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2 Topological Spaces

2.1 Topologies on Sets

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set () and the whole set X are open sets,
(ii) the union of any collection of open sets is itself an open set,
(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all the open sets in a topological space X is
referred to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, 7) the topological space whose underlying set
is X and whose topology is 7. However if no confusion will arise then it is
customary to denote this topological space simply by X.

Any metric space may be regarded as a topological space, where the open
sets of the metric space are defined as in 1. Proposition 1.6 shows that the
topological space axioms are satisfied by the collection of open sets in any
metric space.

In particular, we can regard n-dimensional Euclidean space R™ as a topo-
logical space whose open sets are those subsets V' of R" with the property
that, given any point v of V', there exists some § > 0 such that

{xeR": |x—v|<d}CV.

This topology on R™ is referred to as the usual topology on R™. One defines
the usual topologies on R and C in an analogous fashion.

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set () and the whole set X.

Definition Let X be a topological space. A subset F' of X is said to be a
closed set if and only if its complement X \ F' is an open set.
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We recall that the complement of the union of some collection of subsets
of some set X is the intersection of the complements of those sets, and the
complement of the intersection of some collection of subsets of X is the
union of the complements of those sets. The following result therefore follows
directly from the definition of a topological space.

Proposition 2.1 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ) and the whole set X are closed sets,
(i) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

2.2 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Aziom:

e if x and y are distinct points of X then there exist open sets U and V'
such that z € U,y € V and UNV = 0.

Lemma 2.2 All metric spaces are Hausdorff spaces.

Proof Let X be a metric space with distance function d, and let x and y be
points of X, where # # y. Let ¢ = 3d(x,y). Then the open balls Bx(z,¢)
and Bx(y,¢) of radius ¢ centred on the points  and y are open sets (see
Lemma 1.4). If Bx(z,¢) N Bx(y,e) were non-empty then there would exist
z € X satisfying d(z, z) < € and d(z,y) < €. But this is impossible, since it
would then follow from the Triangle Inequality that d(z,y) < 2e, contrary to
the choice of . Thus « € Bx(z,¢), y € Bx(y,¢), Bx(x,e) N Bx(y,e) = 0.
This shows that the metric space X is a Hausdorff space. |}

We now give an example of a topological space which is not a Hausdorff
space.

Example The Zariski topology on the set R of real numbers is defined as
follows: a subset U of R is open (with respect to the Zariski topology) if and
only if either U = ) or else R\ U is finite. It is a straightforward exercise to
verify that the topological space axioms are satisfied, so that the set R of real
numbers is a topological space with respect to this Zariski topology. Now
the intersection of any two non-empty open sets in this topology is always
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non-empty. (Indeed if U and V are non-empty open sets then U = R\ F}
and V = R\ F;, where F; and Fy are finite sets of real numbers. But then
UNV =R\ (F, U F), which is non-empty, since F; U F is finite and R is
infinite.) It follows immediately from this that R, with the Zariski topology,
is not a Hausdorff space.

2.3 Subspace Topologies

Let X be a topological space with topology 7, and let A be a subset of X.
Let 74 be the collection of all subsets of A that are of the form V N A for
V € 7. Then 74 is a topology on the set A. (It is a straightforward exercise
to verify that the topological space axioms are satisfied.) The topology T4
on A is referred to as the subspace topology on A.

Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).

Lemma 2.3 Let X be a metric space with distance function d, and let A be
a subset of X. A subset W of A is open with respect to the subspace topology
on A if and only if, given any point w of W, there exists some 6 > 0 such
that

{a € A:d(a,w) <d} CW.

Thus the subspace topology on A coincides with the topology on A obtained
on regarding A as a metric space (with respect to the distance function d).

Proof Suppose that W is open with respect to the subspace topology on A.
Then there exists some open set U in X such that W =U N A. Let w be a
point of W. Then there exists some ¢ > 0 such that

{re X dx,w)<d} CU.

But then
{a e A:d(a,w) <o} CUNA=W.

Conversely, suppose that W is a subset of A with the property that, for
any w € W, there exists some ¢d,, > 0 such that

{a € A:d(a,w) < d,} CW.

