $\tau \in [0,1]$. [Hint: define Fin terms of lifts $\tilde{\gamma}_0$ and $\tilde{\gamma}_1$ of γ_0 and γ_1 , where $\exp(\tilde{\gamma}_0(t)) = \gamma_0(t) - w$ and $\exp(\tilde{\gamma}_1(t)) = \gamma_1(t) - w$ for all $t \in [0,1]$.]

(Note that for each $\tau \in [0, 1]$, the function $t \mapsto F(t, \tau)$ is a closed curve that does not pass through w. The result of this question is thus the converse of the result that winding numbers are preserved under continuous deformations.)