Course 212: Academic Year 1991-2 Section 6: Normed Vector Spaces

D. R. Wilkins

Contents

6	Nor	med Vector Spaces	43
	6.1	Norms on Real and Complex Vector Spaces	43
	6.2	Bounded Linear Transformations	49
	6.3	Equivalence of Norms on a Finite-Dimensional Vector Space .	52

6 Normed Vector Spaces

6.1 Norms on Real and Complex Vector Spaces

A set X is a *vector space* over some field \mathbb{F} if

- given any $x, y \in X$ and $\lambda \in \mathbb{F}$, there are well-defined elements x + y and λx of X,
- X is an Abelian group with respect to the operation + of addition,
- the identities

$$\lambda(x+y) = \lambda x + \lambda y, \qquad (\lambda+\mu)x = \lambda x + \mu x$$
$$(\lambda\mu)x = \lambda(\mu x), \qquad 1x = x$$

are satisfied for all $x, y \in X$ and $\lambda, \mu \in \mathbb{F}$.

Elements of the field \mathbb{F} are referred to as *scalars*. We consider here only *real* vector spaces and complex vector spaces: these are vector spaces over the fields of real numbers and complex numbers respectively.

Definition A norm $\|.\|$ on a real or complex vector space X is a function, associating to each element x of X a corresponding real number $\|x\|$, such that the following conditions are satisfied:—

- (i) $||x|| \ge 0$ for all $x \in X$,
- (ii) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$,
- (iii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and for all scalars λ .
- (iv) ||x|| = 0 if and only if x = 0.

A normed vector space $(X, \|.\|)$ consists of a real or complex vector space X, together with a norm $\|.\|$ on X.

Note that any normed complex vector space can also be regarded as a normed real vector space.

If x_1, x_2, \ldots, x_m are elements of a normed vector space X then

$$\left\|\sum_{k=1}^m x_k\right\| \le \sum_{k=1}^m \|x_k\|,$$

where $\|.\|$ denotes the norm on X. (This follows directly using induction on m.)

Example The field \mathbb{R} is a one-dimensional normed vector space over itself: the norm |t| of $t \in \mathbb{R}$ is the absolute value of t.

Example The field \mathbb{C} is a one-dimensional normed vector space over itself: the norm |z| of $z \in \mathbb{R}$ is the modulus of z. The field \mathbb{C} is also a twodimensional normed vector space over \mathbb{R} .

Example Let $\|.\|_1, \|.\|_2$ and $\|.\|_{\infty}$ be the real-valued functions on \mathbb{C}^n defined by

$$\|\mathbf{z}\|_{1} = \sum_{j=1}^{n} |z_{j}|,$$

$$\|\mathbf{z}\|_{2} = \left(\sum_{j=1}^{n} |z_{j}|^{2}\right)^{\frac{1}{2}},$$

$$\|\mathbf{z}\|_{\infty} = \max(|z_{1}|, |z_{2}|, \dots, |z_{n}|).$$

for each $\mathbf{z} \in \mathbb{C}^n$, where $\mathbf{z} = (z_1, z_2, \dots, z_n)$. Then $\|.\|_1$, $\|.\|_2$ and $\|.\|_{\infty}$ are norms on \mathbb{C}^n . In particular, if we regard \mathbb{C}^n as a 2*n*-dimensional real vector space naturally isomorphic to \mathbb{R}^{2n} (via the isomorphism

$$(z_1, z_2, \ldots, z_n) \mapsto (x_1, y_1, x_2, y_2, \ldots, x_n, y_n),$$

where x_j and y_j are the real and imaginary parts of z_j for j = 1, 2, ..., n) then $\|.\|_2$ represents the Euclidean norm on this space. The inequality $\|\mathbf{z} + \mathbf{w}\|_2 \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$ satisfied for all $\mathbf{z}, \mathbf{w} \in \mathbb{C}^n$ is therefore just the standard Triangle Inequality for the Euclidean norm.

Example The space \mathbb{R}^n is also an *n*-dimensional real normed vector space with respect to the norms $\|.\|_1$, $\|.\|_2$ and $\|.\|_\infty$ defined above. Note that $\|.\|_2$ is the standard Euclidean norm on \mathbb{R}^n .