Define U to be the union of the open balls Bx(w,d,) as w ranges over all
points of W, where

Bx(w,dy) ={x € X : d(z,w) < 0y}
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The set U is an open set in X, since each open ball Bx(w, d,,) is an open set
in X (Lemma 1.4), and any union of open sets is itself an open set. Moreover

Bx(w,0,) NA={a € A:d(a,w) <d,} CW

for any w € W. Therefore UN A C W. However W C U N A, since, W C A
and {w} C Bx(w,d,) C U for any w € W. Thus W = U N A, where U is
an open set in X. We deduce that W is open with respect to the subspace
topology on A. |}

Example Let X be any subset of n-dimensional Euclidean space R"™. Then
the subspace topology on X coincides with the topology on X generated by
the Euclidean distance function on X. We refer to this topology as the usual
topology on X.

Let X be a topological space, and let A be a subset of X. One can readily
verify the following:—

e asubset B of A is closed in A (relative to the subspace topology on A)
if and only if B = AN F for some closed subset F' of X;

o if A is itself open in X then a subset B of A is open in A if and only
if it is open in X;

e if A is itself closed in X then a subset B of A is closed in A if and only
if it is closed in X.

2.4 Continuous Functions between Topological Spaces

Definition A function f: X — Y from a topological space X to a topological
space Y is said to be continuous if f~'(V) is an open set in X for every open
set V in Y, where

' V)={zeX: flz)eV}.

A continuous function from X to Y is often referred to as a map from X
to Y.

Lemma 2.4 Let X, Y and Z be topological spaces, and let f: X — Y and
g:Y — Z be continuous functions. Then the composition go f: X — Z of
the functions f and g is continuous.

Proof Let V be an open set in Z. Then ¢g~!(V) is open in Y (since g is
continuous), and hence f~'(g~'(V)) is open in X (since f is continuous).
But f~1(g7'(V)) = (g o f)~'(V). Thus the composition function g o f is
continuous. ||
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Lemma 2.5 Let X and Y be topological spaces, and let f: X — Y be a
function from X to Y. The function f is continuous if and only if f~1(G)
15 closed in X for every closed subset G of Y.

Proof If G is any subset of Y then X \ f7Y(G) = f~Y(Y \ G) (i.e., the
complement of the preimage of G is the preimage of the complement of G).
The result therefore follows immediately from the definitions of continuity
and closed sets. |}

Definition Let X and Y be topological spaces. A function h: X — Y is said
to be a homeomorphism if and only if the following conditions are satisfied:

e the function h: X — Y is both injective and surjective (so that the
function h: X — Y has a well-defined inverse h™ 1Y — X),

e the function h: X — Y and its inverse h~': Y — X are both continuous.

Two topological spaces X and Y are said to be homeomorphic if there exists
a homeomorphism h: X — Y from X to Y.

If h: X — Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y. Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

2.5 Sequences and Convergence

Definition Let x1, 29,23, ... be asequence of points in a topological space X .
Let p be a point of X. The sequence (x;) is said to converge to p if and only
if, given any open set U containing the point p, there exists some natural
number N such that z; € U for all j > N. If the sequence (z;) converges
to p then we refer to p as a limit of the sequence.

This definition of convergence generalizes the definition of convergence
for a sequence of points in a metric space (see Lemma 1.7).

It can happen that a sequence of points in a topological space can have
more than one limit. For example, consider the set R of real numbers with the
Zariski topology. (The open sets of R in the Zariski topology are the empty
set and those subsets of R whose complements are finite.) Let xy, z9, x3, ...
be the sequence in R defined by x; = j for all natural numbers j. One
can readily check that this sequence converges to every real number p (with
respect to the Zariski topology on R).
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Lemma 2.6 A sequence x1,x3, T3, ... of points in a Hausdorff space X con-
verges to at most one limit.

Proof Suppose that p and g were limits of the sequence (x;), where p # gq.
Then there would exist open sets U and V such that p € U, ¢ € V and
UNV =0, since X is a Hausdorff space. But then there would exist natural
numbers Ny and N, such that z; € U for all j satisfying j > N; and z; € V
for all j satisfying j > N,. But then z; € U NV for all j satisfying j > N;
and j > N,, which is impossible, since U NV = (). This contradiction shows
that the sequence (z;) has at most one limit. |

Lemma 2.7 Let X be a topological space, and let F' be a closed set in X.
Let (z; : j € N) be a sequence of points in F. Suppose that the sequence (x;)
converges to some point p of X. Thenp € F.

