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4 Compact Topological Spaces.

4.1 Open Covers and Compactness

Let X be a topological space, and let A be a subset of X. A collection of
open sets in X is said to cover A if and only if every point of A belongs to at
least one of these open sets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs
to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 4.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that

A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = A∩V for some open set V in X. The desired result
therefore follows directly from the definition of compactness.

4.2 The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 4.2 (Heine-Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.

Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by some finite collection of open sets belonging to U , and let s = supS. Now
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s ∈ W for some open set W belonging to U . Moreover W is open in R, and
therefore there exists some δ > 0 such that (s − δ, s + δ) ⊂ W . Moreover
s − δ is not an upper bound for the set S, hence there exists some τ ∈ S
satisfying τ > s− δ. It follows from the definition of S that [a, τ ] is covered
by some finite collection V1, V2, . . . , Vr of open sets belonging to U .

Let t ∈ [a, b] satisfy τ ≤ t < s+ δ. Then

[a, t] ⊂ [a, τ ] ∪ (s− δ, s+ δ) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W,

and thus t ∈ S. In particular s ∈ S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b ∈ S, and therefore [a, b]
is covered by a finite collection of open sets belonging to U , as required.

4.3 Basic Properties of Compact Topological Spaces

Lemma 4.3 Let A be a closed subset of some compact topological space X.
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U , we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 4.1 that A is compact, as required.

Lemma 4.4 Let f :X → Y be a continuous function between topological
spaces X and Y , and let A be a compact subset of X. Then f(A) is a
compact subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f−1(V ) for some V ∈ V .
It follows from the compactness of A that there exists a finite collection
V1, V2, . . . , Vk of open sets belonging to V such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vk).

But then f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vk. This shows that f(A) is compact.

Lemma 4.5 Let f :X → R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof The range f(X) of the function f is covered by some finite collection
I1, I2, . . . , Ik of open intervals of the form (−m,m), where m ∈ N, since f(X)
is compact (Lemma 4.4) and R is covered by the collection of all intervals of
this form. It follows that f(X) ⊂ (−M,M), where (−M,M) is the largest of
the intervals I1, I2, . . . , Ik. Thus the function f is bounded above and below
on X, as required.
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Proposition 4.6 Let f :X → R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. There
must exist v ∈ X satisfying f(v) = M , for if f(x) < M for all x ∈ X then
the function x 7→ 1/(M − f(x)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 4.5. Similarly
there must exist u ∈ X satisfying f(u) = m, since otherwise the function
x 7→ 1/(f(x)−m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 4.5. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

4.4 Compact Hausdorff Spaces

Proposition 4.7 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \K. Then there exist open sets
V and W in X such that x ∈ V , K ⊂ W and V ∩W = ∅.

Proof For each point y ∈ K there exist open sets Vx,y and Wx,y such that
x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X is a Hausdorff space). But
then there exists a finite set {y1, y2, . . . , yr} of points of K such that

K ⊂ Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr ,

since K is compact. Define

V = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , W = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then V and W are open sets, x ∈ V , K ⊂ W and V ∩W = ∅, as required.

Corollary 4.8 Let X be a Hausdorff topological space, and let K be a com-
pact subset of X. Then K is closed.

Proof It follows immediately from Proposition 4.7 that, for each x ∈ X \K,
there exists an open set Vx such that x ∈ Vx and Vx∩K = ∅. But then X \K
is equal to the union of the open sets Vx as x ranges over all points of X \K,
and any set that is a union of open sets is itself an open set. We conclude
that X \K is open, and thus K is closed.

Proposition 4.9 Let X be a Hausdorff topological space, and let K1 and K2

be compact subsets of X, where K1 ∩K2 = ∅. Then there exist open sets U1

and U2 such that K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅.
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Proof It follows from Proposition 4.7 that, for each point x of K1, there
exist open sets Vx and Wx such that x ∈ Vx, K2 ⊂ Wx and Vx∩Wx = ∅. But
then there exists a finite set {x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr ,

since K1 is compact. Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr , U2 = Wx1 ∩Wx2 ∩ · · · ∩Wxr .

Then U1 and U2 are open sets, K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅, as
required.

Lemma 4.10 Let f :X → Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y . Then f(K) is closed in Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 4.3), and there-
fore f(K) is compact (Lemma 4.4). But any compact subset of a Hausdorff
space is closed (Corollary 4.8). Thus f(K) is closed in Y , as required.

Theorem 4.11 Let f :X → Y be a continuous bijection from a compact
topological space X to a Hausdorff space Y . Then f :X → Y is a homeomor-
phism.

Proof The function f is invertible, since it is a bijection. Let g:Y → X be
the inverse of f :X → Y . If U is open in X then X \ U is closed in X, and
hence f(X \ U) is closed in Y , by Lemma 4.10. But

f(X \ U) = g−1(X \ U) = Y \ g−1(U).

It follows that g−1(U) is open in Y for every open set U in X. Therefore
g:Y → X is continuous, and thus f :X → Y is a homeomorphism.

