Course 212: Academic Year 1990-1991 Section 1: Metric Spaces

D. R. Wilkins

Copyright ©1990–1991

Contents

1	Met	cric Spaces	1
	1.1	Euclidean Spaces	1
	1.2	Convergence and Continuity in Metric Spaces	3
	1.3	Open Sets in Metric Spaces	5
	1.4	Closed Sets in a Metric Space	8
	1.5	Continuous Functions and Open and Closed Sets	9
	1.6	Homeomorphisms	11
	1.7	Continuity of Functions into Euclidean Spaces	12

1 Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance function $d: X \times X \to [0, +\infty)$ on X, where this distance function satisfies the following axioms:

- (i) $d(x, y) \ge 0$ for all $x, y \in X$,
- (ii) d(x,y) = d(y,x) for all $x, y \in X$,
- (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$,
- (iv) d(x, y) = 0 if and only if x = y.

The quantity d(x, y) should be thought of as measuring the *distance* between the points x and y. The inequality $d(x, z) \leq d(x, y) + d(y, z)$ is referred to as the *Triangle Inequality*. The elements of a metric space are usually referred to as *points* of that metric space.

Note that if X is a metric space with distance function d and if A is a subset of X then the restriction $d|A \times A$ of d to pairs of points of A defines a distance function on A satisfying the axioms for a metric space.

The set \mathbb{R} of real numbers becomes a metric space with distance function d given by d(x, y) = |x - y| for all $x, y \in \mathbb{R}$. Similarly the set \mathbb{C} of complex numbers becomes a metric space with distance function d given by d(z, w) = |z - w| for all $z, w \in \mathbb{C}$. Any subset of \mathbb{R} or \mathbb{C} may be regarded as a metric space whose distance function is again given by d(z, w) = |z - w|. Further examples of metric spaces are provided by the *Euclidean Spaces* \mathbb{R}^n with the Euclidean distance function.

1.1 Euclidean Spaces

We denote by \mathbb{R}^n the space consisting of all *n*-tuples (x_1, x_2, \ldots, x_n) of real numbers. We can add and subtract elements of \mathbb{R}^n and multiply them by scalars in the usual manner. Thus if **x** and **y** are elements of \mathbb{R}^n given by

$$\mathbf{x} = (x_1, x_2, \dots, x_n), \qquad \mathbf{y} = (y_1, y_2, \dots, y_n)$$

we define

$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n), \qquad \mathbf{x} - \mathbf{y} = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n),$$
$$\lambda(x_1, x_2, \dots, x_n) = (\lambda x_1, \lambda x_2, \dots, \lambda x_n).$$

The scalar product $\mathbf{x}.\mathbf{y}$ of \mathbf{x} and \mathbf{y} is given by

$$\mathbf{x}.\mathbf{y} \equiv x_1y_1 + x_2y_2 + \dots + x_ny_n,$$

and the *Euclidean norm* $|\mathbf{x}|$ of \mathbf{x} by

$$|\mathbf{x}| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Lemma 1.1 (Schwarz' Inequality) Let \mathbf{x} and \mathbf{y} be elements of \mathbb{R}^n . Then $|\mathbf{x}.\mathbf{y}| \leq |\mathbf{x}||\mathbf{y}|$.

Proof We note that $|\lambda \mathbf{x} + \mu \mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . But

$$|\lambda \mathbf{x} + \mu \mathbf{y}|^2 = (\lambda \mathbf{x} + \mu \mathbf{y}) \cdot (\lambda \mathbf{x} + \mu \mathbf{y}) = \lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2.$$

Therefore $\lambda^2 |\mathbf{x}|^2 + 2\lambda \mu \mathbf{x} \cdot \mathbf{y} + \mu^2 |\mathbf{y}|^2 \ge 0$ for all real numbers λ and μ . In particular, suppose that $\lambda = |\mathbf{y}|^2$ and $\mu = -\mathbf{x} \cdot \mathbf{y}$. We conclude that

$$|\mathbf{y}|^4 |\mathbf{x}|^2 - 2|\mathbf{y}|^2 (\mathbf{x} \cdot \mathbf{y})^2 + (\mathbf{x} \cdot \mathbf{y})^2 |\mathbf{y}|^2 \ge 0,$$

so that $(|\mathbf{x}|^2|\mathbf{y}|^2 - (\mathbf{x}.\mathbf{y})^2) |\mathbf{y}|^2 \ge 0$. Thus if $\mathbf{y} \neq \mathbf{0}$ then $|\mathbf{y}| > 0$, and hence

$$|\mathbf{x}|^2 |\mathbf{y}|^2 - (\mathbf{x} \cdot \mathbf{y})^2 \ge 0.$$

But this inequality is trivially satisfied when $\mathbf{y} = \mathbf{0}$. Thus $|\mathbf{x}.\mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$, as required.