Proof Suppose that p were a point belonging to the complement X \ F' of F'.
Now X \ F' is open (since F' is closed). Therefore there would exist some
natural number N such that z; € X \ F for all values of j satisfying j > N,
contradicting the fact that z; € F' for all j. This contradiction shows that p
must belong to F, as required. |]

Lemma 2.8 Let X and Y be topological spaces, and let f: X — Y be a
continuous function. Let xq1,x9,x3,... be a sequence of points in X which
converges to some point p of X. Then the sequence f(x1), f(z2), f(x3),...
converges to f(p).

Proof Let V' be an open set in Y which contains the point f(p). Then
f7YV) is an open set in X which contains the point p. It follows that
there exists some natural number N such that z; € f~(V) whenever j >
N. But then f(z;) € V whenever j > N. We deduce that the sequence

f(x1), f(xa), f(x3),... converges to f(p), as required. |}

2.6 Neighbourhoods, Closures and Interiors

Definition Let X be a topological space, and let = be a point of X. Let
N be a subset of X which contains the point . Then N is said to be a
neighbourhood of the point x if and only if there exists an open set U for
which x € U and U C N.

One can readily verify that this definition of neighbourhoods in topolog-
ical spaces is consistent with that given in 1 in the context of metric spaces.
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Lemma 2.9 Let X be a topological space. A subset V' of X is open in X if
and only if V is a neighbourhood of each point belonging to V.

Proof It follows directly from the definition of neighbourhoods that an open
set V' is a neighbourhood of any point belonging to V. Conversely, suppose
that V' is a subset of X which is a neighbourhood of each v € V. Then, given
any point v of V', there exists an open set U, such that v € U, and U, C V.
Thus V is an open set, since it is the union of the open sets U, as v ranges
over all points of V. |}

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A. The interior A° of A in X is defined to be the
union of all of the open subsets of X that are contained in A.

Let X be a topological space and let A be a subset of X. It follows directly
from the definition of A that the closure A of A is uniquely characterized by
the following two properties:

(i) the closure A of A is a closed set containing A,
(ii) if F is any closed set containing A then F' contains A.

Similarly the interior A° of A is uniquely characterized by the following two
properties:

(i) the interior A° of A is an open set contained in A,
(ii) if U is any open set contained in A then U is contained in A°.

Moreover a point z of A belongs to the interior A° of A if and only if A is a
neighbourhood of .

Lemma 2.10 Let X be a topological space, and let A be a subset of X.
Suppose that a sequence x1,xs,x3, ... of points of A converges to some point p
of X. Then p belongs to the closure A of A.

Proof If F' is any closed set containing Athenz; € F for_ all j, and therefore
p € F, by Lemma 2.7. Therefore p € A by definition of A. |}
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2.7 Product Topologies

Let X1, Xo,..., X, besets. The Cartesian product X; x Xy X ---x X, of the
sets X1, X, ..., X, is the set of all n-tuples (z1, xs, ..., x,), where x; € X, for
1=1,2,...,n. If A;isasubset of X; fort=1,2,...,nthen A; xAyx---xA,
is a subset of X7 x Xy x -+ x X,.

Now let X, X5, ... X, be topological spaces. The product topology on
X1 x Xy x---x X, is the topology whose open sets are characterized by the
following property:—

e asubset U of X; x X5 x---x X, is open if and only if, given any point
(uy,us, ..., u,) of U, there exist open sets V; in X; for i = 1,2,...,n
such that v; € V; foralliand V; x Vo x --- x V,, C U.

One can readily verify that the topological space axioms are satisfied: the
empty set () and the whole space X; x X, x - -+ x X,, are open sets, any union
of open sets is open, and any finite intersection of open sets is open.

If V; is open in X; for ¢ = 1,2,...,n then V} x V5 x --- x V,, is open in
X1 x Xogx - xX,.

Theorem 2.11 Let X = X; X Xy x -+ x X,,, where X1, X5,...,X,, are
topological spaces and X is given the product topology, and for each 1, let
pi: X — X, denote the projection function which sends (x1,2a,...,T,) € X

to x;. Then the functions pi,pa,...,pn are continuous. Moreover a function
f:Z — X mapping a topological space Z into X is continuous if and only if
pio [+ Z — X, is continuous forit=1,2,...,n.

Proof Let V be an open set in X;. Then
pz_l(V):Xl X oo XXi—l XVXXi+1 NEEE XXn,

and therefore p; Y(V) is open in X. Thus p;: X — X is continuous for all .

