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3 Topological Spaces

3.1 Topologies on Sets

Definition A topological space X consists of a set X together with a collec-
tion of subsets, referred to as open sets, such that the following conditions
are satisfied:—

(i) the empty set ∅ and the whole set X are open sets,

(ii) the union of any collection of open sets is itself an open set,

(iii) the intersection of any finite collection of open sets is itself an open set.

The collection consisting of all open sets in a topological space X is referred
to as a topology on the set X.

Remark If it is necessary to specify explicitly the topology on a topological
space then one denotes by (X, τ) the topological space whose underlying set
is X and whose topology is τ . However if no confusion will arise then it is
customary to denote this topological space simply by X.

Any metric space may be regarded as a topological space, where the open
sets of the metric space are defined as in 1. Proposition 1.7 shows that the
topological space axioms are satisfied by the collection of open sets in any
metric space.

In particular, we can regard n-dimensional Euclidean space Rn as a topo-
logical space whose open sets are those subsets V of Rn with the property
that, given any point v of V , there exists some δ > 0 such that

{x ∈ Rn : |x− v| < δ} ⊂ V.

This topology on Rn is referred to as the usual topology on Rn. One defines
the usual topologies on R and C in an analogous fashion.

Example Given any set X, one can define a topology on X where every
subset of X is an open set. This topology on X is referred to as the discrete
topology on X.

Example Given any set X, one can define a topology on X in which the
only open sets are the empty set ∅ and the whole set X.
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Example The Zariski topology on the set R of real numbers is defined as
follows: a subset U of R is open (with respect to the Zariski topology) if and
only if either U = ∅ or else R \ U is finite. It is a straightforward exercise
to verify that the topological space axioms are satisfied, so that the set R of
real numbers is a topological space with respect to this Zariski topology.

Definition Let X be a topological space. A subset F of X is said to be a
closed set if and only if its complement X \ F is an open set.

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the complements
of those sets). The following result therefore follows directly from the relevant
definitions.

Proposition 3.1 Let X be a topological space. Then the collection of closed
sets of X has the following properties:—

(i) the empty set ∅ and the whole set X are closed sets,

(ii) the intersection of any collection of closed sets is itself a closed set,

(iii) the union of any finite collection of closed sets is itself a closed set.

3.2 Subspace Topologies

Let X be a topological space with topology τ , and let A be a subset of X. Let
τA be the collection of all subsets of A that are of the form V ∩A for V ∈ τ .
Then τA is a topology on the set A. (It is a straightforward exercise to verify
that the topological space axioms are satisfied by τA.) The topology τA on A
is referred to as the subspace topology on A.

Example Let H+ and H− be the subsets of R3 defined by

H+ = {(x, y, z) ∈ R3 : z > 0}, H− = {(x, y, z) ∈ R3 : z < 0}.

Then H+ and H− are open sets in R3. Let S2 be the unit sphere in R3,
defined by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
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and let
A+ = {(x, y, z) ∈ R3 : z > 0 and x2 + y2 + z2 = 1},
A− = {(x, y, z) ∈ R3 : z < 0 and x2 + y2 + z2 = 1}.

Then the sets A+ and A− are open in S2 (with respect to the subspace
topology on S2), since A+ = H+ ∩ S2 and A− = H− ∩ S2. (Note that A+

and A− are not open in R3.) The complements

{(x, y, z) ∈ R3 : z ≤ 0 and x2 + y2 + z2 = 1},

{(x, y, z) ∈ R3 : z ≥ 0 and x2 + y2 + z2 = 1}
of A+ and A− in S2 are then closed subsets of S2.

Lemma 3.2 Let X be a metric space with distance function d, and let A be
a subset of X. A subset W of A is open with respect to the subspace topology
on A if and only if, given any point w of W , there exists some δ > 0 such
that

{a ∈ A : d(a, w) < δ} ⊂ W.

Thus the subspace topology on A concides with the topology on A obtained on
regarding A as a metric space (with respect to the distance function d).

Proof Suppose that W is open with respect to the subspace topology on A.
Then there exists some open set U in X such that W = U ∩ A. Let w be a
point of W . Then there exists some δ > 0 such that

{x ∈ X : d(x,w) < δ} ⊂ U.

But then
{a ∈ A : d(a, w) < δ} ⊂ U ∩ A = W.

Conversely, suppose that W is a subset of A with the property that, for
any point w of W , there exists some δw > 0 such that

{a ∈ A : d(a, w) < δw} ⊂ W.

