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6 Normed Vector Spaces

6.1 Norms on Real and Complex Vector Spaces
A set X is a vector space over some field F if

e given any z,y € X and A € F, there are well-defined elements = + y
and Az of X,

e X is an Abelian group with respect to the operation + of addition,
e the identities
Mz +y) = Az + Ny, A+ p)z = Az + p,
(A)x = Mux), le =2z
are satisfied for all z,y € X and A\, u € F.

Elements of the field F are referred to as scalars. We consider here only real
vector spaces and complex vector spaces: these are vector spaces over the
fields of real numbers and complex numbers respectively.

Definition A norm ||.|| on a real or complex vector space X is a function,
associating to each element = of X a corresponding real number ||z||, such
that the following conditions are satisfied:—

(i) ||lz|| > 0 for all z € X,
(ii

) Mz +yll < flzfl + lyll for all z,y € X,
(iii) [Az|| = |A| ||z|| for all x € X and for all scalars A.
)

(iv) ||z|| = 0 if and only if = 0.

A normed vector space (X, ||.||) consists of a a real or complex vector space X,
together with a norm ||.|| on X.

Note that any normed complex vector space can also be regarded as a
normed real vector space.

If x1,x9,...,x,, are elements of a normed vector space X then
m m
Dol <l
k=1 k=1
where ||.|| denotes the norm on X. (This follows directly using induction on
m.)
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Example The field R is a one-dimensional normed vector space over itself:
the norm |¢| of t € R is the absolute value of t.

Example The field C is a one-dimensional normed vector space over itself:
the norm |z| of z € R is the modulus of z. The field C is also a two-
dimensional normed vector space over R.

Example Let ||.||1, ||.|l2 and ||.|| be the real-valued functions on C™ defined
by

n

Izl = > Iz,

j=1
1
n 2
s = (S0ar)
j=1
HZHOO = maX(’21|7’22|a"'7|Zn|)7
for each z € C", where z = (z1,22,...,2,). Then ||.||1, ||.||2 and ||.||« are

norms on C”. In particular, if we regard C™ as a 2n-dimensional real vector
space naturally isomorphic to R*" (via the isomorphism

(Zl, 29, ... ,Zn) — ($1,y1,I2,y2, R ,In,yn>,

where z; and y; are the real and imaginary parts of z; for j = 1,2,...,n) then
||.]|2 represents the Euclidean norm on this space. The inequality ||z +w||s <
|z||2 + ||w||2 satisfied for all z, w € C" is therefore just the standard Triangle
Inequality for the Euclidean norm.

Example The space R" is also an n-dimensional real normed vector space
with respect to the norms ||.||1, |||z and ||.||s defined above. Note that ||.||2
is the standard Euclidean norm on R".

Example Let

6 = {(z1,29,23,...) € C™: |zy| + |z2| + |23] + - -+ converges},
by = {(21,29,23,...) €C®: |z > + |2* + |23]* + - - - converges},
lo = {(z21,22,23,...) € C®:the sequence |z1], |22, |23, ... is bounded}.

where C* denotes the set of all sequences (z1, 29, 23, . . .) of complex numbers.
Then ¢4, ¢5 and /. are infinite-dimensional normed vector spaces, with norms
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I[ll1, |||z and ||.||s respectively, where

+o0
Izl = > Izl
j=1
1
+oo 2
zll = (Z\Zﬂz) )
j=1
HZHOO == Sup{|zl‘7|22|7|23|7"'}-

(For example, to show that ||z + wl|s < [|z]|s + ||w]||2 for all z,w € {3, we
note that

1 1 1
n 2 n 2 n 2
(zmw) :(zw) +(z|wj|2) < Jalls + [l
j=1 j=1 j=1

for all natural numbers n, by the Triangle Inequality in C". Taking limits as
n — +o00, we deduce that ||z + wljs < ||z||2 + ||w]|2, as required.)

If x1,x9,..., 2, are elements of a normed vector space X then
m m
S al <3 flall,
n=1 n=1
where ||.|| denotes the norm on X. (This follows directly using induction on

m.)