It follows easily from Schwarz' Inequality that $|\mathbf{x} + \mathbf{y}| \leq |\mathbf{x}| + |\mathbf{y}|$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. For

$$\begin{aligned} |\mathbf{x} + \mathbf{y}|^2 &= (\mathbf{x} + \mathbf{y}).(\mathbf{x} + \mathbf{y}) = |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2\mathbf{x}.\mathbf{y} \\ &\leq |\mathbf{x}|^2 + |\mathbf{y}|^2 + 2|\mathbf{x}||\mathbf{y}| = (|\mathbf{x}| + |\mathbf{y}|)^2. \end{aligned}$$

We regard \mathbb{R}^n as a metric space, where the (Euclidean) distance $d(\mathbf{x}, \mathbf{y})$ between two points \mathbf{x} and \mathbf{y} of \mathbb{R}^n is given by $d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$. Using the inequalities proved above, one can easily check that all of the metric space axioms are satisfied by this distance function.

If X is any subset of \mathbb{R}^n then the restriction of the Euclidean distance function defined above to pairs of points taken from X defines a distance function on X. In this manner we can regard any subset of \mathbb{R}^n as a metric space in its own right (with respect to the Euclidean distance function on X. **Example** The *n*-sphere S^n is defined to be the subset of (n+1)-dimensional Euclidean space \mathbb{R}^{n+1} consisting of all elements \mathbf{x} of \mathbb{R}^{n+1} for which $|\mathbf{x}| = 1$. Thus

$$S^{n} = \{ (x_{1}, x_{2}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{1}^{2} + x_{2}^{2} + \dots + x_{n+1}^{2} = 1 \}.$$

(Note that S^2 is the standard (2-dimensional) unit sphere in 3-dimensional Euclidean space.) The *chordal distance* between two points \mathbf{x} and \mathbf{y} of S^n is defined to be the length $|\mathbf{x} - \mathbf{y}|$ of the line segment joining \mathbf{x} and \mathbf{y} . The *n*-sphere S^n is a metric space with respect to the chordal distance function.

Example Let C([a, b]) denote the set of all continuous real-valued functions on the closed interval [a, b], where a and b are real numbers satisfying a < b. Then C([a, b]) is a metric space with respect to the distance function ρ , where $\rho(f, g) = \sup_{t \in [a,b]} |f(t) - g(t)|$ for all continuous functions f and gfrom X to \mathbb{R} . (Note that, for all $f, g \in C([a,b]), f - g$ is a continuous function on [a, b] and is therefore bounded on [a, b], by a theorem proved in Course 121. Therefore the distance function ρ is well-defined.)

1.2 Convergence and Continuity in Metric Spaces

Definition Let X be a metric space with distance function d. A sequence $x_1, x_2, x_3, x_4, \ldots$ of points in X is said to *converge* to a point l in X if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some natural number N such that $d(x_n, l) < \varepsilon$ whenever $n \ge N$.

We refer to l as the *limit* $\lim_{n \to +\infty} x_n$ of the sequence $x_1, x_2, x_3, x_4, \ldots$

Note that this definition of convergence generalizes to arbitrary metric spaces the standard definition of convergence for sequences of real or complex numbers.

If a sequence of points in a metric space is convergent then the limit of that sequence is unique. Indeed let $x_1, x_2, x_3, x_4, \ldots$ be a sequence of points in a metric space (X, d) which converges to points l and l' of X. We show that l = l'. Now, given any $\varepsilon > 0$, there exist natural numbers N_1 and N_2 such that $d(x_n, l) < \varepsilon$ whenever $n \ge N_1$ and $d(x_n, l') < \varepsilon$ whenever $n \ge N_2$. On choosing n so that $n \ge N_1$ and $n \ge N_2$ we see that

$$0 \le d(l, l') \le d(l, x_n) + d(x_n, l') < 2\varepsilon$$

by a straightforward application of the metric space axioms (i)–(iii). Thus $0 \leq d(l, l') < 2\varepsilon$ for every $\varepsilon > 0$, and hence d(l, l') = 0, so that l = l' by Axiom (iv).

Lemma 1.2 Let (X, d) be a metric space, and let $x_1, x_2, x_3, x_4, \ldots$ be a sequence of points of X which converges to some point l of X. Then, for any point y of X, $d(x_n, y) \rightarrow d(l, y)$ as $n \rightarrow +\infty$.

