Course 212: Academic Year 1991-2 Section 3: Connected Topological Spaces

D. R. Wilkins

Contents

3	Con	nected Topological Spaces	24
	3.1	Characterizations of Connected Topological Spaces	24
	3.2	Path-Connected Topological Spaces	25
	3.3	Basic Properties of Connected Topological Spaces	26
	3.4	Connected Components of Topological Spaces	27

3 Connected Topological Spaces

3.1 Characterizations of Connected Topological Spaces

Definition A topological space X is said to be *connected* if the empty set \emptyset and the whole space X are the only subsets of X that are both open and closed.

Lemma 3.1 A topological space X is connected if and only if it has the following property: if U and V are non-empty open sets in X such that $X = U \cup V$, then $U \cap V$ is non-empty,

Proof If U is a subset of X that is both open and closed, and if $V = X \setminus U$, then U and V are both open, $U \cup V = X$ and $U \cap V = \emptyset$. Conversely if U and V are open subsets of X satisfying $U \cup V = X$ and $U \cap V = \emptyset$, then $U = X \setminus V$, and hence U is both open and closed. Thus a topological space X is connected if and only if there do not exist non-empty open sets U and V such that $U \cup V = X$ and $U \cap V = \emptyset$. The result follows.

Let \mathbb{Z} be the set of integers with the usual topology (i.e., the subspace topology on \mathbb{Z} induced by the usual topology on \mathbb{R}). Then $\{n\}$ is open for all $n \in \mathbb{Z}$, since

$$\{n\} = \mathbb{Z} \cap \{t \in \mathbb{R} : |t - n| < \frac{1}{2}\}.$$

It follows that every subset of \mathbb{Z} is open (since it is a union of sets consisting of a single element, and any union of open sets is open). It follows that a function $f: X \to \mathbb{Z}$ on a topological space X is continuous if and only if $f^{-1}(V)$ is open in X for any subset V of \mathbb{Z} . We use this fact in the proof of the next theorem.

Proposition 3.2 A topological space X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ from X to the set \mathbb{Z} of integers is constant.

Proof Suppose that X is connected. Let $f: X \to \mathbb{Z}$ be a continuous function. Choose $n \in f(X)$, and let

$$U = \{ x \in X : f(x) = n \}, \qquad V = \{ x \in X : f(x) \neq n \}.$$

Then U and V are the preimages of the open subsets $\{n\}$ and $\mathbb{Z} \setminus \{n\}$ of \mathbb{Z} , and therefore both U and V are open in X. Moreover $U \cap V = \emptyset$, and $X = U \cup V$. It follows that $V = X \setminus U$, and thus U is both open and closed. Moreover U is non-empty, since $n \in f(X)$. It follows from the connectedness of X that U = X, so that $f: X \to \mathbb{Z}$ is constant, with value n.

Conversely suppose that every continuous function $f: X \to \mathbb{Z}$ is constant. Let S be a subset of X which is both open and closed. Let $f: X \to \mathbb{Z}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in S; \\ 0 & \text{if } x \notin S. \end{cases}$$

Now the preimage of any subset of \mathbb{Z} under f is one of the open sets \emptyset , S, $X \setminus S$ and X. Therefore the function f is continuous. It follows from (iii) that the function f is constant, so that either $S = \emptyset$ or S = X. This shows that X is connected.

Lemma 3.3 The closed interval [a, b] is connected, for all real numbers a and b satisfying $a \leq b$.

Proof Let $f: [a, b] \to \mathbb{Z}$ be a continuous integer-valued function on [a, b]. We show that f is constant on [a, b]. Indeed suppose that f were not constant. Then $f(\tau) \neq f(a)$ for some $\tau \in [a, b]$. But the Intermediate Value Theorem would then ensure that, given any real number c between f(a) and $f(\tau)$, there would exist some $t \in [a, \tau]$ for which f(t) = c, and this is clearly impossible, since f is integer-valued. Thus f must be constant on [a, b]. We now deduce from Proposition 3.2 that [a, b] is connected.

Example Let

$$X = \{ (x, y) \in \mathbb{R}^2 : x \neq 0 \}$$

The topological space X is not connected. Indeed if $f: X \to \mathbb{Z}$ is defined by

$$f(x,y) = \begin{cases} 1 & \text{if } x > 0, \\ -1 & \text{if } x < 0, \end{cases}$$

then f is continuous on X but is not constant.

3.2 Path-Connected Topological Spaces

A concept closely related to that of connectedness is *path-connectedness*. Let x_0 and x_1 be points in a topological space X. A *path* in X from x_0 to x_1 is defined to be a continuous function $\gamma:[0,1] \to X$ such that $\gamma(0) = x_0$ and $\gamma(1) = x_1$. A topological space X is said to be *path-connected* if and only if, given any two points x_0 and x_1 of X, there exists a path in X from x_0 to x_1 .

Proposition 3.4 Every path-connected topological space is connected.

Proof Let X be a path-connected topological space, and let $f: X \to \mathbb{Z}$ be a continuous integer-valued function on X. If x_0 and x_1 are any two points of X then there exists a path $\gamma: [0, 1] \to \mathbb{Z}$ such that $\gamma(0) = x_0$ and $\gamma(1) = x_1$. But then $f \circ \gamma: [0, 1] \to \mathbb{Z}$ is a continuous integer-valued function on [0, 1]. But [0, 1] is connected (Lemma 3.3), therefore $f \circ \gamma$ is constant (Proposition 3.2). It follows that $f(x_0) = f(x_1)$. Thus every continuous integer-valued function on X is constant. Therefore X is connected, by Proposition 3.2.