Define U to be the union of the open balls BX(w, δw) as w ranges over all
points of W , where

BX(w, δw) = {x ∈ X : d(x,w) < δw}.

The set U is an open set in X, since each open ball BX(w, δw) is an open
set in X (by Lemma 1.5), and any union of open sets is itself an open set.
Moreover

BX(w, δw) ∩ A = {a ∈ A : d(a, w) < δw} ⊂ W
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for any w ∈ W . Therefore U ∩A ⊂ W . However W ⊂ U ∩A, since, W ⊂ A
and {w} ⊂ BX(w, δw) ⊂ U for any w ∈ W . Thus W = U ∩ A, where U is
an open set in X. We deduce that W is open with respect to the subspace
topology on A.

Example Let X be any subset of n-dimensional Euclidean space Rn. Then
the subspace topology on X coincides with the topology on X generated by
the Euclidean distance function on X. We refer to this topology as the usual
topology on X.

Let X be a topological space, and let A be a subset of X. One can readily
verify the following:—

a subset B of A is closed in A (relative to the subspace topology
on A) if and only if B = A ∩ F for some closed subset F of X,

if A is itself open in X then a subset B of A is open in A if and
only if it is open in X,

if A is itself closed in X then a subset B of A is closed in A if
and only if it is closed in X.

3.3 Hausdorff Spaces

Definition A topological space X is said to be a Hausdorff space if and only
if it satisfies the following Hausdorff Axiom:

if x and y are distinct points of X then there exist open sets U
and V such that x ∈ U , y ∈ V and U ∩ V = ∅.

Any subset of a Hausdorff space is itself a Hausdorff space (with respect
to the subspace topology).

Lemma 3.3 All metric spaces are Hausdorff spaces

Proof Let X be a metric space with distance function d, and let x and y
be points of X, where x 6= y. Let U = BX(x, ε) and V = BX(y, ε), where
ε = 1

2
d(x, y). (Here BX(x, ε) and BX(y, ε) denote the open balls of radius ε

about the points x and y respectively.) Now U and V are open sets, by
Lemma 1.5. Also U∩V = ∅. To see this we note that, were U∩V non-empty,
then there would exist a point z in X such that d(x, z) < ε and d(z, y) < ε.
But this is impossible, since it would then follow from the Triangle Inequality
that d(x, y) < 2ε, contrary to the choice of ε. We deduce that U ∩ V = ∅, as
required.
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We now give an example of a topological space which is not a Hausdorff
space.

Example Consider the set R of real numbers with the Zariski topology, in
which a subset of R is open if and only if it is empty or its complement
is a finite set. The intersection of any two non-empty open sets is always
non-empty. (Indeed if U and V are non-empty open sets then U = R \ F1

and V = R \ F2, where F1 and F2 are finite sets of real numbers. But then
U ∩ V = R \ (F1 ∪ F2), which is non-empty, since R is infinite but F1 ∪ F2

is finite.) It follows easily from this that the Zariski topology on R does not
satisfy the Hausdorff axiom.

3.4 Continuous Functions between Topological Spaces

Definition Let X and Y be topological spaces. A function f :X → Y is
said to be continuous if and only if f−1(V ) is an open set in X for every
open set V in Y , where

f−1(V ) ≡ {x ∈ X : f(x) ∈ V }.

A continuous function from X to Y is often referred to as a map from X
to Y .

Lemma 3.4 Let X, Y and Z be topological spaces, and let f :X → Y and
g:Y → Z be continuous functions. Then the composition g ◦ f :X → Z of
the functions f and g is continuous.

Proof Let V be an open set in Z. Then g−1(V ) is open in Y (since g is
continuous), and hence f−1(g−1(V )) is open in X (since f is continuous).
But f−1(g−1(V ) = (g ◦ f)−1(V ). Thus the composition function g ◦ f is
continuous.

Lemma 3.5 Let X and Y be topological spaces, and let f :X → Y be a
function from X to Y . The function f is continuous if and only if f−1(G)
is closed in X for every closed subset G of Y .

Proof This result follows easily from the observation that X \ f−1(G) =
f−1(Y \G) for all subsets G of Y .

Definition Let X and Y be topological spaces. A function h:X → Y is said
to be a homeomorphism if and only if the following conditions are satisfied:
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(i) the function h:X → Y is both injective and surjective (so that the
function h:X → Y has a well-defined inverse h−1:Y → X),

(ii) the function h:X → Y and its inverse h−1:Y → X are both continuous.