Let f:Z — X be continuous. Then, for each i, p; o f:Z — X, is a
composition of continuous functions, and is thus itself continuous.

Conversely suppose that f: Z — X is a function with the property that
p; o f is continuous for all . Let U be an open set in X. We must show that
f~YU) is open in Z.

Let z be a point of f~1(U), and let f(2) = (u1,us,. .., u,). Now U is open
in X, and therefore there exist open sets Vi, Vs, ..., V, in Xq, X5,..., X,
respectively such that u; € V; for all i and V; x Vo x -+ x V,, C U. Let

N, = fi (V)0 fa (Vo) N 1 (V)
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where f; = p;o f fori =1,2,...,n. Now f; '(V;) is an open subset of Z for
1=1,2,...,n,since V; is open in X; and f;: 7 — X, is continuous. Thus NV,
being a finite intersection of open sets, is itself open in Z. Moreover

JIN,)CVixVox--xV,CU,

so that N, C f~1(U). It follows that f~!(U) is the union of the open sets N,
as z ranges over all points of f~*(U). Therefore f~'(U) is open in Z. This
shows that f: Z — X is continuous, as required. |}

The usual topology on n-dimensional Euclidean space R™ is by definition
the topology obtained on regarding R™ as a metric space with the Euclidean
distance function.

Proposition 2.12 The usual topology on R™ coincides with the product topol-
ogy on R™ obtained on regarding R™ as the Cartesian product R xR x --- xR
of n copies of the real line R.

Proof We must show that a subset U of R" is open with respect to the usual
topology if and only if it is open with respect to the product topology.

Let U be a subset of R” that is open with respect to the usual topology,
and let u € U. Then there exists some § > 0 such that B(u,d) C U, where

B(u,d) ={x e R": |x —u| < d}.

Let I, Is, ..., I, be the open intervals in R defined by

0 )
I = R:u — — o —
={te u; \/ﬁ<t<“l+\/ﬁ}

Then Iy, I, ..., I, are open sets in R. Moreover

(1=1,2,...,n),

{u}chixlhx--x1I,CB(ud) CU,

since )
- )
2 2 2
X —ul”= Ti—w) <n|{—] =90
e =Yt <o ()
for all x € I1 x Iy x --- x I,. This shows that any subset U of R" that is
open with respect to the usual topology on R"™ is also open with respect to
the product topology on R™.
Conversely suppose that U is a subset of R™ that is open with respect
to the product topology on R", and let u € U. Then there exist open
sets V1, V5, ..., V, in R containing uy, us, ..., u, respectively such that V; x
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Vo x -+ xV, Cc U Now we can find d1,0ds,...,0, such that 9; > 0 and
(u;—0;,u; +0;) C 'V for all i. Let & > 0 be the minimum of 1,2, ...,...,0,.
Then

B(u,0) cVixVox .-V, CU,

for if x € B(u,d) then |z; —w;| < §; for i = 1,2,...,n. This shows that any
subset U of R" that is open with respect to the product topology on R" is
also open with respect to the usual topology on R". |}

The following result is now an immediate corollary of Proposition 2.12
and Theorem 2.11.

Corollary 2.13 Let X be a topological space and let f: X — R™ be a function
from X to R"™. Let us write

f@) = (fi(@), fo(), ., ful))

for all x € X, where the components fi, fa, ..., fn of [ are functions from X
toR. The function f is continuous if and only if its components f1, fa, ..., fn
are all continuous.

Let f: X — R and ¢g: X — R be continuous real-valued functions on some
topological space X. We claim that f+g, f —g and f.g are continuous. Now
the sum and product functions s: R? — R and p: R? — R defined by s(z,y) =
x +y and p(x,y) = xy are continuous, and f + g = soh and f.g = poh,
where h: X — R? is defined by h(x) = (f(z),g(z)). Moreover it follows
from Corollary 2.13 that the function A is continuous, and compositions of
continuous functions are continuous. Therefore f 4 ¢ and f.g are continuous,
as claimed. Also —g is continuous, and f — g = f + (—g), and therefore
f — ¢ is continuous. If in addition the continuous function ¢ is non-zero
everywhere on X then 1/g is continuous (since 1/g is the composition of g
with the reciprocal function ¢ +— 1/t), and therefore f/g is continuous.