Proof Let $\varepsilon > 0$ be given. We must show that there exists some natural number N such that $|d(x_n, y) - d(l, y)| < \varepsilon$ whenever $n \ge N$. However N can be chosen such that $d(x_n, l) < \varepsilon$ whenever $n \ge N$. But

$$d(x_n, y) \le d(x_n, l) + d(l, y), \qquad d(l, y) \le d(l, x_n) + d(x_n, y)$$

for all n, hence

$$-d(x_n, l) \le d(x_n, y) - d(l, y) \le d(x_n, l)$$

for all n, and hence $|d(x_n, y) - d(l, y)| < \varepsilon$ whenever $n \ge N$, as required.

Definition Let X and Y be metric spaces with distance functions d_X and d_Y respectively. A function $f: X \to Y$ from X to Y is said to be *continuous* at a point x of X if and only if the following criterion is satisfied:—

given any real number ε satisfying $\varepsilon > 0$ there exists some $\delta > 0$ such that $d_Y(f(x), f(x')) < \varepsilon$ for all points x' of X satisfying $d_X(x, x') < \delta$.

The function $f: X \to Y$ is said to be continuous on X if and only if it is continuous at x for every point x of X.

Note that this definition of continuity for functions between metric spaces generalizes the definition of continuity for functions of a real or complex variable.

Lemma 1.3 Let X, Y and Z be metric spaces with distance functions d_X , d_Y and d_Z respectively, and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Then the composition function $g \circ f: X \to Z$ is continuous.

Proof Let x be any point of X. We show that $g \circ f$ is continuous at x. Let $\varepsilon > 0$ be given. Now the function g is continuous at f(x). Hence there exists some $\eta > 0$ such that $d_Z(g(y), g(f(x))) < \varepsilon$ for all points y of Y satisfying $d_Y(y, f(x)) < \eta$. But then there exists some $\delta > 0$ such that $d_Y(f(x'), f(x)) < \eta$ for all points x' of X satisfying $d_X(x', x) < \delta$. Thus $d_Z(g(f(x')), g(f(x))) < \varepsilon$ for all points x' of X satisfying $d_X(x', x) < \delta$. Thus the composition function $g \circ f$ is continuous at x, as required. **Lemma 1.4** Let X and Y be metric spaces with distance functions d_X and d_Y respectively, and let $f: X \to Y$ be a continuous function from X to Y. Let $x_1, x_2, x_3, x_4, \ldots$ be a sequence of points of X which converges to some point l of X. Then the sequence $f(x_1), f(x_2), f(x_3), f(x_4), \ldots$ converges to f(l).

Proof Let $\varepsilon > 0$ be given. We must show that there exists some natural number N such that $d_Y(f(x_n), f(l)) < \varepsilon$ whenever $n \ge N$. However there exists some $\delta > 0$ such that $d_Y(f(x'), f(l)) < \varepsilon$ for all points x' of X satisfying $d_X(x', l) < \delta$, since the function f is continuous at l. Also there exists some natural number N such that $d_X(x_n, l) < \delta$ whenever $n \ge N$, since the sequence $x_1, x_2, x_3, x_4, \ldots$ converges to l. Thus if $n \ge N$ then $d_Y(f(x_n), f(l)) < \varepsilon$, as required.

1.3 Open Sets in Metric Spaces

Definition Let (X, d) be a metric space. Given a point x of X and a nonnegative real number r, the open ball $B_X(x, r)$ of radius r about x in X is defined to be the subset of X given by

$$B_X(x,r) \equiv \{ x' \in X : d(x',x) < r \}.$$

One thinks of the open ball $B_X(x, r)$ as representing all points of the metric space X whose distance from x is strictly less than the radius r of the ball.

Definition Let (X, d) be a metric space, and let x be a point of X. A subset N of X is said to be a *neighbourhood* of x (in X) if and only if there exists some $\delta > 0$ such that $B_X(x, \delta) \subset N$, where $B_X(x, \delta)$ is the open ball of radius δ about x in X.

Definition Let (X, d) be a metric space. A subset V of X is said to be an *open set* if and only if the following condition is satisfied:

given any point v of V there exists some $\delta > 0$ such that $B_X(v, \delta) \subset V$.

Thus a subset V of X is an open set if and only if V is a neighbourhood of v for all points v of V. By convention, we regard the empty set \emptyset as being an open subset of X. (The criterion given above is satisfied vacuously in the case when V is the empty set.)