Example Let

$$\ell_1 = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : |z_1| + |z_2| + |z_3| + \cdots \text{ converges}\}, \\ \ell_2 = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : |z_1|^2 + |z_2|^2 + |z_3|^2 + \cdots \text{ converges}\}, \\ \ell_{\infty} = \{(z_1, z_2, z_3, \ldots) \in \mathbb{C}^{\infty} : \text{the sequence } |z_1|, |z_2|, |z_3|, \ldots \text{ is bounded}\}.$$

where \mathbb{C}^{∞} denotes the set of all sequences $(z_1, z_2, z_3, ...)$ of complex numbers. Then ℓ_1, ℓ_2 and ℓ_{∞} are infinite-dimensional normed vector spaces, with norms $\|.\|_1, \|.\|_2$ and $\|.\|_\infty$ respectively, where

$$\|\mathbf{z}\|_{1} = \sum_{j=1}^{+\infty} |z_{j}|,$$

$$\|\mathbf{z}\|_{2} = \left(\sum_{j=1}^{+\infty} |z_{j}|^{2}\right)^{\frac{1}{2}},$$

$$\|\mathbf{z}\|_{\infty} = \sup\{|z_{1}|, |z_{2}|, |z_{3}|, \ldots\}.$$

(For example, to show that $\|\mathbf{z} + \mathbf{w}\|_2 \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$ for all $\mathbf{z}, \mathbf{w} \in \ell_2$, we note that

$$\left(\sum_{j=1}^{n} |z_j + w_j|^2\right)^{\frac{1}{2}} = \left(\sum_{j=1}^{n} |z_j|^2\right)^{\frac{1}{2}} + \left(\sum_{j=1}^{n} |w_j|^2\right)^{\frac{1}{2}} \le \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$$

for all natural numbers n, by the Triangle Inequality in \mathbb{C}^n . Taking limits as $n \to +\infty$, we deduce that $\|\mathbf{z} + \mathbf{w}\|_2 \leq \|\mathbf{z}\|_2 + \|\mathbf{w}\|_2$, as required.)

If x_1, x_2, \ldots, x_m are elements of a normed vector space X then

$$\left\|\sum_{n=1}^{m} x_n\right\| \le \sum_{n=1}^{m} \|x_n\|,$$

where $\|.\|$ denotes the norm on X. (This follows directly using induction on m.)

A norm $\|.\|$ on a vector space X induces a corresponding distance function on X: the distance d(x, y) between elements x and y of X is defined by $d(x, y) = \|x - y\|$. This distance function satisfies the metric space axioms. Thus any vector space with a given norm can be regarded as a metric space. A norm on a vector space X therefore generates a topology on X: a subset U of X is an open set if and only if, given any point u of U, there exists some $\delta > 0$ such that

$$\{x \in X : \|x - u\| < \delta\} \subset U.$$

The function $x \mapsto ||x||$ is a continuous function from X to \mathbb{R} , since

$$||x|| - ||y|| = ||(x - y) + y|| - ||y|| \le (||x - y|| + ||y||) - ||y|| = ||x - y||,$$

and $||y|| - ||x|| \le ||x - y||$, and therefore $|||x|| - ||y||| \le ||x - y||$.

The Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ of vector spaces X_1, X_2, \ldots, X_n can itself be regarded as a vector space: if (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are points of $X_1 \times X_2 \times \cdots \times X_n$, and if λ is any scalar, then

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

Lemma 6.1 Let X_1, X_2, \ldots, X_n be normed vector spaces, and let $\|.\|_{\max}$ be the norm on $X_1 \times X_2 \times \cdots \times X_n$ defined by

$$||(x_1, x_2, \dots, x_n)||_{\max} = \max(||x_1||_1, ||x_2||_2, \dots, ||x_n||_n),$$

where $\|.\|_i$ is the norm on X_i for i = 1, 2, ..., n. Then the topology on $X_1 \times X_2 \times \cdots \times X_n$ generated by the norm $\|.\|_{\max}$ is the product topology on $X_1 \times X_2 \times \cdots \times X_n$.

Proof It is a straightforward exercise to verify that $\|.\|_{\text{max}}$ is indeed a norm on X, where $X = X_1 \times X_2 \times \cdots \times X_n$.