Lemma 2.14 The Cartesian product X1 x Xo X ..., X, of Hausdorff spaces
X1, Xo, ..., X, 1s Hausdorff.

Proof Let X = X; x Xy, x ..., X,, and let x and y be distinct points of X,
where x = (x1,29,...,2,) and y = (y1,¥2,...,Yn). Then x; # y; for some
integer ¢ between 1 and n. But then there exist open sets U and V in X
such that x; € U, y; € V. and UNV = ) (since X; is a Hausdorff space).
Let p;: X — X; denote the projection function. Then p;*(U) and p; *(V) are
open sets in X, since p; is continuous. Moreover x € pi_l(U), y € pi_l(V),
and p; 1(U) Np; (V) = 0. Thus X is Hausdorff, as required. ||
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2.8 Identification Maps and Quotient Topologies

Definition Let X and Y be topological spaces and let ¢: X — Y be a
function from X to Y. The function ¢ is said to be an identification map if
and only if the following conditions are satisfied:

(i) the function ¢: X — Y is surjective,
(ii) a subset U of Y is open in Y if and only if ¢~ *(U) is open in X.

It follows directly from condition (ii) in the definition of an identification
map that any identification map is continuous.

Lemma 2.15 Let X be a topological space, let'Y be a set, and let ¢: X —'Y
be a surjection. Then there is a unique topology on'Y for which the function
q: X — Y s an identification map.

Proof Let 7 be the collection consisting of all subsets U of Y for which
¢ }(U) is open in X. Now ¢! (@) =0, and ¢7'(Y) = X, so that § € 7 and
Y er. If {V,:a¢€ A} is any collection of subsets of Y indexed by a set A,
then

UaeA ¢ (Vo) =q" (UaeA Va) ’ maeA ¢ (Vo) =g (ﬂaeA Va)

(i.e., given any collection of subsets of Y, the union of the preimages of the
sets is the preimage of the union of those sets, and the intersection of the
preimages of the sets is the preimage of the intersection of those sets). Indeed

re UaeA (Vo) Ja e Az eqg (V)

da € A, q(z) €V,
Q(l') < UaEA Va

—1
T € q (UaeA Va) ’
Vac Axcqt(V,)
Va € A q(x) € V,

q(z) € ﬂaeA Vi
req’! (ﬂaeA Va) ’

It follows easily from this that unions and finite intersections of sets belonging
to 7 must themselves belong to 7. Thus 7 is a topology on Y, and the function
q¢: X — Y is an identification map with respect to the topology 7. Clearly 7 is
the unique topology on Y for which the function ¢: X — Y is an identification

map. |

S ﬂaeA g ' (Vo)
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Let X be a topological space, let Y be a set, and let ¢: X — Y be a
surjection. The unique topology on Y for which the function ¢ is an identifi-

cation map is referred to as the quotient topology (or identification topology)
onY.

Lemma 2.16 Let X and Y be topological spaces and let g: X — Y be an
identification map. Let Z be a topological space, and let f:Y — Z be a
function from'Y to Z. Then the function f is continuous if and only if the
composition function foq: X — Z is continuous.

Proof Suppose that f is continuous. Then the composition function fogq is
a composition of continuous functions and hence is itself continuous.

Conversely suppose that f o ¢ is continuous. Let U be an open set in Z.
Then ¢~ (f~1(U)) is open in X (since foq is continuous), and hence f~1(U)
is open in Y (since the function ¢ is an identification map). Therefore the
function f is continuous, as required. |

Example Let S™ be the n-sphere, consisting of all points x in R""! satisfy-
ing [x| = 1. Let RP" be the set of all lines in R™! passing through the origin
(i.e., RP™ is the set of all one-dimensional vector subspaces of R™™). Let
q: S™ — RP"™ denote the function which sends a point x of S™ to the element
of RP" represented by the line in R"*! that passes through both x and the
origin. Note that each element of RP™ is the image (under ¢) of exactly
two antipodal points x and —x of S™. The function ¢ induces a correspond-
ing quotient topology on RP™ such that ¢: 5" — RP" is an identification
map. The set RP", with this topology, is referred to as real projective n-
space. In particular RP? is referred to as the real projective plane. It follows
from Lemma 2.16 that a function f:RP™ — Z from RP" to any topological
space Z is continuous if and only if the composition function f o q:S™ — Z
is continuous.
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