The topological spaces \mathbb{R} , \mathbb{C} and \mathbb{R}^n are all path-connected. Indeed, given any two points of one of these spaces, the straight line segment joining these two points is a continuous path from one point to the other. Also the *n*-sphere S^n is path-connected for all n > 0. We conclude that these topological spaces are connected.

3.3 Basic Properties of Connected Topological Spaces

Let X be a topological space, and let A be a subset of X. Using Lemma 3.1 and the definition of the subspace topology, we see that A is connected if and only if the following condition is satisfied:

• if U and V are open sets in X such that $A \cap U$ and $A \cap V$ are non-empty and $A \subset U \cup V$ then $A \cap U \cap V$ is also non-empty.

Lemma 3.5 Let X be a topological space and let A be a connected subset of X. Then the closure \overline{A} of A is connected.

Proof It follows from the definition of the closure of A that $\overline{A} \subset F$ for any closed subset F of X for which $A \subset F$. On taking F to be the complement of some open set U, we deduce that $\overline{A} \cap U = \emptyset$ for any open set U for which $A \cap U = \emptyset$. Thus if U is an open set in X and if $\overline{A} \cap U$ is non-empty then $A \cap U$ must also be non-empty.

Now let U and V be open sets in X such that $\overline{A} \cap U$ and $\overline{A} \cap V$ are non-empty and $\overline{A} \subset U \cup V$. Then $A \cap U$ and $A \cap V$ are non-empty, and $A \subset U \cap V$. But A is connected. Therefore $A \cap U \cap V$ is non-empty, and thus $\overline{A} \cap U \cap V$ is non-empty. This shows that \overline{A} is connected.

Lemma 3.6 Let $f: X \to Y$ be a continuous function between topological spaces X and Y, and let A be a connected subset of X. Then f(A) is connected.

Proof Let $g: f(A) \to \mathbb{Z}$ be any continuous integer-valued function on f(A). Then $g \circ f: A \to \mathbb{Z}$ is a continuous integer-valued function on A. It follows from Proposition 3.2 that $g \circ f$ is constant on A. Therefore g is constant on f(A). We deduce from Proposition 3.2 that f(A) is connected. **Lemma 3.7** The Cartesian product $X \times Y$ of connected topological spaces X and Y is itself connected.

Proof Let $f: X \times Y \to \mathbb{Z}$ be a continuous integer-valued function from $X \times Y$ to Z. Choose $x_0 \in X$ and $y_0 \in Y$. The function $x \mapsto f(x, y_0)$ is continuous on X, and is thus constant. Therefore $f(x, y_0) = f(x_0, y_0)$ for all $x \in X$. Now fix x. The function $y \mapsto f(x, y)$ is continuous on Y, and is thus constant. Therefore

$$f(x, y) = f(x, y_0) = f(x_0, y_0)$$

for all $x \in X$ and $y \in Y$. We deduce from Proposition 3.2 that $X \times Y$ is connected.

We deduce immediately that a finite Cartesian product of connected topological spaces is connected.

3.4 Connected Components of Topological Spaces

Proposition 3.8 Let X be a topological space. For each $x \in X$, let S_x be the union of all connected subsets of X that contain x. Then

- (i) S_x is connected,
- (ii) S_x is closed,
- (iii) if $x, y \in X$, then either $S_x = S_y$, or else $S_x \cap S_y = \emptyset$.

Proof Let $f: S_x \to \mathbb{Z}$ be a continuous integer-valued function on S_x , for some $x \in X$. Let y be any point of S_x . Then, by definition of S_x , there exists some connected set A containing both x and y. But then f is constant on A, and thus f(x) = f(y). This shows that the function f is constant on S_x . We deduce that S_x is connected. This proves (i). Moreover the closure $\overline{S_x}$ is connected, by Lemma 3.5. Therefore $\overline{S_x} \subset S_x$. This shows that S_x is closed, proving (ii).

Finally, suppose that x and y are points of X for which $S_x \cap S_y \neq \emptyset$. Let $f: S_x \cup S_y \to \mathbb{Z}$ be any continuous integer-valued function on $S_x \cup S_y$. Then f is constant on both S_x and S_y . Moreover the value of f on S_x must agree with that on S_y , since $S_x \cap S_y$ is non-empty. We deduce that f is constant on $S_x \cup S_y$. Thus $S_x \cup S_y$ is a connected set containing both x and y, and thus $S_x \cup S_y \subset S_x$ and $S_x \cup S_y \subset S_y$, by definition of S_x and S_y . We conclude that $S_x = S_y$. This proves (iii).

Given any topological space X, the connected subsets S_x of X defined as in the statement of Proposition 3.8 are referred to as the *connected components* of X. We see from Proposition 3.8, part (iii) that the topological space X is the disjoint union of its connected components.

Example The connected components of

$$\{(x,y)\in\mathbb{R}^2:x\neq 0\}$$

are

$$\{(x,y) \in \mathbb{R}^2 : x > 0\}$$
 and $\{(x,y) \in \mathbb{R}^2 : x < 0\}.$

Example The connected components of

 $\{t \in \mathbb{R} : |t - n| < \frac{1}{2} \text{ for some integer } n\}.$

are the sets J_n for all $n \in \mathbb{Z}$, where $J_n = (n - \frac{1}{2}, n + \frac{1}{2})$.