We recall that a function f :X → Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and
satisfies the following condition: a subset U of Y is open in Y if and only if
f−1(U) is open in X.

Proposition 4.12 Let f :X → Y be a continuous surjection from a com-
pact topological space X to a Hausdorff space Y . Then f :X → Y is an
identification map.
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Proof Let U be a subset of Y . We claim that Y \ U = f(K), where K =
X \ f−1(U). Clearly f(K) ⊂ Y \ U . Also, given any y ∈ Y \ U , there exists
x ∈ X satisfying y = f(x), since f :X → Y is surjective. Moreover x ∈ K,
since f(x) 6∈ U . Thus Y \ U ⊂ f(K), and hence Y \ U = f(K), as claimed.

We must show that the set U is open in Y if and only if f−1(U) is open
in X. First suppose that f−1(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y , by Lemma 4.10. It follows that U is open in Y .
Conversely if U is open in Y then f−1(Y ) is open in X, since f :X → Y is
continuous. Thus the surjection f :X → Y is an identification map.

Example Let S1 be the unit circle in R2, defined by

S1 = {(x, y) ∈ R2 : x2 + y2 = 1},

and let q: [0, 1]→ S1 be the function defined by

q(t) = (cos 2πt, sin 2πt) (t ∈ [0, 1]).

Now the closed interval [0, 1] is compact, by the Heine-Borel Theorem (The-
orem 4.2), the circle S1 is Hausdorff, and the function q: [0, 1] → S1 is a
continuous surjection. It follows from Proposition 4.12 that the function
q: [0, 1] → S1 is an identification map. Thus any function f :S1 → Z from
the circle S1 to some topological space Z is continuous if and only if the
composition function f ◦ q: [0, 1]→ Z is continuous (see Lemma 2.16).

4.5 Finite Products of Compact Spaces

We shall show that a finite Cartesian product of compact spaces is compact.
To prove this, we apply the following result, known as the Tube Lemma.

Lemma 4.13 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V be the subset of X defined by

V = {x ∈ X : {x} ×K ⊂ U}.

Then V is an open set in X.

Proof Let x ∈ V . For each y ∈ K there exist open subsets Dy and Ey of X
and Y respectively such that (x, y) ∈ Dy ×Ey and Dy ×Ey ⊂ U . Now there
exists a finite set {y1, y2, . . . , yk} of points of K such that

K ⊂ Ey1 ∪ Ey2 ∪ · · · ∪ Eyk ,
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since K is compact. Set

Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .

Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃

i=1

(Nx × Eyi) ⊂
k⋃

i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem 4.14 The Cartesian product X × Y of compact topological spaces
X and Y is itself compact.

Proof Let U be an open cover of X×Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x} × Y is a compact subset of X × Y ,
since it is the image of the compact space Y under the continuous map from
Y to X × Y which sends y ∈ Y to (x, y), and the image of any compact
set under a continuous map is itself compact (Lemma 4.4). Therefore there
exists a finite collection U1, U2, . . . , Ur of open sets belonging to the open
cover U such that

{x} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur.

Let
Vx = {x′ ∈ X : {x′} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur}.

It follows from Lemma 4.13 that Vx is an open set in X. We have therefore
shown that, for each point x in X, there exists an open set Vx in X containing
the point x such that Vx × Y is covered by finitely many of the open sets
belonging to the open cover U .

Now {Vx : x ∈ X} is an open cover of the space X. It follows from the
compactness of X that there exists a finite set {x1, x2, . . . , xr} of points of X
such that

X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr .

Now X × Y is the union of the sets Vxj
× Y for j = 1, 2, . . . , r, and each

of these sets can be covered by a finite collection of open sets belonging to
the open cover U . On combining these finite collections, we obtain a finite
collection of open sets belonging to U which covers X × Y . This shows that
X × Y is compact.
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Corollary 4.15 The Cartesian product X1×X2×· · ·×Xn of a finite number
of compact topological spaces X1, X2, . . . , Xn is itself compact.

Proof It follows easily from the definition of the product topology that the
product topologies on X1×X2× · · · ×Xn and (X1×X2× · · · ×Xn−1)×Xn

coincide. The desired result therefore follows from Theorem 4.14 by induction
on n.

Theorem 4.16 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since Rn is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 4.8). For
each natural number m, let Bm be the open ball of radius m about the origin,
given by

Bm = {x ∈ Rn : |x| < m}.

Then {Bm : m ∈ N} is an open cover of R. It follows from the compactness
of K that there exist natural numbers m1,m2, . . . ,mk such that

K ⊂ Bm1 ∪Bm2 ∪ · · · ∪Bmk
.

But then K ⊂ BM , where M is the maximum of m1,m2, . . . ,mk, and thus
K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.

Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem 4.2), and C is the Cartesian product of n copies of the compact
set [−L,L]. It follows from Corollary 4.15 that C is compact. But K is a
closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 4.3. Thus K is compact, as required.
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