Lemma 1.5 Let X be a metric space with distance function d, and let x_0 be a point of X. Then, for any positive real number r, the open ball $B_X(x_0, r)$ of radius r about x_0 is an open set in X. **Proof** Let x be an element of $B_X(x_0, r)$. We must show that there exists some $\delta > 0$ such that $B_X(x, \delta) \subset B_X(x_0, r)$. Now $d(x, x_0) < r$, and here $\delta > 0$, where $\delta = r - d(x, x_0)$. Moreover if $x' \in B_X(x, \delta)$ then

$$d(x', x_0) \le d(x', x) + d(x, x_0) < \delta + d(x, x_0) = r,$$

by the Triangle Inequality, and thus $x' \in B_X(x_0, r)$. We deduce that $B_X(x, \delta) \subset B_X(x_0, r)$. This shows that $B_X(x_0, r)$ is an open set, as required.

Lemma 1.6 Let X be a metric space with distance function d, and let x_0 be a point of X. Then, for any non-negative real number r, the set $\{x \in X : d(x, x_0) > r\}$ is an open set in X.

Proof Let x be a point of X satisfying $d(x, x_0) > r$, and let y be any point of X satisfying $d(y, x) < \delta$, where $\delta = d(x, x_0) - r$. Then

$$d(x, x_0) \le d(x, y) + d(y, x_0),$$

by the Triangle Inequality, and therefore

$$d(y, x_0) \ge d(x, x_0) - d(x, y) > d(x, x_0) - \delta = r.$$

Thus $B_X(x,\delta) \subset \{x' \in X : d(x',x_0) > r\}$, showing that $\{x \in X : d(x,x_0) > r\}$ is an open set in X.

Proposition 1.7 Let X be a metric space. The collection of open sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both open sets;
- (ii) the union of any collection of open sets is itself an open set;
- (iii) the intersection of any finite collection of open sets is itself an open set.

Proof The empty set \emptyset is an open set by convention. Moreover the definition of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let \mathcal{A} be any collection of open sets in the metric space X, and let U denote the union of all the open sets belonging to \mathcal{A} . We must show that U is itself an open set. Let x be an element of U. Then x belongs to V for some open set V belonging to the collection \mathcal{A} . It follows that there exists some $\delta > 0$ such that the open ball $B_X(x, \delta)$ is a subset of V. But $V \subset U$, and thus $B_X(x, \delta) \subset U$. This shows that U is an open set in the metric space X. Thus (ii) is satisfied.

Finally let $V_1, V_2, V_3, \ldots, V_k$ be a *finite* collection of open sets in the metric space X, and let V denote the intersection $V_1 \cap V_2 \cap \cdots \cap V_k$ of these open sets. Let x be an element of V. Now x belongs to V_j for $j = 1, 2, \ldots, k$, and therefore there exist strictly positive real numbers $\delta_1, \delta_2, \ldots, \delta_k$ such that $B_X(x, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_k$. Then $\delta > 0$. (This is where we need the fact that we are dealing with a finite collection of open sets.) Moreover $B_X(x, \delta) \subset B_X(x, \delta_j) \subset V_j$ for $j = 1, 2, \ldots, k$, and thus $B_X(x, \delta) \subset V$. This shows that the intersection V of the open sets V_1, V_2, \ldots, V_k is itself an open set in the metric space X. Thus (iii) is satisfied.

Remark For each natural number n, let V_n denote the open set in the complex plane \mathbb{C} defined by

$$V_n = \{ z \in \mathbb{C} : |z| < 1/n \}.$$

The intersection of all of these sets (as n ranges over the set of natural numbers) consists of the set $\{0\}$, and this set is not an open subset of the complex plane. This demonstrates that an intersection of an infinite number of open sets in a metric space is not necessarily an open set.

Lemma 1.8 Let X be a metric space. A sequence $(x_j : j \in \mathbb{N})$ of points in X converges to a point l if and only if, given any open set U which contains l, there exists some natural number N such that the point x_j belongs to U for all j satisfying $j \geq N$.

Proof Let $(x_j : j \in \mathbb{N})$ be a sequence with the property that, given any open set U which contains l, there exists some natural number N such that the point x_j belongs to U whenever $j \geq N$. Let $\varepsilon > 0$ be given. The open ball $B_X(l,\varepsilon)$ of radius ε about l is an open set by Lemma 1.5. Therefore there exists some natural number N such that x_j belongs to $B_X(l,\varepsilon)$ whenever $j \geq N$. Thus $d(x_j, l) < \varepsilon$ whenever $j \geq N$. This shows that the sequence (x_j) converges to l.

