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4 Compact Topological Spaces.

4.1 Open Covers and Compactness

Let X be a topological space, and let A be a subset of X. A collection of
open sets in X is said to cover A if and only if every point of A belongs to at
least one of these open sets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set belonging to V also belongs

toU.

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 4.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection Vi, Vs, ..., V, of
open sets belonging to U such that

ACcViuVoU---UV,.

Proof A subset B of A is open in A (with respect to the subspace topology
on A) if and only if B = ANV for some open set V in X. The desired result
therefore follows directly from the definition of compactness. |}

4.2 The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) sup S for the set S.

Theorem 4.2 (Heine-Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a,b] is a compact subset of R.

Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, ] is covered by finitely many of these open sets.

Let S be the set of all 7 € [a, b] with the property that [a, 7] is covered
by some finite collection of open sets belonging to U, and let s = sup .S. Now
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s € W for some open set W belonging to U. Moreover W is open in R, and
therefore there exists some § > 0 such that (s — d,s + ) C W. Moreover
s — ¢ is not an upper bound for the set S, hence there exists some 7 € S
satisfying 7 > s — §. It follows from the definition of S that [a, 7] is covered
by some finite collection Vi, Vs, ..., V, of open sets belonging to U.

Let t € [a,b] satisfy 7 <t < s+ 6. Then

la,t] C [a,T]U(s —0,s+d) CViUVLU---UV,UW,

and thus t € S. In particular s € S, and moreover s = b, since otherwise s
would not be an upper bound of the set S. Thus b € S, and therefore |a, b|
is covered by a finite collection of open sets belonging to U, as required. |}

4.3 Basic Properties of Compact Topological Spaces

Lemma 4.3 Let A be a closed subset of some compact topological space X .
Then A is compact.

Proof Let U be any collection of open sets in X covering A. On adjoining
the open set X \ A to U, we obtain an open cover of X. This open cover
of X possesses a finite subcover, since X is compact. Moreover A is covered
by the open sets in the collection U that belong to this finite subcover. It
follows from Lemma 4.1 that A is compact, as required. |}

Lemma 4.4 Let f: X — Y be a continuous function between topological
spaces X and Y, and let A be a compact subset of X. Then f(A) is a
compact subset of Y.

Proof Let V be a collection of open sets in Y which covers f(A). Then A is
covered by the collection of all open sets of the form f~1(V') for some V € V.
It follows from the compactness of A that there exists a finite collection
Vi, Va, ..., Vi of open sets belonging to V such that

AC I V)USH(V2) U U fH (V).
But then f(A) C ViUV, U---U V. This shows that f(A) is compact. ||

Lemma 4.5 Let f: X — R be a continuous real-valued function on a com-
pact topological space X. Then f is bounded above and below on X.

Proof The range f(X) of the function f is covered by some finite collection
I, I, ..., I} of open intervals of the form (—m,m), where m € N, since f(X)
is compact (Lemma 4.4) and R is covered by the collection of all intervals of
this form. It follows that f(X) C (=M, M), where (—M, M) is the largest of
the intervals Iy, I, ..., I;. Thus the function f is bounded above and below
on X, as required. |
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Proposition 4.6 Let f: X — R be a continuous real-valued function on a
compact topological space X. Then there exist points u and v of X such that
Ju) < flz) < f(v) for all z € X.

Proof Let m = inf{f(z) : x € X} and M = sup{f(z) : x € X}. There
must exist v € X satisfying f(v) = M, for if f(z) < M for all x € X then
the function x — 1/(M — f(z)) would be a continuous real-valued function
on X that was not bounded above, contradicting Lemma 4.5. Similarly
there must exist u € X satisfying f(u) = m, since otherwise the function
x +— 1/(f(z)—m) would be a continuous function on X that was not bounded
above, again contradicting Lemma 4.5. But then f(u) < f(z) < f(v) for all
x € X, as required. |

4.4 Compact Hausdorff Spaces

Proposition 4.7 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \ K. Then there exist open sets
V and W in X such thatz € V, K CW and VNW = (.

