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5 Complete and Compact Metric Spaces

5.1 Complete Metric Spaces

Definition Let X be a metric space with distance function d. A sequence
x1, x2, x3, . . . of points of X is said to be a Cauchy sequence in X if and only if,
given any ε > 0, there exists some natural number N such that d(xj, xk) < ε
for all j and k satisfying j ≥ N and k ≥ N .

Every convergent sequence in a metric space is a Cauchy sequence. Indeed
let X be a metric space with distance function d, and let x1, x2, x3, . . . be a
sequence of points in X which converges to some point p of X. Given any
ε > 0, there exists some natural number N such that d(xn, p) < ε/2 whenever
n ≥ N . But then it follows from the Triangle Inequality that

d(xj, xk) ≤ d(xj, p) + d(p, xk) <
ε

2
+
ε

2
= ε

whenever j ≥ N and k ≥ N .

Definition A metric space (X, d) is said to be complete if every Cauchy
sequence in X converges to some point of X.

The spaces R and C are complete metric spaces with respect to the dis-
tance function given by d(z, w) = |z − w|. Indeed this result is Cauchy’s
Criterion for Convergence. However the space Q of rational numbers (with
distance function d(q, r) = |q− r|) is not complete. Indeed one can construct
an infinite sequence q1, q2, q3, . . . of rational numbers which converges (in R)
to
√

2. Such a sequence of rational numbers is a Cauchy sequence in both R
and Q. However this Cauchy sequence does not converge to an point of the
metric space Q (since

√
2 is an irrational number). Thus the metric space Q

is not complete.

Lemma 5.1 Let X be a complete metric space, and let A be a subset of X.
Then A is complete if and only if A is closed in X.

Proof Suppose that A is closed in X. Let a1, a2, a3, . . . be a Cauchy sequence
in A. This Cauchy sequence must converge to some point p of X, since X is
complete. But the limit of every sequence of points of A must belong to A,
since A is closed (see Lemma 1.10). In particular p ∈ A. We deduce that A
is complete.

Conversely, suppose that A is complete. Suppose that A were not closed.
Then the complement X \ A of A would not be open, and therefore there
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would exist a point p of X \ A with the property that BX(p, δ) ∩ A is non-
empty for all δ > 0, where BX(p, δ) denotes the open ball in X of radius δ
centred at p. We could then find a sequence a1, a2, a3, . . . of points of A
satisfying d(aj, p) < 1/j for all natural numbers j. This sequence would be a
Cauchy sequence in A which did not converge to a point of A, contradicting
the completeness of A. Thus A must be closed, as required.

Theorem 5.2 The metric space Rn (with the Euclidean distance function)
is a complete metric space.

Proof Let p1,p2,p3, . . . be a Cauchy sequence in Rn. Then for each inte-
ger m between 1 and n, the sequence (p1)m, (p2)m, (p3)m, . . . is a Cauchy
sequence of real numbers, where (pj)m denotes the mth component of pj.
But every Cauchy sequence of real numbers is convergent (Cauchy’s crite-
rion for convergence). Let qm = lim

j→+∞
(pj)m for m = 1, 2, . . . , n, and let

q = (q1, q2, . . . , qn). We claim that pj → q as j → +∞.
Let ε > 0 be given. Then there exist natural numbers N1, N2, . . . , Nn

such that |(pj)m − qm| < ε/
√
n whenever j ≥ Nm (where m = 1, 2, . . . , n).

Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N then

|pj − q|2 =
n∑

m=1

((pj)m − qm)2 < ε2.

Thus pj → q as j → +∞. Thus every Cauchy sequence in Rn is convergent,
as required.

The following result follows directly from Lemma 5.1 and Theorem 5.2.

Corollary 5.3 A subset X of Rn is complete if and only if it is closed.

Example The n-sphere Sn (with the chordal distance function given by
d(x,y) = |x− y|) is a complete metric space, where

Sn = {(x1, x2, . . . , xn+1) ∈ Rn+1 : x21 + x22 + · · ·+ x2n+1 = 1}.

5.2 Characterizations of Compact Metric Spaces

We recall that a metric or topological space is said to be compact if every
open cover of the space has a finite subcover. We shall obtain some equiva-
lent characterizations of compactness for metric spaces (Theorem 5.9); these
characterizations do not generalize to arbitrary topological spaces.
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Proposition 5.4 Every sequence of points in a compact metric space has a
convergent subsequence.