Let U be a subset of X. Suppose that U is open with respect to the product topology. Let **u** be any point of U, given by $\mathbf{u} = (u_1, u_2, \ldots, u_n)$. We must show that there exists some $\delta > 0$ such that

$$\{\mathbf{x} \in X : \|\mathbf{x} - \mathbf{u}\|_{\max} < \delta\} \subset U.$$

Now it follows from the definition of the product topology that there exist open sets V_1, V_2, \ldots, V_n in X_1, X_2, \ldots, X_n such that $u_i \in V_i$ for all i and $V_1 \times V_2 \times \cdots \times V_n \subset U$. We can then take δ to be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$, where $\delta_1, \delta_2, \ldots, \delta_n$ are chosen such that

$$\{x_i \in X_i : \|x_i - u_i\| < \delta_i\} \subset V_i$$

for i = 1, 2, ..., n.

Conversely suppose that U is open with respect to the topology generated by the norm $\|.\|_{\text{max}}$. Let **u** be any point of U. Then there exists $\delta > 0$ such that

$$\{\mathbf{x} \in X : \|\mathbf{x} - \mathbf{u}\|_{\max} < \delta\} \subset U.$$

Let $V_i = \{x_i \in X_i : ||x_i - u_i|| < \delta_i\}$ for i = 1, 2, ..., n. Then, for each i, V_i is an open set in $X_i, u_i \in V_i$, and $V_1 \times V_2 \times \cdots \times V_n \subset U$. We deduce that Uis also open with respect to the product topology, as required.

Proposition 6.2 Let X be a normed vector space over the field \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Then the function from $X \times X$ to X sending $(x, y) \in X \times X$ to x+y is continuous. Also the function from $\mathbb{F} \times X$ to X sending $(\lambda, x) \in \mathbb{F} \times X$ to λx is continuous.

Proof Let $(u, v) \in X \times X$, and let $\varepsilon > 0$ be given. Let $\delta = \frac{1}{2}\varepsilon$. If $(x, y) \in X \times X$ satisfies $||(x, y) - (u, v)||_{\max} < \delta$, then $||x - u|| < \delta$ and $||y - v|| < \delta$, and hence

$$||(x+y) - (u+v)|| \le ||x-u|| + ||y-v|| < \varepsilon.$$

This shows that the function $(x, y) \mapsto x + y$ is continuous at $(u, v) \in X \times X$.

Next let $(\mu, u) \in \mathbb{F} \times X$, and let $\varepsilon > 0$ be given. Let

$$\delta = \min\left(\frac{\varepsilon}{2(\|u\|+1)}, \frac{\varepsilon}{2(\|\mu\|+1)}, 1\right)$$

Now $\lambda x - \mu u = \lambda(x - u) + (\lambda - \mu)u$ for all $\lambda \in \mathbb{F}$ and $x \in X$. Thus if $(\lambda, x) \in \mathbb{F} \times X$ satisfies $\|(\lambda, x) - (\mu, u)\|_{\max} < \delta$, then

$$|\lambda - \mu|| < \frac{\varepsilon}{2(||u|| + 1)}, \qquad ||x - u|| < \frac{\varepsilon}{2(||\mu|| + 1)}, \qquad |\lambda| < |\mu| + 1,$$

and hence

$$|\lambda x - \mu u| \le |\lambda| \, \|x - u\| + |\lambda - \mu| \, \|u\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This shows that the function $(\lambda, x) \mapsto \lambda x$ is continuous at $(\mu, u) \in \mathbb{F} \times X$, as required.

Corollary 6.3 Let X be a normed vector space over the field \mathbb{F} , where $\mathbb{F} = \mathbb{R}$ or \mathbb{C} . Let (x_n) and (y_n) be convergent sequences in X, and let (λ_n) be a convergent sequence in \mathbb{F} . Then the sequences $(x_n + y_n)$ and $(\lambda_n x_n)$ are convergent in X, and

$$\lim_{n \to +\infty} (x_n + y_n) = \lim_{n \to +\infty} x_n + \lim_{n \to +\infty} y_n,$$
$$\lim_{n \to +\infty} (\lambda_n x_n) = \left(\lim_{n \to +\infty} \lambda_n\right) \left(\lim_{n \to +\infty} x_n\right).$$

