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2 Cauchy Sequences and Completeness

2.1 Cauchy Sequences

Definition Let X be a metric space with distance function d. A sequence
x1, %9, T3, Ty, ... of points of X is said to be a Cauchy sequence in X if and
only if, given any ¢ > 0 there exists some natural number N such that
d(z;,xy) < € for all natural numbers j and k satisfying j > N and £ > N.

Every convergent sequence in a metric space is a Cauchy sequence. Indeed
let X be a metric space with distance function d, and let x1, x9, 3, 24, ... be
a sequence of points in X which converges to some element [ of X. Given any
e > 0, there exists some natural number N such that d(z,,[) < ¢/2 whenever
n > N. But then it follows from the Triangle Inequality (Axiom (iii)) that

d(z;,x) < d(x;, 1) +d(l,zx) < 4 g =c

[\

whenever 7 > N and k > N.

Definition A metric space X is said to be complete if every Cauchy sequence
in X converges to some point of X.

Lemma 2.1 Let X be a complete metric space, and let A be a closed subset
of X. Then A is a complete metric space.

Proof Let ai,as,as,aq,... be a Cauchy sequence in A. This Cauchy se-
quence must converge to some point [ of X, since X is complete. But then [
must be an element of A, by Lemma 1.11, since A is closed in X. We deduce
that A is complete, as required. |}

Example The spaces R and C are complete metric spaces with respect to
the distance function given by d(z, w) = |z—w|. Indeed this result is Cauchy’s
Criterion for Convergence (proved in Course 121). However the space Q of
rational numbers (with distance function d(q,7) = |¢ — r|) is not complete.
Indeed one can construct an infinite sequence q1, ¢2, g3, g4, . . . of rational num-
bers which converges (in R) to v/2. Such a sequence of rational numbers is
a Cauchy sequence in both R and Q. However this Cauchy sequence does
not converge to an element of the metric space Q (since v/2 is an irrational
number). Thus the metric space Q is not complete.

Lemma 2.2 The metric space R™ (with the Euclidean distance function) is
a complete metric space.
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Proof Let x;,x5,x3,Xy4,... be a Cauchy sequence in R". We must show
that this sequence converges to some element u of R". Let us write x; =
(aqj, agj, . .., oy ) for all natural numbers j. Now for any value of m between
1 and n the sequence ay,1, ma, Am3, Qma, - .. 18 a Cauchy sequence of real
numbers. (This follows easily |a,; — amr| < |x; — xx|.) It follows from
Cauchy’s Criterion for Convergence that the sequence ay,1, Ao, Ams, A, - - -
converges to some real number w,,.

Let u = (uy,ug,...,u,). We claim that x; — u as j — +o00. Indeed let
e > 0 be given. Then there exist natural numbers Ny, Ns, ..., N, such that
|Qmj — Um| < €/4/n whenever j > N, (where m = 1,2,...,n). Let N be the
maximum of Ny, Ny, ..., N,. If 7 > N then

n

X —u® =) (= um)? < €%

m=1

Thus x; — u as j — +o0, as required. i

Example The n-sphere S™ (with the chordal distance function given by
d(x,y) = |x —y|) is a complete metric space. Indeed S™ is the closed subset
of R"™! given by S" = {x € R"" : |x| = 1}, and a closed subset of a
complete metric space is itself complete (Lemma 2.1).

Let X and Y be metric spaces, with distance functions dy and dy respec-
tively. We say that a function f: X — Y from X to Y is bounded if and only
if there exists some non-negative constant K such that dy (f(z), f(2')) < K
for all points x and 2’ in X.

It is easy to see that a function f: X — R" is bounded if and only if there
exists some non-negative constant K such that |f(z)| < K for all z € X.

Let f: X — Y and ¢g: X — Y be bounded functions from X to Y. Then
the function z — dy(f(z),g(x)) is bounded above on X. Indeed suppose
that we choose some point xy of X. There exist constants K; and K, such
that dy (f(x), f(zo)) < K; and dy(g(z), g(zo)) < K for all z € X, since the
functions f and g are both bounded. But then

dy(f(z),9(x)) < dy(f(z), f(x0)) + dy(f(z0),g(x0)) + dy(g(w0), g(x))
< dy(f(w0),9(w0)) + K1 + Ky

for all points « of X, by a straightforward application of the triangle inequal-
ity. We define

p(f,g) =sup{dy (f(z),g(x)) : v € X}
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for all bounded functions f and g from X to Y. If f, g, and h are bounded
functions from X to Y then

dy (f(x), h(z)) < dy(f(2), g(x)) + dy(9(z), h(x)) < p(f,9) + p(g, h)

for all x € X and hence p(f, h) < p(f,g)+p(g, k), showing that the distance
function p satisfies the Triangle Inequality.

