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1 Metric Spaces

Definition A metric space (X, d) consists of a set X together with a distance
function d: X x X — [0,4+00) on X, where this distance function satisfies
the following axioms:

(i) d(z,y) >0 for all z,y € X,

(i) d(x,y) =d(y,x) for all z,y € X,
(iii) d(z,z) < d(z,y) +d(y, z) for all x,y,z € X,
(iv) d(z,y) = 0 if and only if x = y.

The quantity d(x,y) should be thought of as measuring the distance be-
tween the points x and y. The inequality d(z, z) < d(z,y)+d(y, 2) is referred
to as the Triangle Inequality. The elements of a metric space are usually re-
ferred to as points of that metric space.

Note that if X is a metric space with distance function d and if A is a
subset of X then the restriction d|A x A of d to pairs of points of A defines
a distance function on A satisfying the axioms for a metric space.

The set R of real numbers becomes a metric space with distance function d
given by d(z,y) = |z — y| for all z,y € R. Similarly the set C of complex
numbers becomes a metric space with distance function d given by d(z,w) =
|z — w| for all z,w € C. Any subset of R or C may be regarded as a metric
space whose distance function is again given by d(z,w) = |z — w|. Further
examples of metric spaces are provided by the Fuclidean Spaces R™ with the
Euclidean distance function.

1.1 Euclidean Spaces

We denote by R™ the space consisting of all n-tuples (z1, zs,...,x,) of real
numbers. We can add and subtract elements of R” and multiply them by
scalars in the usual manner. Thus if x and y are elements of R" given by

X = (1,To,...,Tp), v =(Y1,Y2, -, Yn)
we define
x+y = (z1+y1, To+Y2, - -, TntYn), X—y = (T1—Y1, T2 Y2y - - ., T—Yn),

Mz, oy ooy ) = (Amy, ATa, .., ATy).



The scalar product x.y of x and y is given by
XY = Tiy1 + T2Yo + -+ Tnln,

and the Euclidean norm |x| of x by

|X|:\/X.x:\/x%+x§+---+a:%.

Lemma 1.1 (Schwarz’ Inequality) Let x andy be elements of R". Then
x.y| < [xllyl-

Proof We note that |A\x + py|? > 0 for all real numbers A and . But
Ax + py|* = (Ax + py).(Ax + py) = Nx|* + 22 ux.y + 2ly .

Therefore \?|x|* + 2 \ux.y + p2ly|? > 0 for all real numbers A and p. In
particular, suppose that A = |y|?> and u = —x.y. We conclude that

[y ' x* = 20y (ey)” + (xy)*ly|* = 0,
so that (|x|?ly|*> — (x.y)?) |y|? > 0. Thus if y # 0 then |y| > 0, and hence
xPlyl* = (xy)* 2 0.

But this inequality is trivially satisfied when y = 0. Thus |[x.y| < |x||y]|, as
required. |

It follows easily from Schwarz’ Inequality that |x +y| < |x| + |y| for all
x,y € R". For

x+y]? = (x+y).(x+y)=x]"+]|y*+2xy
< X2+ ylP+2xly] = (%] + [y])?

We regard R™ as a metric space, where the (Euclidean) distance d(x,y)
between two points x and y of R™ is given by d(x,y) = |x — y|. Using the
inequalities proved above, one can easily check that all of the metric space
axioms are satisfied by this distance function.

If X is any subset of R™ then the restriction of the Euclidean distance
function defined above to pairs of points taken from X defines a distance
function on X. In this manner we can regard any subset of R™ as a metric
space in its own right (with respect to the Euclidean distance function on X.



Example The n-sphere S™ is defined to be the subset of (n+ 1)-dimensional
Euclidean space R™! consisting of all elements x of R™*! for which |x| = 1.
Thus

(Note that S? is the standard (2-dimensional) unit sphere in 3-dimensional
Euclidean space.) The chordal distance between two points x and y of S™
is defined to be the length |x — y| of the line segment joining x and y. The
n-sphere S™ is a metric space with respect to the chordal distance function.