Proof Let $x = \lim_{n \to +\infty} x_n$, $y = \lim_{n \to +\infty} y_n$ and $\lambda = \lim_{n \to +\infty} \lambda_n$. Using Lemma 6.1, together with the definition of convergence in metric spaces, it follows easily that the sequences (x_n, y_n) and (λ_n, x_n) converge to (x, y) and (λ, x) in $X \times X$ and $\mathbb{F} \times X$ respectively. The convergence of $(x_n + y_n)$ and $\lambda_n x_n$ to x + y and λx respectively now follows from Proposition 6.2 (using Lemma 1.3).

Let X be a normed vector space, and let x_1, x_2, x_3, \ldots be elements of X. The infinite series $\lim_{n \to +\infty} x_n$ is said to *converge* to some element s of X if, given any $\varepsilon > 0$, there exists some natural number N such that

$$\|s - \sum_{n=1}^m x_n\| < \varepsilon$$

for all $m \ge N$ (where $\|.\|$ denotes the norm on X).

We say that a normed vector space X is complete if and only if every Cauchy sequence in X is convergent. (A sequence x_1, x_2, x_3, \ldots is a Cauchy sequence if and only if, given any $\varepsilon > 0$, there exists some natural number N such that $||x_j - x_k|| < \varepsilon$ for all j and k satisfying $j \ge N$ and $k \ge N$.) A complete normed vector space is referred to as a Banach space. (The basic theory of such spaces was extensively developed by the famous Polish mathematician Stefan Banach and his co-workers.)

Lemma 6.4 Let X be a Banach space, and let x_1, x_2, x_3, \ldots be elements of X. Suppose that $\lim_{n \to +\infty} ||x_n||$ is convergent. Then $\lim_{n \to +\infty} x_n$ is convergent, and

$$\left\|\lim_{n \to +\infty} x_n\right\| \le \lim_{n \to +\infty} \|x_n\|.$$

Proof For each natural number n, let

$$s_n = x_1 + x_2 + \dots + x_n.$$

Let $\varepsilon > 0$ be given. We can find N such that $\sum_{n=N}^{+\infty} ||x_n|| < \varepsilon$, since $\lim_{n \to +\infty} ||x_n||$ is convergent. Let $s_n = x_1 + x_2 + \cdots + x_n$. If $j \ge N$, $k \ge N$ and j < k then

$$||s_k - s_j|| = \left|\left|\sum_{n=j+1}^k x_n\right|\right| \le \sum_{n=j+1}^k ||x_n|| \le \sum_{n=N}^{+\infty} ||x_n|| < \varepsilon.$$

Thus s_1, s_2, s_3, \ldots is a Cauchy sequence in X, and therefore converges to some element s of X, since X is complete. But then $s = \lim_{j=1}^{+\infty} x_j$. Moreover, on choosing m large enough to ensure that $s - s_m < \varepsilon$, we deduce that

$$||s|| \le \left\|\sum_{n=1}^{m} x_n\right\| + \left\|s - \sum_{n=1}^{m} x_n\right\| \le \sum_{n=1}^{m} ||x_n|| + \left\|s - \sum_{n=1}^{m} x_n\right\| < \sum_{n=1}^{+\infty} ||x_n|| + \varepsilon.$$

Since this inequality holds for all $\varepsilon > 0$, we conclude that

$$||s|| \le \sum_{n=1}^{+\infty} ||x_n||$$

as required.

6.2 Bounded Linear Transformations

Let X and Y be real or complex vector spaces. A function $T: X \to Y$ is said to be a *linear transformation* if T(x + y) = Tx + Ty and $T(\lambda x) = \lambda Tx$ for all elements x and y of X and scalars λ . A linear transformation mapping X into itself is referred to as a *linear operator* on X.

Definition Let X and Y be normed vector spaces. A linear transformation $T: X \to Y$ is said to be *bounded* if there exists some non-negative real number C with the property that $||Tx|| \leq C||x||$ for all $x \in X$. If T is bounded, then the smallest non-negative real number C with this property is referred to as the *operator norm* of T, and is denoted by ||T||.