Conversely, suppose that the sequence (x_j) converges to l. Let U be an open set which contains l. Then there exists some $\varepsilon > 0$ such that the open ball $B_X(l,\varepsilon)$ of radius ε about l is a subset of U. Thus there exists some $\varepsilon > 0$ such that U contains all points x of X that satisfy $d(x,l) < \varepsilon$. But there exists some natural number N with the property that $d(x_j, l) < \varepsilon$ whenever $j \ge N$, since the sequence (x_j) converges to l. Therefore x_j belongs to U for all j satisfying $j \ge N$, as required.

1.4 Closed Sets in a Metric Space

A subset F of a metric space X is said to be a *closed set* in X if and only if its complement $X \setminus F$ is open. (Recall that the *complement* $X \setminus F$ of Fin X is, by definition, the set of all points of the metric space X that do not belong to F.) The following result follows immediately from Lemma 1.5, Lemma 1.6, and the definition of closed sets.

Lemma 1.9 Let X be a metric space with distance function d, and let x_0 be a point of X. Given any non-negative real number r, the sets

$$\{x \in X : d(x, x_0) \le r\}, \qquad \{x \in X : d(x, x_0) \ge r\}$$

are closed. In particular, the set $\{x_0\}$ consisting of the single point x_0 is a closed set in X.

Let \mathcal{A} be some collection of subsets of a set X. Then

$$X \setminus \bigcup_{S \in \mathcal{A}} S = \bigcap_{S \in \mathcal{A}} (X \setminus S), \qquad X \setminus \bigcap_{S \in \mathcal{A}} S = \bigcup_{S \in \mathcal{A}} (X \setminus S)$$

(i.e., the complement of the union of some collection of subsets of X is the intersection of the complements of those sets, and the complement of the intersection of some collection of subsets of X is the union of the complements of those sets). The following result therefore follows directly from the definition of closed sets and Proposition 1.7.

Proposition 1.10 Let X be a metric space. The collection of closed sets in X has the following properties:—

- (i) the empty set \emptyset and the whole set X are both closed sets;
- (ii) the intersection of any collection of closed sets in X is itself a closed set;
- (iii) the union of any finite collection of closed sets in X is itself a closed set.

Lemma 1.11 Let F be a closed set in a metric space X and let $(x_j : j \in \mathbb{N})$ be a sequence of points of F. Suppose that $x_j \to l$ as $j \to +\infty$. Then l also belongs to F.

Proof The complement $X \setminus F$ of F in X is open, since F is closed. Suppose that l were a point belonging to $X \setminus F$. It would then follow from Lemma 1.8 that $x_j \in X \setminus F$ for all values of j greater than some positive integer N, contradicting the fact that $x_j \in F$ for all j. This contradiction shows that l must belong to F, as required.

1.5 Continuous Functions and Open and Closed Sets

Let X and Y be metric spaces, and let $f: X \to Y$ be a function from X to Y. We recall that the function f is continuous at a point x of X if and only if, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that $d_Y(f(x'), f(x)) < \varepsilon$ for all points x' of X satisfying $d_X(x', x) < \delta$, where d_X and d_Y denote the distance functions on X and Y respectively. Expressed in terms of open balls, this means that the function $f: X \to Y$ is continuous at x if and only if, given any $\varepsilon > 0$, there exists some $\delta > 0$ such that f maps $B_X(x, \delta)$ into $B_Y(f(x), \varepsilon)$ (where $B_X(x, \delta)$ and $B_Y(f(x), \varepsilon)$ denote the open balls of radius δ and ε about x and f(x) respectively).

Let $f: X \to Y$ be a function from a set X to a set Y. Given any subset V of Y, we denote by $f^{-1}(V)$ the *preimage* of V under the map f, defined by

$$f^{-1}(V) = \{ x \in X : f(x) \in V \}.$$

Proposition 1.12 Let X and Y be metric spaces, and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(V)$ is an open set in X for every open set V of Y.

Proof Suppose that $f: X \to Y$ is continuous. Let V be an open set in Y. We must show that $f^{-1}(V)$ is open in X. Let x be a point belonging to $f^{-1}(V)$. We must show that there exists some $\delta > 0$ with the property that $B_X(x,\delta) \subset f^{-1}(V)$. Now f(x) belongs to V. But V is open, hence there exists some $\varepsilon > 0$ with the property that $B_Y(f(x),\varepsilon) \subset V$. But f is continuous at x. Therefore there exists some $\delta > 0$ such that f maps the open ball $B_X(x,\delta)$ into $B_Y(f(x),\varepsilon)$ (see the remarks above). Thus $f(x') \in V$ for all $x' \in B_X(x,\delta)$, showing that $B_X(x,\delta) \subset f^{-1}(V)$. We have thus shown that if $f: X \to Y$ is continuous then $f^{-1}(V)$ is open in X for every open set V in Y.