A norm ||.|| on a vector space X induces a corresponding distance function
on X: the distance d(z,y) between elements x and y of X is defined by
d(x,y) = ||z — y||. This distance function satisfies the metric space axioms.
Thus any vector space with a given norm can be regarded as a metric space.
A norm on a vector space X therefore generates a topology on X: a subset U
of X is an open set if and only if, given any point u of U, there exists some
0 > 0 such that

{reX:|z—ul|<d}CU.

The function x + ||z|| is a continuous function from X to R, since

[zl = llyll = Itz = y) + yll = llyll < (lz =yl +lyl)) = llyll = llz =yl

and [ly[| — ||| < [lz — yl|, and therefore |[|z]| — [ly||| < [lz —y].

The Cartesian product X; x X5 x - - - x X, of vector spaces Xy, X, ..., X,
can itself be regarded as a vector space: if (zq,x2,...,2,) and (y1, Y2, -, Yn)
are points of X; x Xy x --- x X,,, and if )\ is any scalar, then

(131,372,---,1311)+(y1;y2;---,yn) = <x1+y17x2+y27"-7xn+yn)7
Mzy, e, oy xy) = (Az1, Azg, .., Axy).

45



Lemma 6.1 Let X1, Xs,..., X, be normed vector spaces, and let ||.||max be
the norm on X1 x Xo X -+ x X,, defined by

[(z1; 22, - @) [[max = max([[zal[1, [[22]l2, - - [l2n]ln),

where ||.||; is the norm on X; for i = 1,2,...,n. Then the topology on
X; x Xy x -+ x X, generated by the norm ||.||max @s the product topology on
Xy X Xgx---xX,.

Proof It is a straightforward exercise to verify that [|.||max is indeed a norm
on X, where X = X7 x Xy x --- x X,,.

Let U be a subset of X. Suppose that U is open with respect to the
product topology. Let u be any point of U, given by u = (uy,us, ..., uy,).
We must show that there exists some ¢ > 0 such that

{xeX :|[x—ulmx <0} CU.

Now it follows from the definition of the product topology that there exist
open sets Vi, Vs, ..., V, in X1, Xs,..., X, such that u; € V; for all ¢+ and
VixVox---xV, C U. We can then take ¢ to be the minimum of d1, ds, . . ., dy,
where 01, 0s, ..., 0, are chosen such that

{z; € X;: ||lz; —wi]| < &} CV;

fori=1,2,...,n.

Conversely suppose that U is open with respect to the topology generated
by the norm ||.||max- Let u be any point of U. Then there exists 6 > 0 such
that

{xeX [|x—ulmx <6} CU.

Let V; = {x; € X : ||z; — w]| < 6;} for i = 1,2,... n. Then, for each i, V; is
an open set in X;, u; € V;, and V) x Vo x --- x V,, C U. We deduce that U
is also open with respect to the product topology, as required. |}

Proposition 6.2 Let X be a normed vector space over the field ¥, where
F =R or C. Then the function from X x X to X sending (z,y) € X X X to
x4y is continuous. Also the function from Fx X to X sending (A\,x) € Fx X
to Az is continuous.

Proof Let (u,v) € X x X, and let ¢ > 0 be given. Let 6 = 3e. If (z,y) €
X x X satisfies ||(z,y) — (4, 0)|lmax < 0, then ||z —u|| < d and ||y —v|| < 9,
and hence

(@ +y) = (wto)| < llz—ull +ly -] <e
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This shows that the function (x,y) — x4y is continuous at (u,v) € X x X.
Next let (u,u) € F x X, and let € > 0 be given. Let

0 = minimum ( ° ° 1)
2(Jlull + 1) 2(llpll + 1))

Now Az — pu = ANz —u) + (A — p)u for all A € F and x € X. Thus if
(A, z) € F x X satisfies ||(A, ) — (14, ©)||max < 9, then

A —pl < 2 Al < |p| +1,

—— fe—ul<
[+ 1) 2

&
(el +1)°

and hence

€

226.