Lemma 6.5 Let X and Y be normed vector spaces, and let $S: X \to Y$ and $T: X \to Y$ be bounded linear transformations. Then S + T and λS are bounded linear transformations for all scalars λ , and

$$||S + T|| \le ||S|| + ||T||, \qquad ||\lambda S|| = |\lambda||S||.$$

Moreover ||S|| = 0 if and only if S = 0. Thus the vector space B(X, Y) of bounded linear transformations from X to Y is a normed vector space (with respect to the operator norm).

Proof $||(S+T)x|| \le ||Sx|| + ||Tx|| \le (||S|| + ||T||)||x||$ for all $x \in X$. Therefore S+T is bounded, and $||S+T|| \le ||S|| + ||T||$. Using the fact that $||(\lambda S)x|| = |\lambda| ||Sx||$ for all $x \in X$, we see that λS is bounded, and $||\lambda S|| = |\lambda| ||S||$. If S = 0 then ||S|| = 0. Conversely if ||S|| = 0 then $||Sx|| \le ||S|| ||x|| = 0$ for all $x \in X$, and hence S = 0. The result follows.

Lemma 6.6 Let X, Y and Z be normed vector spaces, and let $S: X \to Y$ and $T: Y \to Z$ be bounded linear transformations. Then the composition TS of S and T is also bounded, and $||TS|| \leq ||T|| ||S||$.

Proof $||TSx|| \leq ||T|| ||Sx|| \leq ||T|| ||S|| ||x||$ for all $x \in X$. The result follows.

Proposition 6.7 Let X and Y be normed vector spaces, and let $T: X \to Y$ be a linear transformation from X to Y. Then the following are equivalent:—

- (i) $T: X \to Y$ is continuous,
- (ii) $T: X \to Y$ is continuous at 0,

(iii) $T: X \to Y$ is bounded.

Proof Obviously (i) implies (ii). We show that (ii) implies (iii) and (iii) implies (i). The equivalence of the three conditions then follows immediately.

Suppose that $T: X \to Y$ is continuous at 0. Then there exists $\delta > 0$ such that ||Tx|| < 1 for all $x \in X$ satisfying $||x|| < \delta$. Let C be any positive real number satisfying $C > 1/\delta$. If x is any non-zero element of X then $||\lambda x|| < \delta$, where $\lambda = 1/(C||x||)$, and hence

$$||Tx|| = C||x|| ||\lambda Tx|| = C||x|| ||T(\lambda x)|| < C||x||.$$

Thus $||Tx|| \leq C||x||$ for all $x \in X$, and hence $T: X \to Y$ is bounded. Thus (ii) implies (iii).

Finally suppose that $T: X \to Y$ is bounded. Let x be a point of X, and let $\varepsilon > 0$ be given. Choose $\delta > 0$ satisfying $||T||\delta < \varepsilon$. If $x' \in X$ satisfies $||x' - x|| < \delta$ then

$$||Tx' - Tx|| = T(x' - x)|| \le ||T|| ||x' - x|| < ||T||\delta < \varepsilon.$$

Thus $T: X \to Y$ is continuous. Thus (iii) implies (i), as required.

Let X be a normed vector space, and let x_1, x_2, x_3, \ldots be elements of X. The infinite series $\lim_{n \to +\infty} x_n$ is said to *converge* to some element s of X if, given any $\varepsilon > 0$, there exists some natural number N such that

$$\|s - \sum_{n=1}^m x_n\| < \varepsilon$$

for all $m \ge N$ (where $\|.\|$ denotes the norm on X).

Proposition 6.8 Let X be a normed vector space and let Y be a Banach space. Then the space B(X, Y) of bounded linear transformations from X to Y is also a Banach space.

Proof We have already shown that B(X, Y) is a normed vector space (see Lemma 6.5). Thus it only remains to show that B(X, Y) is complete.