Conversely suppose that $f: X \to Y$ has the property that $f^{-1}(V)$ is open in X for every open set V in Y. Let x be any point of X. We must show that f is continuous at x. Let $\varepsilon > 0$ be given. The open ball $B_X(f(x), \varepsilon)$ is an open set in Y, by Lemma 1.5, hence $f^{-1}(B_Y(f(x), \varepsilon))$ is an open set in X which contains x. It follows that there exists some $\delta > 0$ such that $B_X(x, \delta) \subset f^{-1}(B_Y(f(x), \varepsilon))$. We have thus shown that, given any $\varepsilon >$ 0, there exists some $\delta > 0$ such that f maps the open ball $B_X(x, \delta)$ into $B_Y(f(x), \varepsilon)$. We conclude that f is continuous at x, as required.

Let $f: X \to Y$ be a function between metric spaces X and Y. Then the preimage $f^{-1}(Y \setminus G)$ of the complement $Y \setminus G$ of any subset G of Y is equal to the complement $X \setminus f^{-1}(G)$ of the preimage $f^{-1}(G)$ of G. Indeed

$$x \in f^{-1}(Y \setminus G) \iff f(x) \in Y \setminus G \iff f(x) \notin G \iff x \notin f^{-1}(G).$$

Also a subset of a metric space is closed if and only if its complement is open. The following result therefore follows directly from Proposition 1.12.

Corollary 1.13 Let X and Y be metric spaces, and let $f: X \to Y$ be a function from X to Y. The function f is continuous if and only if $f^{-1}(G)$ is a closed set in X for every closed set G in Y.

Let $f: X \to Y$ be a continuous function from a metric space X to a metric space Y. Then, for any point y of Y, the set $\{x \in X : f(x) = y\}$ is a closed subset of X. This follows from Corollary 1.13, together with the fact that the set $\{y\}$ consisting of the single point y is a closed subset of the metric space Y.

Let X be a metric space, and let $f: X \to \mathbb{R}$ be a continuous function from X to \mathbb{R} . Then, given any real number c, the sets

$$\{x \in X : f(x) > c\}, \qquad \{x \in X : f(x) < c\}$$

are open subsets of X, and the sets

$$\{x \in X : f(x) \ge c\}, \qquad \{x \in X : f(x) \le c\}, \qquad \{x \in X : f(x) = c\}$$

are closed subsets of X. Also, given real numbers a and b satisfying a < b, the set

$$\{x \in X : a < f(x) < b\}$$

is an open subset of X, and the set

$$\{x \in X : a \le f(x) \le b\}$$

is a closed subset of X.

Similar results hold for continuous functions $f: X \to \mathbb{C}$ from X to \mathbb{C} . Thus, for example,

$$\{x \in X : |f(x)| < R\}, \qquad \{x \in X : |f(x)| > R\}$$

are open subsets of X and

$$\{x \in X : |f(x)| \le R\}, \qquad \{x \in X : |f(x)| \ge R\}, \qquad \{x \in X : |f(x)| = R\}$$

are closed subsets of X, for any non-negative real number R.

1.6 Homeomorphisms

Let X and Y be metric spaces. A function $h: X \to Y$ from X to Y is said to be a *homeomorphism* if it is a bijection and both $h: X \to Y$ and its inverse $h^{-1}: Y \to X$ are continuous. If there exists a homeomorphism $h: X \to Y$ from a metric space X to a metric space Y, then the metric spaces X and Y are said to be *homeomorphic*.

Example The interval (-1, 1) and the real line \mathbb{R} are homeomorphic. A homeomorphism $h: (-1, 1) \to \mathbb{R}$ is given by $h(t) = t/(1 - t^2)$ for all $t \in (-1, 1)$. The inverse $h^{-1}: \mathbb{R} \to (-1, 1)$ of h is the continuous function given by

$$h^{-1}(s) = \begin{cases} \frac{-1 + \sqrt{1 + 4s^2}}{2s} & \text{if } s \neq 0; \\ 0 & \text{if } s = 0. \end{cases}$$

The following result follows directly on applying Proposition 1.12 to $h: X \to Y$ and to $h^{-1}: Y \to X$.

Lemma 1.14 Let X and Y be metric spaces, and let $h: X \to Y$ be a homeomorphism. Then the homomorphism h induces a one-to-one correspondence between that open sets of X and the open sets of Y: a subset V of Y is open in Y if and only if $h^{-1}(V)$ is open in X.

Lemma 1.15 Let X and Y be metric spaces, and let $h: X \to Y$ be a homeomorphism. Let Z be a metric space. A function $f: Y \to Z$ is continuous if and only if $f \circ h: X \to Z$ is continuous.