Example Let C([a, b]) denote the set of all continuous real-valued functions
on the closed interval [a, b], where a and b are real numbers satisfying a < b.
Then C([a,b]) is a metric space with respect to the distance function p,
where p(f,g) = sup,eop |[f(t) — g(t)| for all continuous functions f and g
from X to R. (Note that, for all f,g € C([a,b]), f — g is a continuous
function on [a,b] and is therefore bounded on [a, b], by a theorem proved in
Course 121. Therefore the distance function p is well-defined.)

1.2 Convergence and Continuity in Metric Spaces

Definition Let X be a metric space with distance function d. A sequence
x1,T9, T3, Ty, ... of points in X is said to converge to a point [ in X if and
only if the following criterion is satisfied:—

given any real number ¢ satisfying € > 0 there exists some natural
number N such that d(z,,!) < e whenever n > N.

We refer to [ as the limit lim x, of the sequence x1,xs, x5, xy4,....
n——+o0o

Note that this definition of convergence generalizes to arbitrary metric
spaces the standard definition of convergence for sequences of real or complex
numbers.

If a sequence of points in a metric space is convergent then the limit of
that sequence is unique. Indeed let x1, x9, x3, x4, ... be a sequence of points
in a metric space (X, d) which converges to points [ and I’ of X. We show
that [ = I'. Now, given any ¢ > 0, there exist natural numbers N; and N,
such that d(x,,[) < € whenever n > N; and d(x,,l") < & whenever n > Nj.
On choosing n so that n > N; and n > N, we see that

0<d(l,l) < d(l,z,) + d(z,, ') < 2¢

by a straightforward application of the metric space axioms (i)—(iii). Thus
0 < d(l,l") < 2¢ for every € > 0, and hence d([,l') = 0, so that [ = {" by
Axiom (iv).



Lemma 1.2 Let (X,d) be a metric space, and let x1, x5, x3,2y,... be a se-
quence of points of X which converges to some point | of X. Then, for any
point y of X, d(z,,y) — d(l,y) as n — +oo.

Proof Let ¢ > 0 be given. We must show that there exists some natural
number N such that |d(z,,y) — d(l,y)| < € whenever n > N. However N
can be chosen such that d(x,,[) < e whenever n > N. But

d(zn,y) < d(xn, 1) +d(l,y), d(l,y) < d(l,z,) + d(z,,y)
for all n, hence
—d(zp, ) < d(zp,y) —d(l,y) < d(z,,!)
for all n, and hence |d(x,,y) —d(l,y)| < € whenever n > N, as required. ||

Definition Let X and Y be metric spaces with distance functions dx and
dy respectively. A function f: X — Y from X to Y is said to be continuous
at a point z of X if and only if the following criterion is satisfied:—

given any real number ¢ satisfying € > 0 there exists some ¢ > 0
such that dy(f(x), f(2')) < e for all points o’ of X satisfying
dx(x,2") < 9.

The function f: X — Y is said to be continuous on X if and only if it is
continuous at x for every point z of X.

Note that this definition of continuity for functions between metric spaces
generalizes the definition of continuity for functions of a real or complex
variable.

Lemma 1.3 Let X, Y and Z be metric spaces with distance functions dx,
dy and dyz respectively, and let f: X — Y and g:Y — Z be continuous
functions. Then the composition function go f: X — Z is continuous.

Proof Let x be any point of X. We show that g o f is continuous at z.
Let ¢ > 0 be given. Now the function g is continuous at f(x). Hence there
exists some n > 0 such that dz(g(y),g(f(z))) < e for all points y of ¥
satisfying dy (v, f(z)) < 1. But then there exists some 6 > 0 such that
dy (f(2'), f(z)) < n for all points 2’ of X satisfying dx(2’,2) < §. Thus
dz(g(f(z"),g(f(x))) < e for all points z’ of X satisfying dx(z’,x) < §. Thus
the composition function g o f is continuous at z, as required. |



Lemma 1.4 Let X and Y be metric spaces with distance functions dx and
dy respectively, and let f: X — Y be a continuous function from X toY . Let
X1, T9, T3, Tyg, ... be a sequence of points of X which converges to some point [
of X. Then the sequence f(x1), f(x2), f(x3), f(x4),... converges to f(I).