Let S_1, S_2, S_3, \ldots be a Cauchy sequence in B(X, Y). Let $x \in X$. We claim that S_1x, S_2x, S_3x, \ldots is a Cauchy sequence in Y. This result is trivial if x = 0. If $x \neq 0$, and if $\varepsilon > 0$ is given then there exists some natural number N such that $||S_j - S_k|| < \varepsilon/||x||$ whenever $j \geq N$ and $k \geq N$. But then $||S_jx - S_kx|| \leq ||S_j - S_k|| ||x|| < \varepsilon$ whenever $j \geq N$ and $k \geq N$. This shows that S_1x, S_2x, S_3x, \ldots is indeed a Cauchy sequence. It therefore converges to some element of Y, since Y is a Banach space. Let the function $S: X \to Y$ be defined by $Sx = \lim_{n \to +\infty} S_n x$. Then

$$S(x+y) = \lim_{n \to +\infty} (S_n x + S_n y) = \lim_{n \to +\infty} S_n x + \lim_{n \to +\infty} S_n y = Sx + Sy,$$

(see Corollary 6.3), and

$$S(\lambda x) = \lim_{n \to +\infty} S_n(\lambda x) = \lambda \lim_{n \to +\infty} S_n x = \lambda S x$$

Thus $S: X \to Y$ is a linear transformation.

Next we show that $S_n \to S$ in B(X, Y) as $n \to +\infty$. Let $\varepsilon > 0$ be given. Then there exists some natural number N such that $||S_j - S_n|| < \frac{1}{2}\varepsilon$ whenever $j \ge N$ and $n \ge N$, since the sequence S_1, S_2, S_3, \ldots is a Cauchy sequence in B(X, Y). But then $||S_j x - S_n x|| < \frac{1}{2}\varepsilon ||x||$ for all $j \ge N$ and $n \ge N$, and thus

$$\|Sx - S_n x\| = \left\| \lim_{j \to +\infty} S_j x - S_n x \right\| = \lim_{j \to +\infty} \|S_j x - S_n x\|$$

$$\leq \lim_{j \to +\infty} \|S_j - S_n\| \|x\| \le \frac{1}{2}\varepsilon \|x\|$$

for all $n \ge N$ (since the norm is a continuous function on Y). But then

 $||Sx|| \le ||S_nx|| + ||Sx - S_nx|| \le \left(||S_n|| + \frac{1}{2}\varepsilon\right)||x||$

for any $n \geq N$, showing that $S: X \to Y$ is a bounded linear transformation, and $||S - S_n|| \leq \frac{1}{2}\varepsilon < \varepsilon$ for all $n \geq N$, showing that $S_n \to S$ in B(X, Y) as $n \to +\infty$. Thus the Cauchy sequence S_1, S_2, S_3, \ldots is convergent in B(X, Y), as required.

Corollary 6.9 Let X and Y be Banach spaces, and let T_1, T_2, T_3, \ldots be bounded linear transformations from X to Y. Suppose that $\lim_{n \to +\infty} ||T_n||$ is convergent. Then $\lim_{n \to +\infty} T_n$ is convergent, and

$$\left\|\lim_{n \to +\infty} T_n\right\| \le \lim_{n \to +\infty} \|T_n\|.$$

Proof The space B(X, Y) of bounded linear maps from X to Y is a Banach space by Proposition 6.8. The result therefore follows immediately on applying Lemma 6.4.

Example Let T be a bounded linear operator on a Banach space X (i.e., a bounded linear transformation from X to itself). The infinite series

$$\sum_{n=0}^{+\infty} \frac{\|T\|^n}{n!}$$

converges to $\exp(||T||)$. It follows immediately from Lemma 6.6 (using induction on *n*) that $||T^n|| \leq ||T||^n$ for all $n \geq 0$ (where T^0 is the identity operator on *X*). It therefore follows from Corollary 6.7 that there is a well-defined bounded linear operator $\exp T$ on *X*, defined by

$$\exp T = \sum_{n=0}^{+\infty} \frac{1}{n!} T^n$$

(where T_0 is the identity operator I on X).

Proposition 6.10 Let T be a bounded linear operator on a Banach space X. Suppose that ||T|| < 1. Then the operator I - T has a bounded inverse $(I - T)^{-1}$ (where I denotes the identity operator on X). Moreover

$$(I - T)^{-1} = I + T + T^{2} + T^{3} + \cdots$$

Proof $||T^n|| \leq ||T||^n$ for all n, and the geometric series

$$1 + ||T|| + ||T||^2 + ||T||^3 + \cdots$$

is convergent (since ||T|| < 1). It follows from Corollary 6.9 that the infinite series

$$(I - T)^{-1} = I + T + T^{2} + T^{3} + \cdots$$

converges to some bounded linear operator S on X. Now

$$(I - T)S = \lim_{n \to +\infty} (I - T)(I + T + T^2 + \dots + T^n) = \lim_{n \to +\infty} (I - T^{n+1})$$

= $I - \lim_{n \to +\infty} T^{n+1} = I$,

since $||T||^{n+1} \to 0$ and therefore $T^{n+1} \to 0$ as $n \to +\infty$. Similarly S(I-T) = I. This shows that I - T is invertible, with inverse S, as required.