Proof If $f: Y \to Z$ is continuous then $f \circ h: X \to Z$ is continuous, since a composition of continuous functions is continuous, by Lemma 1.3. Conversely if $f \circ h: X \to Z$ is continuous then $f: Y \to Z$ is continuous, since $f = (f \circ h) \circ h^{-1}$.

Lemma 1.16 Let X and Y be metric spaces, and let $h: X \to Y$ be a homeomorphism. A sequence $x_1, x_2, x_3, x_4, \ldots$ of points in X is convergent in X if and only if the corresponding sequence $h(x_1), h(x_2), h(x_3), h(x_4), \ldots$ is convergent in Y.

Proof This result follows from a direct application of Lemma 1.4 to $h: X \to Y$ and its inverse $h^{-1}: Y \to X$.

1.7 Continuity of Functions into Euclidean Spaces

Let $f: X \to \mathbb{R}^n$ be a function mapping a metric space X into \mathbb{R}^n . The components f_1, f_2, \ldots, f_n of f are the real-valued functions on X defined such that

$$f(x) = (f_1(x), f_2(x), \dots, f_n(x))$$

for all $x \in X$.

Proposition 1.17 A function $f: X \to \mathbb{R}^n$ from a metric space X to \mathbb{R}^n is continuous if and only if its components f_1, f_2, \ldots, f_n are continuous functions from X to \mathbb{R} .

Proof Note that $f_i = p_i \circ f$ for i = 1, 2, ..., n, where $p_i \colon \mathbb{R}^n \to \mathbb{R}$ is the function which projects a point $(y_1, y_2, ..., y_n)$ on \mathbb{R}^n onto its *i*th coordinate y_i . Now p_i is continuous for all *i*. Also any composition of continuous functions is continuous, by Lemma 1.3. Thus if *f* is continuous then its components $f_1, f_2, ..., f_n$ are all continuous.

Conversely suppose that f_1, f_2, \ldots, f_n are all continuous at some point x_0 of X. Let $\varepsilon > 0$ be given. Then there exist strictly positive real numbers $\delta_1, \delta_2, \ldots, \delta_n$ such that $|f_i(x) - f_i(x_0)| < \varepsilon/\sqrt{n}$ for all points x of X satisfying $d_X(x, x_0) < \delta_i$, where d_X denotes the distance function on X. Let δ be the minimum of $\delta_1, \delta_2, \ldots, \delta_n$. If x is any point of X satisfying $d_X(x, x_0) < \delta$ then

$$|f(x) - f(x_0)|^2 = \sum_{i=1}^n |f_i(x) - f_i(x_0)|^2 < \varepsilon^2,$$

and thus $|f(x) - f(x_0)| < \varepsilon$. This shows that the function f is continuous at x_0 , as required.

Lemma 1.18 The functions $s: \mathbb{R}^2 \to \mathbb{R}$ and $p: \mathbb{R}^2 \to \mathbb{R}$ defined by s(x, y) = x + y and p(x, y) = xy are continuous.

Proof First we show that $s: \mathbb{R}^2 \to \mathbb{R}$ is continuous at every point (u, v) of \mathbb{R}^2 . Let $\varepsilon > 0$ be given. Let $\delta = \frac{1}{2}\varepsilon$. If (x, y) is any point of \mathbb{R}^2 whose distance from (u, v) is less than δ then $|x - u| < \delta$ and $|y - v| < \delta$ and hence

$$|s(x,y) - s(u,v)| = |x + y - u - v| \le |x - u| + |y - v| < 2\delta = \varepsilon.$$

This shows that the function s is continuous at (u, v).

Next we show that $p: \mathbb{R}^2 \to \mathbb{R}$ is continuous at every point (u, v) of \mathbb{R}^2 . Let $\varepsilon > 0$ be given. Let

$$\delta = \min\left(\frac{\varepsilon}{2(|v|+1)}, \frac{\varepsilon}{2(|u|+1)}, 1\right).$$

If (x, y) is any point of \mathbb{R}^2 whose distance from (u, v) is less than δ then $|x - u| < \delta$ and $|y - v| < \delta$, and thus

$$|x-u| < \frac{\varepsilon}{2(|v|+1)}, \qquad |y-v| < \frac{\varepsilon}{2(|u|+1)}, \qquad |y| < |v|+1.$$

But then

$$|p(x,y) - p(u,v)| = |xy - uv| = |(x-u)y + u(y-v)| \le |x-u||y| + |u||y-v| < \varepsilon.$$

This shows that the function p is continuous at (u, v).