If there exists a homeomorphism h:X → Y from the topological space X to
the topological space Y then the topological spaces X and Y are said to be
homeomorphic.

If h:X → Y is a homeomorphism between topological spaces X and Y
then h induces a one-to-one correspondence between the open sets of X and
the open sets of Y . Thus the topological spaces X and Y can be regarded
as being identical as topological spaces.

3.5 Sequences and Convergence

Definition Let x1, x2, x3, . . . be a sequence of points in a topological spaceX.
Let l be a point of X. The sequence (xj) is said to converge to l if and only
if, given any open set U containing the point l, there exists some natural
number N such that xj ∈ U for all j satisfying j ≥ N . If the sequence (xj)
converges to l then we refer to l as a limit of the sequence.

This definition of convergence generalizes the definition of convergence
for a sequence of points in a metric space (see Lemma 1.8).

It can happen that a sequence of points in a topological space can have
more than one limit. For example, consider the set R of real numbers with the
Zariski topology. (The open sets of R in the Zariski topology are the empty
set and those subsets of R whose complements are finite.) Let x1, x2, x3, . . .
be the sequence in R defined by xj = j for all natural numbers j. One can
readily check that, for any real number l, the sequence (xj) converges to l
(with respect to the Zariski topology on R).

Lemma 3.6 A sequence x1, x2, x3, . . . of points in a Hausdorff space X con-
verges to at most one limit.

Proof Suppose that l and m were limits of the sequence (xj), where l 6= m.
Then there would exist open sets U and V such that l ∈ U , m ∈ V and
U ∩V = ∅, since X is a Hausdorff space. But then there would exist natural
numbers N1 and N2 such that xj ∈ U for all j satisfying j ≥ N1 and xj ∈ V
for all j satisfying j ≥ N2. But then xj ∈ U ∩ V for all j satisfying j ≥ N1

and j ≥ N2, which is impossible, since U ∩ V = ∅. This contradiction shows
that the sequence (xj) has at most one limit.
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Lemma 3.7 Let X be a topological space, and let F be a closed set in X.
Let (xj : j ∈ N) be a sequence of points in F . Suppose that the sequence (xj)
converges to some point l of X. Then l ∈ F .

Proof Suppose that l were a point belonging to the complement X \F of F .
Now X \ F is open (since F is closed). Therefore there would exist some
natural number N such that xj ∈ X \ F for all values of j satisfying j ≥ N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that l
must belong to F , as required.

Lemma 3.8 Let X and Y be topological spaces, and let f :X → Y be a con-
tinuous function from X to Y . Let x1, x2, x3, . . . be a sequence of points in X
which converges to some point l of X. Then the sequence f(x1), f(x2), f(x3), . . .
converges to f(l).

Proof Let V be an open set in Y which contains the point f(l). Then
f−1(V ) is an open set in X which contains the point l. It follows that
there exists some natural number N such that xj ∈ f−1(V ) whenever j ≥
N . But then f(xj) ∈ V whenever j ≥ N . We deduce that the sequence
f(x1), f(x2), f(x3), . . . converges to f(l), as required.

3.6 Neighbourhoods, Closures and Interiors

Definition Let X be a topological space, and let x be a point of X. Let
N be a subset of X which contains the point x. Then N is said to be a
neighbourhood of the point x if and only if there exists an open set U for
which x ∈ U and U ⊂ N .

One can readily verify that this definition of neighbourhoods for points in
a topological space is consistent with that given in 1 in the context of points
in a metric space.

Example Let A be the closed unit ball in R3, defined by

A = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1},

and let B be the open unit ball, defined by

B = {(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}.

If b is any point of B then A is a neighbourhood of b, since B is an open set
for which b ∈ B and B ⊂ A. If however b is a point on the unit sphere S2,
where

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1},
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then A is not a neighbourhood of b since any open set containing b must
also contain points whose distance from the origin exceeds 1.

Lemma 3.9 Let X be a topological space. A subset V of X is open in X if
and only if V is a neighbourhood of each point belonging to V .

Proof It follows directly from the definition of neighbourhoods that an open
set V is a neighbourhood of any point belonging to V . Conversely, suppose
that V is a subset of X with the property that V is a neighbourhood of each
point belonging to V . Then, given any point v of V , there exists an open
set Uv such that v ∈ Uv and Uv ⊂ V . Thus V is the union of the open sets Uv

as v ranges over all points of V . But any set that is the union of open sets
is itself open. Thus V is an open set in X.