6.3 Equivalence of Norms on a Finite-Dimensional Vector Space

Let $\|.\|$ and $\|.\|_*$ be norms on a real or complex vector space X. The norms $\|.\|$ and $\|.\|_*$ are said to be *equivalent* if and only if there exist constants c and C, where $0 < c \leq C$, such that

$$c\|x\| \le \|x\|_* \le C\|x\|$$

for all $x \in X$.

Lemma 6.11 Two norms $\|.\|$ and $\|.\|_*$ on a real or complex vector space X are equivalent if and only if they induce the same topology on X.

Proof Suppose that the norms $\|.\|$ and $\|.\|_*$ induce the same topology on X. Then there exists some $\delta > 0$ such that

$$\{x \in X : \|x\| < \delta\} \subset \{x \in X : \|x\|_* < 1\},\$$

since the set $\{x \in X : \|x\|_* < 1\}$ is open with respect to the topology on X induced by both $\|.\|_*$ and $\|.\|$. Let C be any positive real number satisfying $C\delta > 1$. Then

$$\left\|\frac{1}{C\|x\|}x\right\| = \frac{1}{C} < \delta,$$

and hence

$$||x||_* = C||x|| \left\| \frac{1}{C||x||} x \right\|_* < C||x||.$$

for all non-zero elements x of X, and thus $||x||_* \leq C||x||$ for all $x \in X$. On interchanging the roles of the two norms, we deduce also that there exists a positive real number c such that $||x|| \leq (1/c)||x||_*$ for all $x \in X$. But then $c||x|| \leq ||x||_* \leq C||x||$ for all $x \in X$. We conclude that the norms ||.|| and $||.||_*$ are equivalent.

Conversely suppose that the norms $\|.\|$ and $\|.\|_*$ are equivalent. Then there exist constants c and C, where $0 < c \leq C$, such that $c\|x\| \leq \|x\|_* \leq$ $C\|x\|$ for all $x \in X$. Let U be a subset of X that is open with respect to the topology on X induced by the norm $\|.\|_*$, and let $u \in U$. Then there exists some $\delta > 0$ such that

$$\{x \in X : \|x - u\|_* < C\delta\} \subset U.$$

But then

$$\{x \in X : \|x - u\| < \delta\} \subset \{x \in X : \|x - u\|_* < C\delta\} \subset U,$$

showing that U is open with respect to the topology induced by the norm $\|.\|$. Similarly any subset of X that is open with respect to the topology induced by the norm $\|.\|$ must also be open with respect to the topology induced by $\|.\|_*$. Thus equivalent norms induce the same topology on X.

It follows immediately from Lemma 6.11 that if $\|.\|$, $\|.\|_*$ and $\|.\|_{\sharp}$ are norms on a real (or complex) vector space X, if the norms $\|.\|$ and $\|.\|_*$ are equivalent, and if the norms $\|.\|_*$ and $\|.\|_{\sharp}$ are equivalent, then the norms $\|.\|$ and $\|.\|_{\sharp}$ are also equivalent. This fact can easily be verified directly from the definition of equivalence of norms.

We recall that the usual topology on \mathbb{R}^n is that generated by the Euclidean norm on \mathbb{R}^n .

Lemma 6.12 Let $\|.\|$ be a norm on \mathbb{R}^n . Then the function $\mathbf{x} \mapsto \|x\|$ is continuous with respect to the usual topology on on \mathbb{R}^n .