Proof Let ¢ > 0 be given. We must show that there exists some natural
number N such that dy (f(z,), f(I)) < € whenever n > N. However there
exists some § > 0 such that dy(f(2'), f(I)) < € for all points 2’ of X sat-
isfying dx(z’,1) < 6, since the function f is continuous at [. Also there
exists some natural number N such that dx(z,,l) < 0 whenever n > N,
since the sequence x1, s, x3,2y4,... converges to [. Thus if n > N then

dy (f(xn), f(l)) < e, as required. |

1.3 Open Sets in Metric Spaces

Definition Let (X, d) be a metric space. Given a point = of X and a non-
negative real number r, the open ball Bx(x,r) of radius r about z in X is
defined to be the subset of X given by

Bx(z,r)={2' € X : d(2',z) <r}.

One thinks of the open ball Bx(z,r) as representing all points of the metric
space X whose distance from x is strictly less than the radius r of the ball.

Definition Let (X,d) be a metric space, and let x be a point of X. A
subset N of X is said to be a neighbourhood of x (in X) if and only if there
exists some d > 0 such that Bx(x,0) C N, where Bx(x,0) is the open ball
of radius ¢ about z in X.

Definition Let (X, d) be a metric space. A subset V' of X is said to be an
open set if and only if the following condition is satisfied:

given any point v of V' there exists some ¢ > 0 such that Bx (v, ) C
V.

Thus a subset V' of X is an open set if and only if V' is a neighbourhood of v
for all points v of V. By convention, we regard the empty set () as being an
open subset of X. (The criterion given above is satisfied vacuously in the
case when V is the empty set.)

Lemma 1.5 Let X be a metric space with distance function d, and let xy be
a point of X. Then, for any positive real number r, the open ball Bx (xo,T)
of radius r about xq s an open set in X.

b}



Proof Let = be an element of By (xg,r). We must show that there exists
some § > 0 such that Bx(z,0) C Bx(zo,r). Now d(z,z9) < r, and hece
9 > 0, where § = r — d(z, xy). Moreover if 2’ € Bx(x,d) then

d(z',xo) < d(2',x) + d(z,z0) < §+d(x,20) =17,

by the Triangle Inequality, and thus 2’ € Bx(zo,7). We deduce that Bx(z,d) C
Bx (xo,r). This shows that Bx(zo,r) is an open set, as required. |}

Lemma 1.6 Let X be a metric space with distance function d, and let xq be
a point of X. Then, for any non-negative real number r, the set {x € X :
d(z, o) > 1} is an open set in X.

Proof Let x be a point of X satisfying d(x,zq) > r, and let y be any point
of X satisfying d(y,z) < ¢, where § = d(x,x¢) —r. Then

d(ﬂj‘, :EO) < d(&?, y) + d<y7 1:0)7
by the Triangle Inequality, and therefore
d(y,zo) > d(z,z) — d(z,y) > d(x,x0) — 0 = .

Thus Bx(z,d) C {2’ € X : d(2',x9) > r}, showing that {z € X : d(z,x¢) >
r} is an open set in X. |}

Proposition 1.7 Let X be a metric space. The collection of open sets in X
has the following properties:—

(i) the empty set ) and the whole set X are both open sets;
(i1) the union of any collection of open sets is itself an open set;

(111) the intersection of any finite collection of open sets is itself an open
set.

Proof The empty set () is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. Thus (i) is satisfied.

