1. Consider the following subsets of \mathbb{R}^3. Determine which are open and which are closed in \mathbb{R}^3. [Fully justify your answers.]

 (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \geq 5\}$,
 (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 16 \text{ or } z > 3\}$,
 (iii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 16 \text{ and } z \leq 3\}$,
 (iv) $\{(x, y, z) \in \mathbb{R}^3 : y > 0 \text{ and } x^2 + z^2 \geq 1/y\}$.

2. (a) Define the concept of a metric space.
 (b) Let X be a metric space with distance function d, and let x_1, x_2, x_3, \ldots be a sequence of points of X. What is meant by saying that this sequence converges to some point p of X?
 (c) Let X and Y be metric spaces with distance functions d_X and d_Y respectively. What is meant by saying that a function $\varphi : X \to Y$ from X to Y is continuous?
 (d) Let x_1, x_2, x_3, \ldots be a sequence of points of the metric space X which converges to some point p of X, and let $\varphi : X \to Y$ be a continuous function from X to some metric space Y. Prove that the sequence $\varphi(x_1), \varphi(x_2), \varphi(x_3), \ldots$ converges to $\varphi(p)$.
 (e) Let X and Y be metric spaces with distance functions d_X and d_Y respectively, let $\varphi : X \to Y$ be a function from X to Y, and let p be a point of X. Suppose that the function φ is not continuous at p. Prove that there exists some $\varepsilon_0 > 0$ and a sequence x_1, x_2, x_3, \ldots of points of X converging to p with the property that $d_Y(x_j, p) \geq \varepsilon_0$ for all natural numbers j.

3. Let X be a metric space with distance function d.
 (a) Define precisely what is meant by saying that a sequence x_1, x_2, x_3, \ldots of points of X is a Cauchy sequence. Define the concept of a complete metric space.
 (b) Let x_1, x_2, x_3, \ldots and y_1, y_2, y_3, \ldots be sequences of points of the metric space X. Suppose that the sequence x_1, x_2, x_3, \ldots is a Cauchy sequence and that $d(x_j, y_j) \to 0$ as $j \to +\infty$. Prove that the sequence y_1, y_2, y_3, \ldots is also a Cauchy sequence.
State and prove the *Contraction Mapping Theorem.*

4. (a) Define the concept of a *topological space.* What is meant by saying that a topological space X is Hausdorff?

(b) What is meant by saying that a sequence x_1, x_2, x_3, \ldots of points in a topological space X converges to some point p of X? What is meant by saying that a function $\varphi: X \rightarrow Y$ from a topological space X to a topological space Y is *continuous*?

(c) Let X be a topological space, and let A be a subset of X. Prove that A is a topological space with respect to the *subspace topology* on A, whose open sets are subsets of A of the form $A \cap V$, where V is open in X. Prove that if X is a Hausdorff space then A, with the subspace topology, is also a Hausdorff space.

(d) Let X be an arbitrary set. Let us refer to a subset V of X as an *open set* if either $V = X$ or else the complement $X \setminus V$ of V is finite. Prove that X, with these open sets, is a topological space. Show also that X is Hausdorff if and only if X is finite.

[Additional questions were contributed by Dr. Donal P. O’Donovan on the material that he taught.]

©TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1991