Proof Let X be a compact metric space, and let x1, x2, x3, . . . be a sequence
of points of X. We must show that this sequence has a convergent subse-
quence. Let Fn denote the closure of {xn, xn+1, xn+2, . . .}. We claim that
the intersection of the sets F1, F2, F3, . . . is non-empty. For suppose that
this intersection were the empty set. Then X would be the union of the
sets V1, V2, V3, . . ., where Vn = X \ Fn for all n. But V1 ⊂ V2 ⊂ V3 ⊂ · · ·,
and each set Vn is open. It would therefore follow from the compactness of
X that X would be covered by finitely many of the sets V1, V2, V3, . . ., and
therefore X = Vn for some sufficiently large n. But this is impossible, since
Fn is non-empty for all natural numbers n. Thus the intersection of the sets
F1, F2, F3, . . . is non-empty, as claimed, and therefore there exists a point p
of X which belongs to Fn for all natural numbers n.

We now obtain, by induction on n, a subsequence xn1 , xn2 , xn3 , . . . which
satisfies d(xnj

, p) < 1/j for all natural numbers j. Now p belongs to the
closure F1 of the set {x1, x2, x3, . . .}. Therefore there exists some natural
number n1 such that d(xn1 , p) < 1. Suppose that xnj

has been chosen so
that d(xnj

, p) < 1/j. The point p belongs to the closure Fnj+1 of the set
{xn : n > nj}. Therefore there exists some natural number nj+1 such that
nj+1 > nj and d(xnj+1

, p) < 1/(j + 1). The subsequence xn1 , xn2 , xn3 , . . .
constructed in this manner converges to the point p, as required.

We shall also prove the converse of Proposition 5.4: if X is a metric space,
and if every sequence of points of X has a convergent subsequence, then X
is compact (see Theorem 5.9 below).

Proposition 5.5 Let X be a metric space with the property that every se-
quence of points of X has a convergent subsequence. Then X is complete.

Proof Let x1, x2, x3, . . . be a Cauchy sequence in X. This sequence then has
a subsequence xn1 , xn2 , xn3 , . . . which converges to some point p of X. We
claim that the given Cauchy sequence also converges to p.

Let ε > 0 be given. Then there exists some natural number N such that
d(xm, xn) < 1

2
ε whenever m ≥ N and n ≥ N , since x1, x2, x3, . . . is a Cauchy

sequence. Moreover nj can be chosen large enough to ensure that nj ≥ N
and d(xnj

, p) < 1
2
ε. If n ≥ N then

d(xn, p) ≤ d(xn, xnj
) + d(xnj

, p) < 1
2
ε+ 1

2
ε = ε.

This shows that the Cauchy sequence x1, x2, x3, . . . converges to the point p.
Thus X is complete, as required.
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Definition Let X be a metric space with distance function d. A subset A
of X is said to be bounded if there exists a non-negative real number K
such that d(x, y) ≤ K for all x, y ∈ A. The smallest real number K with
this property is referred to as the diameter of A, and is denoted by diamA.
(Note that diamA is the supremum of the values of d(x, y) as x and y range
over all points of A.)

Lemma 5.6 Let X be a metric space, and let A be a subset of X. Then
diamA = diamA, where A is the closure of A.

Proof Clearly diamA ≤ diamA. Let x and y be points of A. Then, given
any ε > 0, there exist points x′ and y′ of A satisfying d(x, x′) < ε and
d(y, y′) < ε (see Lemma 1.11). It follows from the Triangle Inequality that

d(x, y) ≤ d(x, x′) + d(x′, y′) + d(y′, y) < diamA+ 2ε.

Thus d(x, y) < diamA + 2ε for all ε > 0, and hence d(x, y) ≤ diamA. This
shows that diamA ≤ diamA, as required.

Definition A metric space X is said to be totally bounded if, given any
ε > 0, the set X can be expressed as a finite union of subsets of X, each of
which has diameter less than ε.

Any subsetA of a totally bounded metric spaceX is itself totally bounded.
For if X is the union of the subsets B1, B2, . . . , Bk, where diamBn < ε for
n = 1, 2, . . . , k, then A is the union of A ∩ Bn for n = 1, 2, . . . , k, and
diamA ∩Bn < ε.

Proposition 5.7 Let X be a metric space. Suppose that every sequence of
points of X has a convergent subsequence. Then X is totally bounded.

Proof Suppose that X were not totally bounded. Then there would exist
some ε > 0 with the property that no finite collection of subsets of X of
diameter less than 3ε covers the set X. There would then exist an infinite
sequence x1, x2, x3, . . . of points of X with the property that d(xm, xn) ≥ ε
whenever m 6= n. Indeed suppose that points x1, x2, . . . , xk−1 of X have
already been chosen satisfying d(xm, xn) ≥ ε whenever m < k, n < k and
m 6= n. The diameter of each open ball BX(xm, ε) is less than or equal to
2ε. Therefore X could not be covered by the sets BX(xm, ε) for m < k, and
thus there would exist a point xk of X which does not belong to B(xm, ε)
for any m < k. Then d(xm, xk) ≥ ε for all m < k. In this way we can
successively choose points x1, x2, x3, . . . to form an infinite sequence with
the required property. However such an infinite sequence would have no
convergent subsequence, which is impossible. This shows that X must be
totally bounded, as required.
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Proposition 5.8 Every complete totally bounded metric space is compact.