Proof Let $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ denote the basis of \mathbb{R}^n given by

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \quad \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \quad \mathbf{e}_n = (0, 0, 0, \dots, 1)$$

Let **x** and **y** be points of \mathbb{R}^n , given by

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \qquad \mathbf{y} = (y_1, y_2, \dots, y_n)$$

Using Schwarz' Inequality, we see that

$$\|x - y\| = \left\| \sum_{j=1}^{n} (x_j - y_j) \mathbf{e}_j \right\| \le \sum_{j=1}^{n} |x_j - y_j| \|\mathbf{e}_j\|$$
$$\le \left(\sum_{j=1}^{n} (x_j - y_j)^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} \|\mathbf{e}_j\|^2 \right)^{\frac{1}{2}} = C \|\mathbf{x} - \mathbf{y}\|_2,$$

where

$$C^{2} = \|\mathbf{e}_{1}\|^{2} + \|\mathbf{e}_{2}\|^{2} + \dots + \|\mathbf{e}_{n}\|^{2}$$

and $\|\mathbf{x} - \mathbf{y}\|_2$ denotes the Euclidean norm of $\mathbf{x} - \mathbf{y}$, defined by

$$\|\mathbf{x} - \mathbf{y}\|_2 = \left(\sum_{j=1}^n (x_j - y_j)^2\right)^{\frac{1}{2}}.$$

Also $|||\mathbf{x}|| - ||\mathbf{y}|| \le ||\mathbf{x} - \mathbf{y}||$, since

$$\|\mathbf{x}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{y}\|, \qquad \|\mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\| + \|\mathbf{x}\|.$$

We conclude therefore that

$$|\|\mathbf{x}\| - \|\mathbf{y}\|| \le C \|\mathbf{x} - \mathbf{y}\|_2,$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, and thus the function $\mathbf{x} \mapsto ||\mathbf{x}||$ is continuous on \mathbb{R}^n (with respect to the usual topology on \mathbb{R}^n).

Theorem 6.13 Any two norms on \mathbb{R}^n are equivalent, and induce the usual topology on \mathbb{R}^n .

Proof Let $\|.\|$ be any norm on \mathbb{R}^n . We show that $\|.\|$ is equivalent to the Euclidean norm $\|.\|_2$. Let S^{n-1} denote the unit sphere in \mathbb{R}^n , defined by

$$S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^n : \|\mathbf{x}\|_2 = 1 \}.$$

Now S^{n-1} is a compact subset of \mathbb{R}^n , since it is both closed and bounded (see Theorem 4.16). Also the function $\mathbf{x} \mapsto \|\mathbf{x}\|$ is continuous (Lemma 6.12). But any continuous real-valued function on a compact topological space attains both its maximum and minimum values on that space (Proposition 4.6). Therefore there exist points \mathbf{u} and \mathbf{v} of S^{n-1} such that $\|\mathbf{u}\| \leq \|\mathbf{x}\| \leq \|\mathbf{v}\|$ for all $\mathbf{x} \in S^{n-1}$. Set $c = \|\mathbf{u}\|$ and $C = \|\mathbf{v}\|$. Then $0 < c \leq C$ (since it follows from the definition of norms that the norm of any non-zero element of \mathbb{R}^n is necessarily non-zero).

If \mathbf{x} is any non-zero element of \mathbb{R}^n then $\lambda \mathbf{x} \in S^{n-1}$, where $\lambda = 1/||\mathbf{x}||_2$. But $||\lambda \mathbf{x}|| = |\lambda| ||\mathbf{x}||$ (see the the definition of norms). Therefore $c \leq |\lambda| ||\mathbf{x}|| \leq C$, and hence $c||\mathbf{x}||_2 \leq ||\mathbf{x}|| \leq C ||\mathbf{x}||_2$ for all $\mathbf{x} \in \mathbb{R}^n$, showing that the norm ||.|| is equivalent to the Euclidean norm $||.||_2$ on \mathbb{R}^n . Therefore any two norms on \mathbb{R}^n are equivalent, and thus generate the same topology on \mathbb{R}^n (Lemma 6.11). This topology must then be the usual topology on \mathbb{R}^n .

Let X be a finite-dimensional real vector space. Then X is isomorphic to \mathbb{R}^n , where n is the dimension of X. It follows immediately from Theorem 6.13 and Lemma 6.11 that all norms on X are equivalent and therefore generate the same topology on X. This result does not generalize to infinitedimensional vector spaces.