Definition Let X be a topological space and let A be a subset of X. The
closure A of A in X is defined to be the intersection of all of the closed
subsets of X that contain A. The interior A0 of A in X is defined to be the
union of all of the open subsets of X that are contained in A.

Proposition 3.10 Let X be a topological space and let A be a subset of
X. Then the closure A of A is uniquely chararcterized by the following two
properties:

(i) A is a closed set satisfying A ⊂ A,

(ii) A ⊂ F for any closed set F satisfying A ⊂ F .

Similarly the interior A0 of A is uniquely characterized by the following two
properties:

(i) A0 is an open set satisfying A0 ⊂ A,

(ii) U ⊂ A0 for any open set U satisfying U ⊂ A.

Proof Note that the closure A of A contains A since it is the intersection of
some non-empty collection of subsets of X each of which contains the set A.
(One of these subsets is X itself.) Moreover the closure of A is a closed set,
since any intersection of closed sets is closed. It follows directly from the
definition of the closure A of A that if F is a closed subset of X containing A
then A ⊂ F .

The interior A0 is an open set contained in A since it is the union of a
collection of open sets contained in A, and any union of open sets is itself an
open set. It follows directly from the definition of the interior A0 of A that
if U is an open subset of X which is contained in A then U ⊂ A0.
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The following result follows directly from the relevant definitions.

Lemma 3.11 Let X be a topological space, let A be a subset of X, and let
x be a point of A. Then A is a neighbourhood of x if and only if x belongs
to the interior A0 of A.

Lemma 3.12 Let X be a topological space, and let A be a subset of X.
Suppose that a sequence x1, x2, x3, . . . of points of A converges to some point l
of X. Then l ∈ A.

Proof This follows directly from Lemma 3.7, sinceA is closed andA ⊂ A.

Example Let S2 be the unit sphere in R3, and let A and C denote the
subsets of S2 defined by

A = {(x, y, z) ∈ R3 : z > 0 and x2 + y2 + z2 = 1},
C = {(x, y, z) ∈ R3 : z ≥ 0 and x2 + y2 + z2 = 1}.

We claim that A = C. Now C is a closed set in S2. Therefore A ⊂ C. We
now show that C \ A ⊂ A. Let u be any point of C \ A. Then u = (x, y, 0),
where x and y are real numbers satisfying x2 + y2 = 1. For each natural
number n define

vn = (x cos(1/n), y cos(1/n), sin(1/n)) .

Then vn → u as n→ +∞. But vn is a point of A for all n. It follows from
Lemma 3.12 that u ∈ A. This shows that C \ A ⊂ A, and hence C ⊂ A
(since A ⊂ A). We conclude that C = A.

3.7 Product Topologies

Let X1, X2, . . . , Xn be sets. The Cartesian product X1 × X2 × · · · × Xn of
the sets X1, X2, . . . , Xn is defined to be the set of all n-tuples (x1, x2, . . . , xn),
where xi ∈ Xi for i = 1, 2, . . . , n. IfA1, A2, . . . , An are subsets ofX1, X2, . . . , Xn

respectively then can regard the Cartesian product A1 × A2 × · · · × An as a
subset of X1 ×X2 × · · · ×Xn.

Now let X1, X2, . . . Xn be topological spaces. We define a topology on the
Cartesian product X1 ×X2 × · · · ×Xn whose open sets are characterized by
the following property:—

a subset U of X1 × X2 × · · · × Xn is open if and only if, for
each point (u1, u2, . . . , un) of U , there exist open sets Vi in Xi for
i = 1, 2, . . . , n such that ui ∈ Vi for all i and V1×V2×· · ·×Vn ⊂ U .
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One can readily verify that the topological space axioms are satisfied: the
empty set ∅ and the whole space X1×X2×· · ·×Xn are open sets, any union
of open sets is open, and any finite intersection of open sets is open. This
topology is referred to as the product topology on X1 ×X2 × · · · ×Xn.

Note that if Vi is an open set in Xi for i = 1, 2, . . . , n then V1×V2×· · ·×Vn
is an open set in X1 ×X2 × · · · ×Xn.

Lemma 3.13 Let X1, X2, . . . , Xn be topological spaces, and let pi denote the
function from X1 ×X2 × · · · ×Xn to Xi defined by

pi(x1, x2, . . . , xn) = xi

for i = 1, 2, . . . , n. Then p1, p2, . . . , pn are continuous functions.

Proof Let V be an open set in Xi. Then

p−1i (V ) = X1 × · · · ×Xi−1 × V ×Xi+1 × · · · ×Xn.

