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2 Cauchy Sequences and Completeness

2.1 Cauchy Sequences

Definition Let X be a metric space with distance function d. A sequence
x1, x2, x3, x4, . . . of points of X is said to be a Cauchy sequence in X if and
only if, given any ε > 0 there exists some natural number N such that
d(xj, xk) < ε for all natural numbers j and k satisfying j ≥ N and k ≥ N .

Every convergent sequence in a metric space is a Cauchy sequence. Indeed
let X be a metric space with distance function d, and let x1, x2, x3, x4, . . . be
a sequence of points in X which converges to some element l of X. Given any
ε > 0, there exists some natural number N such that d(xn, l) < ε/2 whenever
n ≥ N . But then it follows from the Triangle Inequality (Axiom (iii)) that

d(xj, xk) ≤ d(xj, l) + d(l, xk) <
ε

2
+
ε

2
= ε

whenever j ≥ N and k ≥ N .

Definition A metric space X is said to be complete if every Cauchy sequence
in X converges to some point of X.

Lemma 2.1 Let X be a complete metric space, and let A be a closed subset
of X. Then A is a complete metric space.

Proof Let a1, a2, a3, a4, . . . be a Cauchy sequence in A. This Cauchy se-
quence must converge to some point l of X, since X is complete. But then l
must be an element of A, by Lemma 1.11, since A is closed in X. We deduce
that A is complete, as required.

Example The spaces R and C are complete metric spaces with respect to
the distance function given by d(z, w) = |z−w|. Indeed this result is Cauchy’s
Criterion for Convergence (proved in Course 121). However the space Q of
rational numbers (with distance function d(q, r) = |q − r|) is not complete.
Indeed one can construct an infinite sequence q1, q2, q3, q4, . . . of rational num-
bers which converges (in R) to

√
2. Such a sequence of rational numbers is

a Cauchy sequence in both R and Q. However this Cauchy sequence does
not converge to an element of the metric space Q (since

√
2 is an irrational

number). Thus the metric space Q is not complete.

Lemma 2.2 The metric space Rn (with the Euclidean distance function) is
a complete metric space.
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Proof Let x1,x2,x3,x4, . . . be a Cauchy sequence in Rn. We must show
that this sequence converges to some element u of Rn. Let us write xj =
(α1j, α2j, . . . , αnj) for all natural numbers j. Now for any value of m between
1 and n the sequence αm1, αm2, αm3, αm4, . . . is a Cauchy sequence of real
numbers. (This follows easily |αmj − αmk| ≤ |xj − xk|.) It follows from
Cauchy’s Criterion for Convergence that the sequence αm1, αm2, αm3, αm4, . . .
converges to some real number um.

Let u = (u1, u2, . . . , un). We claim that xj → u as j → +∞. Indeed let
ε > 0 be given. Then there exist natural numbers N1, N2, . . . , Nn such that
|αmj −um| < ε/

√
n whenever j ≥ Nm (where m = 1, 2, . . . , n). Let N be the

maximum of N1, N2, . . . , Nn. If j ≥ N then

|xj − u|2 =
n∑

m=1

(αmj − um)2 < ε2.

Thus xj → u as j → +∞, as required.

Example The n-sphere Sn (with the chordal distance function given by
d(x,y) = |x− y|) is a complete metric space. Indeed Sn is the closed subset
of Rn+1 given by Sn = {x ∈ Rn+1 : |x| = 1}, and a closed subset of a
complete metric space is itself complete (Lemma 2.1).

Let X and Y be metric spaces, with distance functions dX and dY respec-
tively. We say that a function f :X → Y from X to Y is bounded if and only
if there exists some non-negative constant K such that dY (f(x), f(x′)) ≤ K
for all points x and x′ in X.

It is easy to see that a function f :X → Rn is bounded if and only if there
exists some non-negative constant K such that |f(x)| ≤ K for all x ∈ X.

Let f :X → Y and g:X → Y be bounded functions from X to Y . Then
the function x 7→ dY (f(x), g(x)) is bounded above on X. Indeed suppose
that we choose some point x0 of X. There exist constants K1 and K2 such
that dY (f(x), f(x0)) ≤ K1 and dY (g(x), g(x0)) ≤ K2 for all x ∈ X, since the
functions f and g are both bounded. But then

dY (f(x), g(x)) ≤ dY (f(x), f(x0)) + dY (f(x0), g(x0)) + dY (g(x0), g(x))

≤ dY (f(x0), g(x0)) +K1 +K2

for all points x of X, by a straightforward application of the triangle inequal-
ity. We define

ρ(f, g) = sup{dY (f(x), g(x)) : x ∈ X}
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for all bounded functions f and g from X to Y . If f , g, and h are bounded
functions from X to Y then

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x)) ≤ ρ(f, g) + ρ(g, h)

for all x ∈ X, and hence ρ(f, h) ≤ ρ(f, g)+ρ(g, h), showing that the distance
function ρ satisfies the Triangle Inequality.