€

Az = pou| < Az =l + A = plflull < 5 +
This shows that the function (\, z) — Az is continuous at (u,u) € F x X, as
required. |

Corollary 6.3 Let X be a normed vector space over the field F, where F = R
or C. Let (z,) and (y,) be convergent sequences in X, and let (\,) be a
convergent sequence in F. Then the sequences (r, + yn) and (A x,) are
convergent in X, and

lim (z, +y,) = lim z,+ lim y,,

n—-+0o0o n——+0o n——+0oo

lim (A\,z,) = ( lim )\n) ( lim xn>.
n—+o0 n—+o00 n—+00

Proof Let x = lim =x,,y= lim y, and A= lim J\,. Using Lemma 6.1,
n—s+00 n—-+00 n—-+00

together with the definition of convergence in metric spaces, it follows easily
that the sequences (z,, yn) and (A, x,) converge to (z,y) and (A, z) in X x X
and F x X respectively. The convergence of (z,, +y,) and \,x, to z+y and
Az respectively now follows from Proposition 6.2 (using Lemma 1.3). |}

Let X be a normed vector space, and let z1, x5, x3, ... be elements of X.
The infinite series lim z,, is said to converge to some element s of X if,
n—+00

given any € > 0, there exists some natural number N such that

m
Is = aall <&
n=1

for all m > N (where ||.|| denotes the norm on X).
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We say that a normed vector space X is complete if and only if every
Cauchy sequence in X is convergent. (A sequence xq, s, 23, ... is a Cauchy
sequence if and only if, given any € > 0, there exists some natural number N
such that ||z; — x| < € for all j and k satisfying j > N and £ > N.)
A complete normed vector space is referred to as a Banach space. (The
basic theory of such spaces was extensively developed by the famous Polish
mathematician Stefan Banach and his co-workers.)

Lemma 6.4 Let X be a Banach space, and let x1,xs9,x3,... be elements of
X. Suppose that lim ||z,|| is convergent. Then lim x, is convergent, and
n—+00 n—+o00
lim z,| < lim |z,].
n——+o0o n——+o0o

Proof For each natural number n, let
Sp,=x1+x9+ -+ x,.
Let € > 0 be given. We can find N such that E |zn|| < e, since hm |z ]|

is convergent. Let s, = x1 + 22+ -+ + 2. If j > N, k> N and j < k then

k

sk = sill = || D_ @n Z ]| < Z [ anll <.
n=j+1 n=j+1
Thus s1, $2,83,... is a Cauchy sequence in X, and therefore converges to

+oo

some element s of X, since X is complete. But then s = hm xj. Moreover,
j_

on choosing m large enough to ensure that s — s, < €, we deduce that

m m m m —+00
>+ {15 = X < 3 ol +ls = Y- < 3 ol 4
n=1 n=1 n=1 n=1 n=1

Since this inequality holds for all € > 0, we conclude that

+oo
Isll <D~ laall,
n=1

Isll <

as required. |
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6.2 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function 7: X — Y is said
to be a linear transformation if T(x +y) = Tx + Ty and T'(A\x) = ATz for
all elements x and y of X and scalars A\. A linear transformation mapping
X into itself is referred to as a linear operator on X.

Definition Let X and Y be normed vector spaces. A linear transformation
T: X — Y is said to be bounded if there exists some non-negative real num-
ber C' with the property that |Tx| < C||z|| for all z € X. If T is bounded,
then the smallest non-negative real number C' with this property is referred
to as the operator norm of T, and is denoted by ||T|.

Lemma 6.5 Let X and Y be normed vector spaces, and let S: X — Y and
T:X — Y be bounded linear transformations. Then S + T and \S are
bounded linear transformations for all scalars A\, and

1S+ T < ISII+ 171, IASH = [AlIS]-

Moreover ||S|| = 0 if and only if S = 0. Thus the vector space B(X,Y) of
bounded linear transformations from X to Y is a normed vector space (with
respect to the operator norm,).