Proof For each point y € K there exist open sets V,,, and W, , such that
€ Vyy,y € Wyy and V,, N W, , = 0 (since X is a Hausdorff space). But
then there exists a finite set {y1,¥a,...,y.} of points of K such that

KCW,y UWey, U---UW,,,
since K is compact. Define
V=V NVay, NN Vo, W =Wz UWay, U UW, .
Then V and W are open sets, z € V, K C W and VNW = (), as required. |

Corollary 4.8 Let X be a Hausdorff topological space, and let K be a com-
pact subset of X. Then K is closed.

Proof It follows immediately from Proposition 4.7 that, for each x € X \ K,
there exists an open set V, such that = € V, and V,NK = (). But then X \ K
is equal to the union of the open sets V,, as « ranges over all points of X \ K,
and any set that is a union of open sets is itself an open set. We conclude
that X \ K is open, and thus K is closed. |}

Proposition 4.9 Let X be a Hausdorff topological space, and let K; and Ky
be compact subsets of X, where Ky N Ky = (). Then there exist open sets U,
and Uy such that K; C Uy, Ky C Uy and Uy NUy = ().
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Proof It follows from Proposition 4.7 that, for each point x of K;, there
exist open sets V, and W, such that x € V,,, Ko C W, and V,NW, = (. But
then there exists a finite set {1, xs,...,2,} of points of K such that

KiCcV,, UV, U---uV,,
since K is compact. Define
Ul:‘/;nUV;cQU"'UVxN UQZWMQWMQ...QWM_

Then U; and U, are open sets, Ky C Uy, Ky C Uy and Uy NU, = 0, as
required. ||

Lemma 4.10 Let f: X — Y be a continuous function from a compact topo-
logical space X to a Hausdorff space Y. Then f(K) is closed in'Y for every
closed set K in X.

Proof If K is a closed set in X, then K is compact (Lemma 4.3), and there-
fore f(K) is compact (Lemma 4.4). But any compact subset of a Hausdorff
space is closed (Corollary 4.8). Thus f(K) is closed in Y, as required. |}

Theorem 4.11 Let f: X — Y be a continuous bijection from a compact
topological space X to a Hausdorff space Y. Then f: X — Y is a homeomor-
phism.

Proof The function f is invertible, since it is a bijection. Let g: Y — X be
the inverse of f: X — Y. If U is open in X then X \ U is closed in X, and
hence f(X \ U) is closed in Y, by Lemma 4.10. But

FXN\U) =g (X\U) =Y \g (V).

It follows that ¢g~'(U) is open in Y for every open set U in X. Therefore
g:Y — X is continuous, and thus f: X — Y is a homeomorphism. |

We recall that a function f: X — Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and

satisfies the following condition: a subset U of Y is open in Y if and only if
f~YU) is open in X.

Proposition 4.12 Let f: X — Y be a continuous surjection from a com-

pact topological space X to a Hausdorff space Y. Then f: X — Y s an
wdentification map.
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Proof Let U be a subset of Y. We claim that Y \ U = f(K), where K =
X\ f7YU). Clearly f(K) C Y \U. Also, given any y € Y \ U, there exists
x € X satisfying y = f(z), since f: X — Y is surjective. Moreover z € K,
since f(x) € U. Thus Y\ U C f(K), and hence Y \ U = f(K), as claimed.
We must show that the set U is open in Y if and only if f~1(U) is open
in X. First suppose that f~'(U) is open in X. Then K is closed in X, and
hence f(K) is closed in Y, by Lemma 4.10. It follows that U is open in Y.
Conversely if U is open in Y then f~1(Y) is open in X, since f: X — Y is
continuous. Thus the surjection f: X — Y is an identification map. |}

Example Let S! be the unit circle in R?, defined by
St={(z,y) eR*: 2® +¢* =1},
and let ¢: [0,1] — S* be the function defined by
q(t) = (cos 27t, sin 27rt) (t €[0,1)).