Proof Let X be some totally bounded metric space. Suppose that there
exists an open cover V of X which has no finite subcover. We shall prove the
existence of a Cauchy sequence x1, x2, x3, . . . in X which cannot converge to
any point of X. (Thus if X is not compact, then X cannot be complete.)

Let ε > 0 be given. Then X can be covered by finitely many closed sets
whose diameter is less than ε, since X is totally bounded and every subset of
X has the same diameter as its closure (Lemma 5.6). At least one of these
closed sets cannot be covered by a finite collection of open sets belonging to
V (since if every one of these closed sets could be covered by a such a finite
collection of open sets, then we could combine these collections to obtain
a finite subcover of V). We conclude that, given any ε > 0, there exists a
closed subset of X of diameter less than ε which cannot be covered by any
finite collection of open sets belonging to V .

We claim that there exists a sequence F1, F2, F3, . . . of closed sets in X
satisfying F1 ⊃ F2 ⊃ F3 ⊃ · · · such that each closed set Fn has the following
properties: diamFn < 1/2n, and no finite collection of open sets belonging
to V covers Fn. For if Fn is a closed set with these properties then Fn is
itself both complete (Lemma 5.1) and totally bounded, and thus the above
remarks (applied with Fn in place of X) guarantee the existence of a closed
subset Fn+1 of Fn with the required properties. Thus the existence of the
required sequence of closed sets follows by induction on n.

Choose xn ∈ Fn for each natural number n. Then d(xm, xn) < 1/2n for
any m > n, since xm and xn belong to Fn and diamFn < 1/2n. Therefore
the sequence x1, x2, x3, . . . is a Cauchy sequence. Suppose that this Cauchy
sequence were to converge to some point p of X. Then p ∈ Fn for each natural
number n, since Fn is closed and xm ∈ Fn for all m ≥ n (see Lemma 1.10).
Moreover p ∈ V for some open set V belonging to V , since V is an open
cover of X. But then there would exist δ > 0 such that BX(p, δ) ⊂ V , where
BX(p, δ) denotes the open ball of radius δ in X centred on p. Thus if n were
large enough to ensure that 1/2n < δ, then p ∈ Fn and diamFn < δ, and
hence Fn ⊂ BX(p, δ) ⊂ V , contradicting the fact that no finite collection of
open sets belonging to V covers the set Fn. This contradiction shows that
the Cauchy sequence x1, x2, x3, . . . is not convergent.

We have thus shown that if X is a totally bounded metric space which is
not compact then X is not complete. Thus every complete totally bounded
metric space must be compact, as required.

Theorem 5.9 Let X be a metric space with distance function d. The fol-
lowing are equivalent:—
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(i) X is compact,

(ii) every sequence of points of X has a convergent subsequence,

(iii) X is complete and totally bounded,

Proof Propositions 5.4, 5.5 5.7 and 5.8 show that (i) implies (ii), (ii) implies
(iii), and (iii) implies (i). It follows that (i), (ii) and (iii) are all equivalent
to one another.

Remark A subset K of Rn is complete if and only if it is closed in Rn (see
Corollary 5.3). Also it is easy to see that K is totally bounded if and only
if K is a bounded subset of Rn. Thus Theorem 5.9 generalizes to arbitrary
metric spaces the theorem which states that a subset K of Rn is compact if
and only if it is both closed and bounded (Theorem 4.16).

5.3 The Lebesgue Lemma and Uniform Continuity

Lemma 5.10 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let
U be an open cover of X. Then there exists a positive real number δ such that
every subset of X whose diameter is less than δ is contained wholly within
one of the open sets belonging to the open cover U .

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi
for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.
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Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

Let X and Y be metric spaces with distance functions dX and dY respec-
tively, and let f :X → Y be a function from X to Y . The function f is said
to be uniformly continuous on X if and only if, given ε > 0, there exists some
δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X satisfying
dX(x, x′) < δ. (The value of δ should be independent of both x and x′.)

Theorem 5.11 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now BY (y, 1

2
ε) is open in Y (see Lemma 1.4), and f

is continuous. Therefore Vy is open in X for all y ∈ Y . Note that x ∈ Vf(x)
for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 5.10) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′), which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 4.16
and Theorem 5.11 that any continuous function f :K → Rk is uniformly
continuous.
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