Proof [|[(S+T)x| < ||Sz||+||Tx| < (|S||[4||T]])||z|| for all z € X. Therefore
S+T is bounded, and [|S+T|| < [|S||+||T||- Using the fact that ||(AS)z| =
Al ||Sz]| for all z € X, we see that AS is bounded, and ||AS|| = [A| |S||. If
S =0 then ||S|| = 0. Conversely if ||S|| = 0 then ||Sz|| < ||S||||x|| = 0 for all
x € X, and hence S = 0. The result follows. |}

Lemma 6.6 Let X, Y and Z be normed vector spaces, and let S: X — 'Y

and T:Y — Z be bounded linear transformations. Then the composition T'S
of S and T is also bounded, and ||T'S|| < ||T|||S]-

Proof |[TSz| < ||T|||Sz|l < |IT|IIS]| ||z|| for all x € X. The result fol-
lows.

Proposition 6.7 Let X and Y be normed vector spaces, and let T: X —'Y
be a linear transformation from X toY. Then the following are equivalent:—

(i) T: X =Y is continuous,

(ii) T: X — Y is continuous at 0,
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(iii) T: X — Y is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii)
implies (i). The equivalence of the three conditions then follows immediately.

Suppose that T: X — Y is continuous at 0. Then there exists § > 0 such
that || Tz|| < 1 for all x € X satisfying ||x| < 0. Let C' be any positive real
number satisfying C' > 1/4. If z is any non-zero element of X then ||Az| < 6,
where A = 1/(C||z]|), and hence

[Tz]| = Cllz|[ |\ Tz]| = Cll[[ [ T(A2)]| < Cll]].
Thus [|[Tz|| < C||z| for all x € X, and hence T: X — Y is bounded. Thus
(ii) implies (iii).
Finally suppose that T: X — Y is bounded. Let x be a point of X, and

let € > 0 be given. Choose § > 0 satisfying | T||0 < e. If 2/ € X satisfies
|x" — x| < 6 then

172" = Tx|| = T(@" — )| < T2 = zl| < |76 <e.

Thus T: X — Y is continuous. Thus (iii) implies (i), as required. |}

Let X be a normed vector space, and let x1, x9, x3,... be elements of X.
The infinite series lim =z, is said to converge to some element s of X if,
n—+00

given any € > 0, there exists some natural number N such that

m
s =l < ¢
n=1

for all m > N (where ||.|| denotes the norm on X).

Proposition 6.8 Let X be a normed vector space and let Y be a Banach
space. Then the space B(X,Y') of bounded linear transformations from X to
Y is also a Banach space.

Proof We have already shown that B(X,Y) is a normed vector space (see
Lemma 6.5). Thus it only remains to show that B(X,Y’) is complete.

Let Si,S59,S3,... be a Cauchy sequence in B(X,Y). Let z € X. We
claim that Siz, Sox, Sz, ... is a Cauchy sequence in Y. This result is trivial
ifx =0. If z # 0, and if ¢ > 0 is given then there exists some natural
number N such that ||S; — Si|| < ¢/||z|| whenever j > N and & > N.
But then [|S;z — Siz| < ||S; — Skl [|z|| < € whenever j > N and k > N.
This shows that Sz, Sex, S3x, ... is indeed a Cauchy sequence. It therefore
converges to some element of Y, since Y is a Banach space.

50



Let the function S: X — Y be defined by Sz = lim S,z. Then

n—-+o0o

n—-+o00 n—-+o0o n—-+o0o

(see Corollary 6.3), and
S(Az) = lim S,(Az) =X lim S,z = A\Sx,

n——+o0o n——+00
Thus S: X — Y is a linear transformation.