Proposition 1.19 Let X be a metric space, and let $f: X \to \mathbb{R}$ and $g: X \to \mathbb{R}$ be continuous functions from X to \mathbb{R} . Then the functions f + g, f - g and f.g are continuous. If in addition $g(x) \neq 0$ for all $x \in X$ then the quotient function f/g is continuous.

Proof Note that $f + g = s \circ h$ and $f \cdot g = p \circ h$, where $h: X \to \mathbb{R}^2$, $s: \mathbb{R}^2 \to \mathbb{R}$ and $p: \mathbb{R}^2 \to \mathbb{R}$ are given by h(x) = (f(x), g(x)), s(u, v) = u + v and p(u, v) = uv for all $x \in X$ and $u, v \in \mathbb{R}$. It follows from Proposition 1.17, Lemma 1.18 Lemma 1.3 that f + g and $f \cdot g$ are continuous, being compositions of continuous functions. Now f - g = f + (-g), and both f and -g are continuous. Therefore f - g is continuous.

Now suppose that $g(x) \neq 0$ for all $x \in X$. Note that $1/g = r \circ g$, where $r: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ is the reciprocal function, defined by r(t) = 1/t. Now the reciprocal function r is continuous. Thus the function 1/g is a composition of continuous functions and is thus continuous. But then, using the fact that a product of continuous real-valued functions is continuous, we deduce that f/g is continuous.

Example Let B^n denote the open unit ball in \mathbb{R}^n , defined by

$$B^n = \{ \mathbf{x} \in \mathbb{R}^n : |\mathbf{x}| < 1 \},\$$

and let $h: B^n \to \mathbb{R}^n$ be the function defined by

$$h(\mathbf{x}) = \frac{1}{1 - |\mathbf{x}|^2} \mathbf{x}$$

The function h is a bijection from B^n to \mathbb{R}^n whose inverse $h^{-1}: \mathbb{R}^n \to B$ is given by

$$h^{-1}(\mathbf{x}) = \begin{cases} \frac{-1 + \sqrt{1 + 4|\mathbf{x}|^2}}{2|\mathbf{x}|^2} \mathbf{x} & \text{if } \mathbf{x} \neq 0; \\ \mathbf{0} & \text{if } \mathbf{x} = 0. \end{cases}$$

Note that $h^{-1}(\mathbf{x}) = \varphi(|\mathbf{x}|)\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$, where $\varphi \colon \mathbb{R} \to \mathbb{R}$ is the continuous function defined by

$$\varphi(t) = \begin{cases} \frac{-1 + \sqrt{1 + 4t^2}}{2t^2} & \text{if } t \neq 0; \\ 1 & \text{if } t = 0. \end{cases}$$

(The continuity of φ at 0 follows from an application of l'Hôpital's Rule.) A straighforward application of Lemma 1.3, Proposition 1.17 and Proposition 1.19 shows that h and h^{-1} are continuous. Thus $h: B^n \to \mathbb{R}^n$ is a homeomorphism from B^n to \mathbb{R}^n .

Example Let S^n denote the *n*-sphere, defined by

$$S^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} : |\mathbf{x}| = 1 \},\$$

and let N be the point of S^n with coordinates $(0, 0, \ldots, 0, 1)$. We show that $S^n \setminus \{N\}$ is homeomorphic to \mathbb{R}^n . Define a function $h: S^n \setminus \{N\} \to \mathbb{R}^n$ by

$$h(x_1, x_2, \dots, x_n, x_{n+1}) = \left(\frac{x_1}{1 - x_{n+1}}, \frac{x_2}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}}\right).$$

The function h is a bijection whose inverse $h^{-1}: \mathbb{R}^n \to S^n \setminus \{N\}$ is given by

$$h^{-1}(y_1, y_2, \dots, y_n) = \left(\frac{2y_1}{|\mathbf{y}|^2 + 1}, \frac{2y_2}{|\mathbf{y}|^2 + 1}, \dots, \frac{2y_n}{|\mathbf{y}|^2 + 1}, \frac{|\mathbf{y}|^2 - 1}{|\mathbf{y}|^2 + 1}\right)$$

(where $|\mathbf{y}|^2 = y_1^2 + y_2^2 + \cdots + y_n^2$). A straightforward application of Propositions 1.17 and 1.19 shows that the functions h and h^{-1} are continuous. We deduce that $h: S^n \setminus \{N\} \to \mathbb{R}^n$ is a homeomorphism from $S^n \setminus \{N\}$ to \mathbb{R}^n . This construction described in this example is referred to as *stereographic projection* of $S^n \setminus \{N\}$ onto \mathbb{R}^n .