Theorem 2.3 Let X and Y be metric spaces with distance functions dX
and dY respectively. Suppose that Y is complete. Then the set C(X, Y ) of
bounded continuous functions from X to Y is a complete metric space with
respect to the distance function ρ, where ρ(f, g) = supx∈X dY (f(x), g(x)) for
all f, g ∈ C(X, Y ).

Proof One can readily verify that the metric space axioms are satisfied by
the distance function ρ on C(X, Y ).

Let f1, f2, f3, f4, . . . be a Cauchy sequence in C(X, Y ). Choose any x ∈ X.
Now dY (fj(x), fk(x)) ≤ ρ(fj, fk) for all j and k. Using this inequality, one
can easily deduce that f1(x), f2(x), f3(x), f4(x), . . . is a Cauchy sequence in Y .
But every Cauchy sequence in Y is convergent, since Y is complete. Thus
there exists some point f(x) of Y such that fn(x) → f(x) as n → +∞. In
this way we define a function f :X → Y sending any point x of X to the
point f(x) defined as above.

Let ε > 0 be given. Then there exists some natural number N such
that ρ(fj, fk) < ε/3 whenever j ≥ N and k ≥ N , since the sequence
f1, f2, f3, f4, . . . is a Cauchy sequence in C(X, Y ). Let x be any point of X.
Then dY (fj(x), fk(x)) < ε/3 whenever j ≥ N and k ≥ N . But dY (fj(x), fk(x))
converges to dY (fj(x), f(x)) as k → +∞, by Lemma 1.2. We deduce that,
given any ε > 0, there exists some natural numberN such that dY (fj(x), f(x)) ≤
ε/3 for all x ∈ X and j satisfying j ≥ N . In particular

dY (f(x), f(x′)) ≤ dY (f(x), fN(x)) + dY (fN(x), fN(x′)) + dY (fN(x′), f(x′))

≤ dY (fN(x), fN(x′)) +
2ε

3
.

Now the function fN is bounded. Therefore there exists some non-
negative constant K such that dY (fN(x), fN(x′)) ≤ K for all x, x′ ∈ X.
But then

dY (f(x), f(x′)) ≤ K + 2ε/3

for all x, x′ ∈ X, showing that f is bounded. Also fN is continuous at x, and
hence there exists some δ > 0 such that dY (fN(x), fN(x′)) < ε/3 whenever
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dX(x, x′) < δ. It follows that dY (f(x), f(x′)) < ε whenever dX(x, x′) < δ.
Thus the function f is continuous. We deduce that f ∈ C(X, Y ).

Now we have shown that, given any ε > 0, there exists a natural num-
ber N such that dY (fj(x), f(x)) ≤ ε/3 < ε for all x ∈ X and j satisfying
j ≥ N . We deduce that ρ(fj, f) < ε whenever j ≥ N . Thus the Cauchy
sequence f1, f2, f3, f4, . . . converges in C(X, Y ) to f , showing that C(X, Y )
is complete.

Let F be a closed subset of n-dimensional Euclidean space Rn. Then F
is a complete metric space, by Lemma 2.1 and Lemma 2.2. The following
result therefore follows immediately from Theorem 2.3.

Corollary 2.4 Let X be a metric space and let F be a closed subset of Rn.
Then the space C(X,F ) of bounded continuous functions from X to F is a
complete metric space with respect to the distance function ρ, where ρ(f, g) =
supx∈X |f(x)− g(x)| for all f, g ∈ C(X,Rn).

2.2 The Contraction Mapping Theorem

Definition LetX be a metric space with distance function d, and let T :X →
X be a function from X to itself. The function T is said to be a contraction
mapping if there exists some constant λ satisfying 0 ≤ λ < 1 such that
d(T (x), T (x′)) ≤ λd(x, x′) for all x, x′ ∈ X.

One can readily check that any contraction map T :X → X on a metric
space (X, d) is continuous. Indeed let x be a point of X, and let ε > 0 be
given. Then d(T (x), T (x′)) < ε for all points x′ of X satisfying d(x, x′) < ε.

Theorem 2.5 (Contraction Mapping Theorem) Let X be a complete
metric space, and let T :X → X be a contraction mapping defined on X.
Then T has a unique fixed point in X (i.e., there exists a unique point x
of X for which T (x) = x).

Proof Let λ be chosen such that 0 ≤ λ < 1 and d(T (u), T (u′)) ≤ λd(u, u′)
for all u, u′ ∈ X, where d is the distance function on X. First we show the
existence of the fixed point x. Let x0 be any point of X, and define a sequence
x0, x1, x2, x3, x4, . . . of points of X by the condition that xn = T (xn−1) for
all natural numbers n. It follows by induction on n that d(xn+1, xn) ≤
λnd(x1, x0). Using the Triangle Inequality, we deduce that if j and k are
natural numbers satisfying k > j then

d(xk, xj) ≤
k−1∑
n=j

d(xn+1, xn) ≤ λj − λk

1− λ
d(x1, x0) ≤

λj

1− λ
d(x1, x0).
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(Here we have used the identity

λj + λj+1 + · · ·+ λk−1 =
λj − λk

1− λ
.)