Thus p−1i (V ) is the Cartesian product of open subsets of X1, X2, . . . , Xn. It
follows from the definition of the product topology that p−1i (V ) is an open set
in X1×X2× · · · ×Xn. Thus pi:X1×X2× · · · ×Xn → Xi is continuous.

Theorem 3.14 Let X1 × X2 × · · · × Xn be the Cartesian product of the
topological spaces X1, X2, . . . , Xn. Let Z be a topological space. A function
f :Z → X1 × X2 × · · · × Xn is continuous if and only if pi ◦ f :Z → Xi is
continuous for i = 1, 2, . . . , n, where pi:X1 × X2 × · · · × Xn → Xi denotes
the projection function sending (x1, x2, . . . , xn) to xi.

Proof Suppose that f :Z → X1×X2×· · ·×Xn is continuous. Then pi ◦f is
continuous for all i, since pi is continuous (Lemma 3.13) and a composition
of continuous functions is continuous (Lemma 3.4).

Conversely suppose that pi ◦ f is continuous for all i. Let U be an open
set in X1×X2×· · ·×Xn. We must show that f−1(U) is open in Z. To show
this, we prove that, for each z ∈ f−1(U), there exists some open set Nz in Z
such that z ∈ Nz and Nz ⊂ f−1(U).

Let z be a point of f−1(U), and let f(z) = (u1, u2, . . . , un). Now U is open
in X1×X2×· · ·×Xn. It follows from the definition of the product topology
that there exist open sets V1, V2, . . . , Vn in X1, X2, . . . , Xn respectively such
that ui ∈ Vi for all i and V1 × V2 × · · · × Vn ⊂ U . Let Nz be the subset of Z
defined by

Nz = f−11 (V1) ∩ f−12 (V2) ∩ · · · ∩ f−1n (Vn).
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Now f−1i (Vi) is an open subset of Z for i = 1, 2, . . . , n, since Vi is open in
Xi and fi:Z → Xi is continuous. But any finite intersection of open sets is
open. Thus Nz is open in Z. Moreover

f(Nz) ⊂ V1 × V2 × · · · × Vn ⊂ U,

so that Nz ⊂ f−1(U).
Now f−1(U) is the union of the open sets Nz as z ranges over all points

of f−1(U). Therefore f−1(U) is open in Z. This shows that f :Z → X1 ×
X2 × · · · ×Xn is continuous.

Proposition 3.15 The usual topology on Rn (induced by the Euclidean dis-
tance function on Rn) coincides with the product topology on Rn obtained on
regarding Rn as the Cartesian product R×R× · · ·×R of n copies of the real
line R.

Proof We must show that a subset U of Rn is open with respect to the usual
topology if and only if it is open with respect to the product topology.

Let U be a subset of Rn that is open with respect to the usual topology,
and let u be a point of U , where u = (u1, u2, . . . , un). It follows from the
definition of the usual topology on Rn that there exists some δ > 0 such that

{x ∈ Rn : |x− u| < δ} ⊂ U.

Let I1, I2, . . . , In be the open intervals in R defined by

Ii = {t ∈ R : ui −
δ√
n
< t < ui +

δ√
n
} (i = 1, 2, . . . , n).

Then I1, I2, . . . , In are open sets in R containing (u1, u2, . . . , un), and I1 ×
I2 × · · · × In ⊂ U . Indeed if x is a point of I1 × I2 × · · · × In, where
x = (x1, x2, . . . , xn), then |xi − ui| < δ/

√
n for all i, and hence |x − u| < δ.

This shows that any subset U of Rn that is open with respect to the usual
topology on Rn is also open with respect to the product topology on Rn.

Conversely suppose that U is a subset of Rn that is open with respect
to the product topology on Rn, and let u be a point of U , where u =
(u1, u2, . . . , un). Then there exist open sets V1, V2, . . . , Vn in R containing
u1, u2, . . . , un respectively such that V1×V2×· · ·×Vn ⊂ U . Now we can find
δ1, δ2, . . . , δn such that δi > 0 and (ui−δi, ui +δi) ⊂ Vi) for all i. Let δ be the
minimum of δ1, δ2, . . . , . . . , δn. Then δ > 0. If x is a point of Rn satisfying
|x− u| < δ, where x = (x1, x2, . . . , xn), then |xi − ui| < δi and hence xi ∈ Vi
for i = 1, 2, . . . , n. It follows that

{x ∈ Rn : |x− u| < δ} ⊂ V1 × V2 × · · · × Vn ⊂ U.
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This shows that any subset U of Rn that is open with respect to the product
topology on Rn is also open with respect to the usual topology on Rn.