Theorem 2.3 Let X and Y be metric spaces with distance functions dx
and dy respectively. Suppose that Y is complete. Then the set C(X,Y) of
bounded continuous functions from X to'Y is a complete metric space with
respect to the distance function p, where p(f,g) = sup,cx dy (f(x),g(x)) for
all f,g € C(X,Y).

Proof One can readily verify that the metric space axioms are satisfied by
the distance function p on C(X,Y).

Let fi1, fa, f3, fa, ... be a Cauchy sequence in C'(X,Y’). Choose any z € X.
Now dy (f;(z), fe(x)) < p(fj, fr) for all j and k. Using this inequality, one
can easily deduce that fi(z), fo(z), f3(x), fa(x),...is a Cauchy sequence in Y.
But every Cauchy sequence in Y is convergent, since Y is complete. Thus
there exists some point f(z) of Y such that f,(z) — f(x) as n — 4+o0. In
this way we define a function f: X — Y sending any point x of X to the
point f(x) defined as above.

Let ¢ > 0 be given. Then there exists some natural number N such
that p(f;, fx) < /3 whenever j > N and £ > N, since the sequence
f1, fo, f3, f1,... is a Cauchy sequence in C'(X,Y). Let x be any point of X.
Then dy (f;(x), fe(x)) < /3 whenever j > N and k > N. But dy (f;(z), fr(z))
converges to dy (f;(z), f(x)) as k — 400, by Lemma 1.2. We deduce that,
given any € > 0, there exists some natural number N such that dy (f;(x), f(z)) <
e/3 for all z € X and j satisfying j > N. In particular

dy (f(x), f(2') < dy(f(x), fn(@)) +dy (fn(2), fn(2)) + dy (fn (@), f(2'))
, 2e
< dY(fN(x)afN<'r))+§'
Now the function fy is bounded. Therefore there exists some non-
negative constant K such that dy(fy(x), fn(2')) < K for all z,2" € X.
But then

dy (f(x), f(2) < K +2¢/3

for all z, 2’ € X, showing that f is bounded. Also fy is continuous at x, and
hence there exists some § > 0 such that dy (fn(x), fn(z')) < €/3 whenever
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dx(z,2") < 6. It follows that dy(f(z), f(2')) < € whenever dx(z,z') < 0.
Thus the function f is continuous. We deduce that f € C(X,Y).

Now we have shown that, given any € > 0, there exists a natural num-
ber N such that dy(f;(x), f(z)) < e/3 < e for all x € X and j satistying
j > N. We deduce that p(f;, f) < € whenever j > N. Thus the Cauchy
sequence fi, fa, f3, f4, ... converges in C(X,Y) to f, showing that C'(X,Y)
is complete. |}

Let F be a closed subset of n-dimensional Euclidean space R™. Then F
is a complete metric space, by Lemma 2.1 and Lemma 2.2. The following
result therefore follows immediately from Theorem 2.3.

Corollary 2.4 Let X be a metric space and let F' be a closed subset of R™.
Then the space C(X, F) of bounded continuous functions from X to F is a
complete metric space with respect to the distance function p, where p(f,g) =

sup,cx |(2) - g(x)| for all f.g € O(X,R").

2.2 The Contraction Mapping Theorem

Definition Let X be a metric space with distance function d, and let T: X —
X be a function from X to itself. The function 7" is said to be a contraction
mapping if there exists some constant A satisfying 0 < A < 1 such that
d(T(x),T(z") < Md(z,2’) for all z,2" € X.

One can readily check that any contraction map 7: X — X on a metric
space (X, d) is continuous. Indeed let = be a point of X, and let € > 0 be
given. Then d(T'(x),T(z")) < ¢ for all points 2’ of X satisfying d(z,2") < .

Theorem 2.5 (Contraction Mapping Theorem) Let X be a complete
metric space, and let T: X — X be a contraction mapping defined on X.
Then T has a unique fized point in X (i.e., there exists a unique point x

of X for which T(x) = z).

Proof Let A be chosen such that 0 < A < 1 and d(T'(u), T(v')) < Ad(u, )
for all u,u’ € X, where d is the distance function on X. First we show the
existence of the fixed point z. Let xy be any point of X, and define a sequence
xg, L1, Ta, Ty, Ty, ... of points of X by the condition that x, = T(x,_;) for
all natural numbers n. It follows by induction on n that d(x,,q1,2,) <
A"d(x1,x0). Using the Triangle Inequality, we deduce that if j and k are
natural numbers satisfying k£ > 7 then

k—1

d($k7$j) < Zd(In_H,l‘n) <

n=j

N A N
<
Ty den ) S 75

d(l’l,l‘o).
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(Here we have used the identity
N — \F
1—A )
Using the fact that 0 < A < 1, we deduce that the sequence (x,,) is a Cauchy

sequence in X. This Cauchy sequence must converge to some point x of X,
since X is complete. But then, using Lemma 1.4, we see that

)\J'_i_)\jJFl_i_..._'_)\k*l:

T(x)= T( lim xn) = lim T(x,) = lim z,41 =z,

n—-+o0o n—-+00 n—-+o0o

so that x is a fixed point of T
If 2/ were another fixed point of T then we would have

d(z',z) =d(T(x"), T(z)) < M2, ).