Now the closed interval [0, 1] is compact, by the Heine-Borel Theorem (The-
orem 4.2), the circle S' is Hausdorff, and the function ¢:[0,1] — S! is a
continuous surjection. It follows from Proposition 4.12 that the function
q:[0,1] — S! is an identification map. Thus any function f:S' — Z from
the circle S! to some topological space Z is continuous if and only if the
composition function f o ¢q:[0,1] — Z is continuous (see Lemma 2.16).

4.5 Finite Products of Compact Spaces

We shall show that a finite Cartesian product of compact spaces is compact.
To prove this, we apply the following result, known as the Tube Lemma.

Lemma 4.13 Let X and Y be topological spaces, let K be a compact subset
of Y, and U be an open set in X X Y. Let V' be the subset of X defined by

V={reX : {z} xKCU}
Then V' is an open set in X.

Proof Let x € V. For each y € K there exist open subsets D, and £, of X
and Y respectively such that (z,y) € D, x E, and D, x E, C U. Now there
exists a finite set {y1,¥a,...,yx} of points of K such that

KCE,UE,U---UE,,,
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since K is compact. Set

N,=D, ND,N---ND

Y
Then N, is an open set in X. Moreover

k k
N, x K c | (N, x E,,) c | J(Dy, x E,) C U,

i=1 i=1

so that N, C V. It follows that V' is the union of the open sets N, for all
x € V. Thus V is itself an open set in X, as required. |}

Theorem 4.14 The Cartesian product X XY of compact topological spaces
X and'Y is itself compact.

Proof Let U be an open cover of X x Y. We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x} x Y is a compact subset of X x Y|
since it is the image of the compact space Y under the continuous map from
Y to X x Y which sends y € Y to (z,y), and the image of any compact
set under a continuous map is itself compact (Lemma 4.4). Therefore there
exists a finite collection Uy, Us, ..., U, of open sets belonging to the open
cover U such that

{%}XYCUlLJUQU"'UUT.

Let
Ve={d eX: {2} xYcCcUuU,U---UU,}

It follows from Lemma 4.13 that V, is an open set in X. We have therefore
shown that, for each point z in X, there exists an open set V, in X containing
the point x such that V, x Y is covered by finitely many of the open sets
belonging to the open cover U.

Now {V, : © € X} is an open cover of the space X. It follows from the
compactness of X that there exists a finite set {x, 2, ...,z } of points of X
such that

X:V;ZLU%ZU'..U‘/:ET‘

Now X x Y is the union of the sets V,, x Y for j = 1,2,...,r, and each
of these sets can be covered by a finite collection of open sets belonging to
the open cover Y. On combining these finite collections, we obtain a finite
collection of open sets belonging to ¢ which covers X x Y. This shows that
X x Y is compact. |}
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Corollary 4.15 The Cartesian product X1 x Xox - --x X,, of a finite number
of compact topological spaces X1, Xo, ..., X, is itself compact.

Proof It follows easily from the definition of the product topology that the
product topologies on X; X Xo x -+ x X, and (X7 X Xo x --- x X,,_1) X X,
coincide. The desired result therefore follows from Theorem 4.14 by induction
onn. |

Theorem 4.16 Let K be a subset of R™. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. Then K is closed, since R" is Hausdorff,
and a compact subset of a Hausdorff space is closed (by Corollary 4.8). For
each natural number m, let B,,, be the open ball of radius m about the origin,
given by

B, ={x e R": x| < m}.

Then {B,, : m € N} is an open cover of R. It follows from the compactness
of K that there exist natural numbers mq, ms, ..., m; such that

K C By, UBp, U-+-UBy,.

But then K C By, where M is the maximum of mq, ms, ..., my, and thus
K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C' given
by

C={(z1,29,...,2,) e R": =L < ;< Lfor j=1,2,...,n}.

Now the closed interval [—L, L] is compact by the Heine-Borel Theorem
(Theorem 4.2), and C' is the Cartesian product of n copies of the compact
set [—L, L]. Tt follows from Corollary 4.15 that C' is compact. But K is a
closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 4.3. Thus K is compact, as required. [
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