Let A be any collection of open sets in the metric space X, and let U
denote the union of all the open sets belonging to A. We must show that U
is itself an open set. Let x be an element of U. Then x belongs to V' for some
open set V' belonging to the collection A. It follows that there exists some
d > 0 such that the open ball By (x,d) is a subset of V. But V' C U, and
thus Bx(z,d) C U. This shows that U is an open set in the metric space X.
Thus (ii) is satisfied.



Finally let V1, V5, V3, ..., Vi be a finite collection of open sets in the metric
space X, and let V' denote the intersection V; NV, N --- NV} of these open
sets. Let x be an element of V. Now z belongs to V; for j =1,2,...,k, and
therefore there exist strictly positive real numbers 1,0, ...,J, such that
Bx(x,0;) C V; for j = 1,2,..., k. Let § be the minimum of 9y, s, ..., 0.
Then 6 > 0. (This is where we need the fact that we are dealing with
a finite collection of open sets.) Moreover Bx(z,0) C Bx(z,0;) C V; for
j=1,2,...,k, and thus Bx(x,d) C V. This shows that the intersection V'
of the open sets Vi, V5, ..., Vi is itself an open set in the metric space X.
Thus (iii) is satisfied. |}

Remark For each natural number n, let V,, denote the open set in the
complex plane C defined by

V,=4{2€C:|z| <1/n}.

The intersection of all of these sets (as n ranges over the set of natural
numbers) consists of the set {0}, and this set is not an open subset of the
complex plane. This demonstrates that an intersection of an infinite number
of open sets in a metric space is not necessarily an open set.

Lemma 1.8 Let X be a metric space. A sequence (z; : j € N) of points in X
converges to a point | if and only if, given any open set U which contains L,
there exists some natural number N such that the point x; belongs to U for
all j satisfying j > N.

Proof Let (z; : j € N) be a sequence with the property that, given any open
set U which contains [, there exists some natural number N such that the
point x; belongs to U whenever j > N. Let € > 0 be given. The open ball
Bx(l,¢) of radius ¢ about [ is an open set by Lemma 1.5. Therefore there
exists some natural number N such that z; belongs to Bx(l,c) whenever
j > N. Thus d(z;,l) < ¢ whenever j > N. This shows that the sequence
(x;) converges to .

Conversely, suppose that the sequence (z;) converges to I. Let U be an
open set which contains [. Then there exists some £ > 0 such that the open
ball Bx (I, ¢) of radius € about [ is a subset of U. Thus there exists some ¢ > 0
such that U contains all points x of X that satisfy d(z,l) < . But there
exists some natural number N with the property that d(z;,1) < ¢ whenever
J > N, since the sequence (z;) converges to [. Therefore z; belongs to U for
all j satisfying j > N, as required. |}



1.4 Closed Sets in a Metric Space

A subset F' of a metric space X is said to be a closed set in X if and only
if its complement X \ F' is open. (Recall that the complement X \ F' of F
in X is, by definition, the set of all points of the metric space X that do
not belong to F'.) The following result follows immediately from Lemma 1.5,
Lemma 1.6, and the definition of closed sets.

Lemma 1.9 Let X be a metric space with distance function d, and let xy be
a point of X. Given any non-negative real number r, the sets

{r € X :d(x,x9) <1}, {r e X :d(z,x9) > 1}

are closed. In particular, the set {xo} consisting of the single point xq is a
closed set in X.

Let A be some collection of subsets of a set X. Then

X\Js=&x\9, x\(s=Jx\9)

SeA SeA SeA SeA

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from the
definition of closed sets and Proposition 1.7.

Proposition 1.10 Let X be a metric space. The collection of closed sets
in X has the following properties:—

(1) the empty set ) and the whole set X are both closed sets;

(i1) the intersection of any collection of closed sets in X is itself a closed
set;

(111) the union of any finite collection of closed sets in X is itself a closed
set.

Lemma 1.11 Let F' be a closed set in a metric space X and let (x; : j € N)
be a sequence of points of F'. Suppose that x; — | as j — +oo. Then [ also
belongs to F.