But this is impossible unless ' = x, since A < 1. Thus the fixed point x of
the contraction map 7" is unique. |

2.3 Picard’s Theorem

We now use a number of the results of this section in order to prove an
existence theorem for solutions of ordinary differential equations known as
Picard’s Theorem.

Theorem 2.6 (Picard’s Theorem) Let F:U — R be a continuous func-
tion defined over some open set U in the plane R?, and let (zg,to) be an
element of U. Suppose that there exists some non-negative constant M such
that

|F(u,t) — F(v,t)] < M|u—v| for all (u,t) € U and (v,t) € U.

Then there exists a continuous function ¢: [to — d,to + 6] — R defined on the
interval [ty — 0, to + 0] for some § > 0 such that x = p(t) is a solution to the
differential equation
dx(t)
dt

with initial condition x(tg) = xo.

= F(a(t),t)

Proof Solving the differential equation with the initial condition x(ty) =
is equivalent to finding a continuous function ¢: I — R satisfying the integral
equation

o(t) = xo +/ F(p(s),s)ds.

to
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where I denotes the closed interval [tg — 6, %o+ d]. (Note that any continuous
function ¢ satisfying this integral equation is automatically differentiable,
since the indefinite integral of a continuous function is always differentiable.)

Let K = |F(xg,t9)| + 1. Using the continuity of the function F', together
with the fact that U is open in R?, one can find some §y > 0 such that the
open disk of radius dy about (x¢, ) is contained in U and |F(z,t)| < K for
all points (x,t) in this open disk. Now choose d > 0 such that

0V1+ K2 < dyand M) < 1.

Note that if [t — t9] < d§ and |z — x¢| < K0 then (x,t) belongs to the open
disk of radius dy about (zg, o), and hence (z,t) € U and |F(z,t)| < K.

Let J denote the closed interval [z — K¢,z + KJ]. The space C(1,J)
of continuous functions from the interval I to the interval J is a complete
metric space, by Corollary 2.4. Define T:C(I,J) — C(I,J) by

T()(t) = 20 + / F(p(s), ) ds.

We claim that 7" does indeed map C(I,J) into itself and is a contraction

mapping.
Let ¢: I — J be an element of C(1,J). Note that if [t —to| < ¢ then

[(p(1),1) = (20, t0) " = (p(t) — o) + (t — t0)? < 8% + K267 < &,
hence |F(¢(t),t)] < K. It follows from this that
T () () — ol < Ko

for all ¢ satisfying |t — to| < 6. The function T'(¢) is continuous, and is
therefore a well-defined element of C(I, J) for all ¢ € C(I, J).

We now show that 7" is a contraction mapping on C'(I,J). Let ¢ and ¢
be elements of C(I,.J). The hypotheses of the theorem ensure that

[F((t),8) = F(ip(t), 1)| < Mlp(t) — (@) < Mp(p, )

for all t € I, where p(p, 1) = sup,; |¢(t) — 1(t)]. Therefore

T()(t) = TW) )] = /t(F(SO(S)aS)—FW(S)’S)) ds
< Mt —to|p(e, ¥)

for all ¢ satisfying |t — to| < 0. Therefore p(T'(¢), T (¢)) < Mép(p, 1)) for all
p, 9 € C(1,J). But ¢ has been chosen such that Mé < 1. This shows that
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T:C(1,J) — C(I,J) is a contraction mapping on C(I,J). It follows from
the Contraction Mapping Theorem (Theorem 2.5) that there exists a unique
element ¢ of C(I,J) satistying T'(¢) = ¢ This function ¢ is the required
solution to the differential equation. |}

A straightforward but somewhat technical least upper bound argument
can be used to show that if z = ¢ (t) is any other continuous solution to the

differential equation

dx
= F(r.t
dt ('T7 )

on the interval [ty — §,to + d] satisfying the initial condition 1 (t) = zo, then
[ (t) — x| < K6 for all ¢ satisfying |t — to| < §. Thus such a solution to the
differential equation must belong to the space C'(I, J) defined in the proof of
Theorem 2.6. The uniqueness of the fixed point of the contraction mapping
T:C(I,J) — C(I,J) then shows that ¢ = ¢, where ¢: [ty — d,tg + 6] = R
is the solution to the differential equation whose existence was proved in
Theorem 2.6. This shows that the solution to the differential equation is in
fact unique on the interval [ty — §, tg + 4.

21