Using the fact that 0 ≤ λ < 1, we deduce that the sequence (xn) is a Cauchy
sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then, using Lemma 1.4, we see that

T (x) = T

(
lim

n→+∞
xn

)
= lim

n→+∞
T (xn) = lim

n→+∞
xn+1 = x,

so that x is a fixed point of T .
If x′ were another fixed point of T then we would have

d(x′, x) = d(T (x′), T (x)) ≤ λd(x′, x).

But this is impossible unless x′ = x, since λ < 1. Thus the fixed point x of
the contraction map T is unique.

2.3 Picard’s Theorem

We now use a number of the results of this section in order to prove an
existence theorem for solutions of ordinary differential equations known as
Picard’s Theorem.

Theorem 2.6 (Picard’s Theorem) Let F :U → R be a continuous func-
tion defined over some open set U in the plane R2, and let (x0, t0) be an
element of U . Suppose that there exists some non-negative constant M such
that

|F (u, t)− F (v, t)| ≤M |u− v| for all (u, t) ∈ U and (v, t) ∈ U .

Then there exists a continuous function ϕ: [t0− δ, t0 + δ]→ R defined on the
interval [t0 − δ, t0 + δ] for some δ > 0 such that x = ϕ(t) is a solution to the
differential equation

dx(t)

dt
= F (x(t), t)

with initial condition x(t0) = x0.

Proof Solving the differential equation with the initial condition x(t0) = x0
is equivalent to finding a continuous function ϕ: I → R satisfying the integral
equation

ϕ(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.
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where I denotes the closed interval [t0− δ, t0 + δ]. (Note that any continuous
function ϕ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)

Let K = |F (x0, t0)|+ 1. Using the continuity of the function F , together
with the fact that U is open in R2, one can find some δ0 > 0 such that the
open disk of radius δ0 about (x0, t0) is contained in U and |F (x, t)| ≤ K for
all points (x, t) in this open disk. Now choose δ > 0 such that

δ
√

1 +K2 < δ0 and Mδ < 1.

Note that if |t − t0| ≤ δ and |x − x0| ≤ Kδ then (x, t) belongs to the open
disk of radius δ0 about (x0, t0), and hence (x, t) ∈ U and |F (x, t)| ≤ K.

Let J denote the closed interval [x0 − Kδ, x0 + Kδ]. The space C(I, J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 2.4. Define T :C(I, J)→ C(I, J) by

T (ϕ)(t) = x0 +

∫ t

t0

F (ϕ(s), s) ds.

We claim that T does indeed map C(I, J) into itself and is a contraction
mapping.

Let ϕ: I → J be an element of C(I, J). Note that if |t− t0| ≤ δ then

|(ϕ(t), t)− (x0, t0)|2 = (ϕ(t)− x0)2 + (t− t0)2 ≤ δ2 +K2δ2 < δ20,

hence |F (ϕ(t), t)| ≤ K. It follows from this that

|T (ϕ)(t)− x0| ≤ Kδ

for all t satisfying |t − t0| < δ. The function T (ϕ) is continuous, and is
therefore a well-defined element of C(I, J) for all ϕ ∈ C(I, J).

We now show that T is a contraction mapping on C(I, J). Let ϕ and ψ
be elements of C(I, J). The hypotheses of the theorem ensure that

|F (ϕ(t), t)− F (ψ(t), t)| ≤M |ϕ(t)− ψ(t)| ≤Mρ(ϕ, ψ)

for all t ∈ I, where ρ(ϕ, ψ) = supt∈I |ϕ(t)− ψ(t)|. Therefore

|T (ϕ)(t)− T (ψ)(t)| =

∣∣∣∣∫ t

t0

(F (ϕ(s), s)− F (ψ(s), s)) ds

∣∣∣∣
≤ M |t− t0|ρ(ϕ, ψ)

for all t satisfying |t− t0| ≤ δ. Therefore ρ(T (ϕ), T (ψ)) ≤ Mδρ(ϕ, ψ) for all
ϕ, ψ ∈ C(I, J). But δ has been chosen such that Mδ < 1. This shows that
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T :C(I, J) → C(I, J) is a contraction mapping on C(I, J). It follows from
the Contraction Mapping Theorem (Theorem 2.5) that there exists a unique
element ϕ of C(I, J) satisfying T (ϕ) = ϕ This function ϕ is the required
solution to the differential equation.

A straightforward but somewhat technical least upper bound argument
can be used to show that if x = ψ(t) is any other continuous solution to the
differential equation

dx

dt
= F (x, t)

on the interval [t0− δ, t0 + δ] satisfying the initial condition ψ(t0) = x0, then
|ψ(t)− x0| ≤ Kδ for all t satisfying |t− t0| ≤ δ. Thus such a solution to the
differential equation must belong to the space C(I, J) defined in the proof of
Theorem 2.6. The uniqueness of the fixed point of the contraction mapping
T :C(I, J) → C(I, J) then shows that ψ = ϕ, where ϕ: [t0 − δ, t0 + δ] → R
is the solution to the differential equation whose existence was proved in
Theorem 2.6. This shows that the solution to the differential equation is in
fact unique on the interval [t0 − δ, t0 + δ].

21