The following result is the analogue of Proposition 1.17 for functions from
a topological space X to Rn.

Corollary 3.16 Let X be a topological space and let f :X → Rn be a function
from X to Rn. Let us write

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where the components f1, f2, . . . , fn of f are functions from X
to R. The function f is continuous if and only if its components f1, f2, . . . , fn
are all continuous.

Proof Note that fi = pi ◦f for i = 1, 2, . . . , n, where pi:Rn → R denotes the
projection function mapping (x1, x2, . . . , xn) to xi. The desired result now
follows immediately from Proposition 3.15 and Theorem 3.14.

Lemma 3.17 Let X1, X2, . . . , Xn be Hausdorff spaces. Then the space X1×
X2 × . . . , Xn is Hausdorff.

Proof Let X = X1×X2×. . . , Xn, and let (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
be distinct points of X. Then xi 6= yi for some integer i between 1 and n.
But then there exists open sets U and V in Xi such that xi ∈ U , yi ∈ V
and U ∩ V = ∅ (since Xi is a Hausdorff space). Let pi:X → Xi denote
the projection function. Then p−1i (U) and p−1i (V ) are open sets in X, since
pi is continuous. Moreover (x1, x2, . . . , xn) belongs to p−1i (U), (y1, y2, . . . , yn)
belongs to p−1i (V ) and p−1i (U)∩p−1i (V ) = ∅. This shows that X is Hausdorff,
as required.

3.8 Identification Maps and Quotient Topologies

Definition Let X and Y be topological spaces and let q:X → Y be a
function from X to Y . The function q is said to be an identification map if
and only if the following conditions are satisfied:

(i) the function q:X → Y is surjective,

(ii) a subset U of Y is open in Y if and only if q−1(U) is open in X.

It follows directly from condition (ii) in the definition of an identification
map that any identification map is continuous.
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Lemma 3.18 Let X be a topological space, let Y be a set, and let q:X → Y
be a surjection. Then there is a unique topology on Y for which the function
q:X → Y is an identification map.

Proof Let τ be the collection consisting of all subsets U of Y for which
q−1(U) is open in X. Now q−1(∅) = ∅, and q−1(Y ) = X, so that ∅ ∈ τ and
Y ∈ τ . It is readily verified that any union of sets belonging to τ is itself a set
belonging to τ , and that any finite intersection of sets belonging to τ is itself
a set belonging to τ . Thus τ is a topology on Y , and the function q:X → Y
is an identification map with respect to the topology τ on Y . Clearly the
topology τ is the unique topology on Y for which the function q:X → Y is
a identification map.

Let X be a topological space, let Y be a set, and let q:X → Y be a
surjection. The unique topology on Y for which the function q is an identi-
fcation map is referred to as the quotient topology (or identification topology)
on Y .

Lemma 3.19 Let X and Y be topological spaces and let q:X → Y be an
identification map. Let Z be a topological space, and let f :Y → Z be a
function from Y to Z. Then the function f is continuous if and only if the
composition function f ◦ q:X → Z is continuous.

Proof Suppose that f is continuous. Then the composition function f ◦ q is
a composition of continuous functions and hence is itself continuous.

Conversely suppose that f ◦ q is continuous. Let U be an open set in Z.
Then q−1(f−1(U)) is open in X (since f ◦ q is continuous), and hence f−1(U)
is open in Y (since the function q is an identification map). Therefore the
function f is continuous, as required.

Example Let Sn be the n-sphere, consisting of all points x in Rn+1 satisfying
|x| = 1. Let RP n be the set of all lines in Rn+1 passing through the origin
(i.e., RP n is the set of all one-dimensional vector subspaces of Rn+1). Let
q:Sn → RP n denote the function which sends a point x of Sn to the element
of RP n represented by the line in Rn+1 that passes through both x and
the origin. Note that each point of RP n is the image (under q) of exactly
two points on Sn, if x ∈ Sn is one of these points then the other is −x.
The function q induces a corresponding quotient topology (or identification
topology) on RP n. The topological space RP n is referred to as real projective
n-space. In particular RP 2 is referred to as the real projective plane. It
follows from Lemma 3.19 that a function f :RP n → Z from RP n to any
topological space Z is continuous if and only if the composition function
f ◦ q is continuous.
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