Next we show that S,, — S in B(X,Y) as n — +o0. Let € > 0 be given.
Then there exists some natural number N such that ||S;—S,|| < 3¢ whenever
J > N and n > N, since the sequence Si, 59, S3, ... is a Cauchy sequence in
B(X,Y). But then ||Sjz — Spz|| < 3¢||z|| for all j > N and n > N, and thus

|Sz — Spz|| = || im Sjz — S,z

Jj—+oo

= lim [|S;z — Syl
J—+oo

o 1
< lim |18 = Sl l]) < 3ello]

for all n > N (since the norm is a continuous function on Y). But then
1Szl < |Snzll + Sz = Spall < (ISl + 3¢) x|

for any n > N, showing that S: X — Y is a bounded linear transformation,
and ||S — S,|| < ie < e for all n > N, showing that S, — S in B(X,Y) as
n — +o00. Thus the Cauchy sequence Sy, So, Ss, . . . is convergent in B(X,Y),
as required. |

Corollary 6.9 Let X and Y be Banach spaces, and let Ty, T, T3, ... be
bounded linear transformations from X to Y. Suppose that li{I'_l | T s
n—-+0oo

convergent. Then lim T, is convergent, and
n—-+00

lim 7T,

n—-+00

< lim |72

Proof The space B(X,Y) of bounded linear maps from X to Y is a Ba-
nach space by Proposition 6.8. The result therefore follows immediately on
applying Lemma 6.4. |}

Example Let T be a bounded linear operator on a Banach space X (i.e., a
bounded linear transformation from X to itself). The infinite series

Z ||T||"

o1




converges to exp(||7]]). It follows immediately from Lemma 6.6 (using induc-
tion on n) that ||| < ||T'||" for all n > 0 (where T° is the identity operator
on X). It therefore follows from Corollary 6.7 that there is a well-defined
bounded linear operator expT on X, defined by

+00 1
expl = Z HT
n=0
(where Tj is the identity operator I on X).

Proposition 6.10 Let T be a bounded linear operator on a Banach space X .
Suppose that |T|| < 1. Then the operator I — T has a bounded inverse
(I —T)7! (where I denotes the identity operator on X ). Moreover

I-T)'=T1+T+T*+T3+---.
Proof ||T"|| < ||T||™ for all n, and the geometric series
LTI+ T+ 1T + -

is convergent (since ||T']| < 1). It follows from Corollary 6.9 that the infinite
series

(I-T) '=I1+T+T*+T°+--.

converges to some bounded linear operator S on X. Now

(I-7)S = lim [-T)I[+T+T*+---+T") = lim (I -T"")
n—400 n—-400
= [— lim 7" =1,
n—-+4o0o

since || T]|"** — 0 and therefore 7" — 0 as n — +o00. Similarly S(I—T) =
I. This shows that I — T is invertible, with inverse S, as required. |}

6.3 Equivalence of Norms on a Finite-Dimensional Vec-
tor Space

Let ||.|| and ||.||« be norms on a real or complex vector space X. The norms
||l.]| and |[|.||« are said to be equivalent if and only if there exist constants c
and C, where 0 < ¢ < C, such that

cllz] <zl < Cll]]

for all z € X.
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Lemma 6.11 Two norms ||.| and ||.||« on a real or complex vector space X
are equivalent if and only if they induce the same topology on X.

Proof Suppose that the norms ||.|| and ||.||. induce the same topology on X.
Then there exists some 0 > 0 such that

{re X |z <o} C{reX: |zl <1},

since the set {x € X : ||z|l. < 1} is open with respect to the topology on X
induced by both |.||« and ||.||. Let C' be any positive real number satisfying
C0 > 1. Then

o] o <
r|== )
Cllz|] C
and hence .
[z]|l. = Cllz|| z|| < Cllz].
Cllz| ],

for all non-zero elements x of X, and thus ||z|, < C||z| for all z € X. On
interchanging the roles of the two norms, we deduce also that there exists a
positive real number ¢ such that ||z|| < (1/c¢)||z]|+ for all x € X. But then
cllz|l < ||zl < C|lz|| for all z € X. We conclude that the norms ||.|| and
|||l are equivalent.

Conversely suppose that the norms ||.|| and .||, are equivalent. Then
there exist constants ¢ and C, where 0 < ¢ < C, such that c|jz|| < ||z]. <
C||z|| for all z € X. Let U be a subset of X that is open with respect to the
topology on X induced by the norm ||.||«, and let w € U. Then there exists
some 0 > 0 such that

{reX:|z—ul.<Cé}CU.
But then
{reX: ||z—ul|<d}C{reX:|z—ul.<Cd}CU,

showing that U is open with respect to the topology induced by the norm ||.||.
Similarly any subset of X that is open with respect to the topology induced
by the norm ||.|| must also be open with respect to the topology induced by
I||l+. Thus equivalent norms induce the same topology on X. |}

It follows immediately from Lemma 6.11 that if |.||, ||.||« and |[.||; are
norms on a real (or complex) vector space X, if the norms ||.|| and ||.||. are
equivalent, and if the norms ||.||. and ||.||; are equivalent, then the norms ||.||
and ||.||4 are also equivalent. This fact can easily be verified directly from the
definition of equivalence of norms.

We recall that the usual topology on R™ is that generated by the Euclidean
norm on R™.
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Lemma 6.12 Let ||.| be a norm on R™. Then the function x — ||x|| is
continuous with respect to the usual topology on on R™.

Proof Let e, es, ..., e, denote the basis of R" given by
e; = (1,0,0,...,0), ey =1(0,1,0,...,0),---, e,=1(0,0,0,...,1).
Let x and y be points of R", given by

X:(Jfl,l'g,...7fl7n)7 y:(yhva'”?yn)‘

Using Schwarz’ Inequality, we see that

n

D (@i —yes|| <Dl — il llesll
P =1

(Z(fﬂj—yy’)Q (leejHZ) = Clx=yl2
j=1

j=1

le—yll =

IA

where
C? = |lea|” + lleal” + - - + llen|?

and ||x — y||2 denotes the Euclidean norm of x — y, defined by
1
n 2
[x —yll2 = (Z(Ij - Z/j)2> .
j=1
Also [[[x[| = lylll < llx =y, since
x| < lx=yl+lyll, [yl <llx=yll+I[x[.
We conclude therefore that
Il =Nyl < Cllx = yll2,

for all x,y € R", and thus the function x — ||x|| is continuous on R" (with
respect to the usual topology on R™). |}

Theorem 6.13 Any two norms on R™ are equivalent, and induce the usual
topology on R™.
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Proof Let ||.|| be any norm on R"”. We show that ||.|| is equivalent to the
Euclidean norm ||.||o. Let S"~! denote the unit sphere in R™, defined by

S =[x €R": ||x]|; = 1}

Now S™~1 is a compact subset of R", since it is both closed and bounded (see
Theorem 4.16). Also the function x — ||x|| is continuous (Lemma 6.12). But
any continuous real-valued function on a compact topological space attains
both its maximum and minimum values on that space (Proposition 4.6).
Therefore there exist points u and v of S"~! such that [Jul| < ||x|| < ||v| for
all x € S"7'. Set ¢ = |Jul| and C' = ||v||. Then 0 < ¢ < C' (since it follows
from the definition of norms that the norm of any non-zero element of R" is
necessarily non-zero).

If x is any non-zero element of R" then Ax € S"~!, where A = 1/||x||,. But
IAx|| = |A] ||x]| (see the the definition of norms). Therefore ¢ < |A] ||x]| < C,
and hence c||x||2 < ||x|] < C||x]|2 for all x € R", showing that the norm ||.|
is equivalent to the Euclidean norm ||.||s on R™. Therefore any two norms on
R™ are equivalent, and thus generate the same topology on R” (Lemma 6.11).
This topology must then be the usual topology on R™. |}

Let X be a finite-dimensional real vector space. Then X is isomorphic
to R, where n is the dimension of X. It follows immediately from Theo-
rem 6.13 and Lemma 6.11 that all norms on X are equivalent and therefore
generate the same topology on X. This result does not generalize to infinite-
dimensional vector spaces.
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