Proof The complement X \ F' of F'in X is open, since F' is closed. Suppose
that [ were a point belonging to X \ F. It would then follow from Lemma 1.8
that x; € X \ F for all values of j greater than some positive integer N,
contradicting the fact that x; € F' for all j. This contradiction shows that {
must belong to F', as required. |}



1.5 Continuous Functions and Open and Closed Sets

Let X and Y be metric spaces, and let f: X — Y be a function from X to Y.
We recall that the function f is continuous at a point z of X if and only
if, given any € > 0, there exists some 0 > 0 such that dy(f(2'), f(z)) < e
for all points 2’ of X satisfying dx(z',z) < d, where dx and dy denote the
distance functions on X and Y respectively. Expressed in terms of open
balls, this means that the function f: X — Y is continuous at x if and only
if, given any ¢ > 0, there exists some § > 0 such that f maps Bx(z,d) into
By (f(z),e) (where Bx(z,0) and By (f(x),e) denote the open balls of radius
0 and € about = and f(x) respectively).

Let f: X — Y be a function from a set X to a set Y. Given any subset V'
of Y, we denote by f~(V) the preimage of V under the map f, defined by

ffV)y={rec X : f(z) eV}

Proposition 1.12 Let X and Y be metric spaces, and let f: X — Y be a
function from X toY. The function f is continuous if and only if f~1(V)
1s an open set in X for every open set V of Y.

Proof Suppose that f: X — Y is continuous. Let V' be an open set in Y.
We must show that f~(V) is open in X. Let x be a point belonging
to f71(V). We must show that there exists some § > 0 with the prop-
erty that Bx(z,0) C f~ (V). Now f(z) belongs to V. But V is open, hence
there exists some ¢ > 0 with the property that By (f(z),e) C V. But f is
continuous at x. Therefore there exists some § > 0 such that f maps the
open ball Bx(z,d) into By (f(x),¢e) (see the remarks above). Thus f(z') € V
for all 2’ € Bx(z,d), showing that Bx(z,d) C f~1(V). We have thus shown
that if f: X — Y is continuous then f~!(V) is open in X for every open
set Vin Y.

Conversely suppose that f: X — Y has the property that f~1(V') is open
in X for every open set V in Y. Let x be any point of X. We must show
that f is continuous at z. Let £ > 0 be given. The open ball Bx(f(x),¢)
is an open set in Y, by Lemma 1.5, hence f~! (By(f(x),¢)) is an open set
in X which contains z. It follows that there exists some § > 0 such that
Bx(z,0) C f~'(By(f(x),e)). We have thus shown that, given any ¢ >
0, there exists some & > 0 such that f maps the open ball Bx(z,J) into
By (f(z),e). We conclude that f is continuous at z, as required. [

Let f: X — Y be a function between metric spaces X and Y. Then the
preimage f~'(Y \ G) of the complement Y \ G of any subset G of Y is equal
to the complement X \ f~!(G) of the preimage f~!(G) of G. Indeed

€ [TTY\G) &= [(2) Y \G = [(2)¢G <= 2 ¢ [71(G).

9



Also a subset of a metric space is closed if and only if its complement is open.
The following result therefore follows directly from Propostion 1.12.

Corollary 1.13 Let X and Y be metric spaces, and let f: X — Y be a
function from X to Y. The function f is continuous if and only if f~(G)
is a closed set in X for every closed set G in'Y .

Let f: X — Y be a continuous function from a metric space X to a metric
space Y. Then, for any point y of Y, the set {x € X : f(z) = y} is a closed
subset of X. This follows from Corollary 1.13, together with the fact that
the set {y} consisting of the single point y is a closed subset of the metric
space Y.

Let X be a metric space, and let f: X — R be a continuous function from
X to R. Then, given any real number ¢, the sets

{r e X: f(z) > c}, {reX: f(x)<c}
are open subsets of X, and the sets
{r e X : f(x) > ¢}, {r e X: f(x) <c}, {reX: f(z)=c}

are closed subsets of X. Also, given real numbers a and b satisfying a < b,
the set
{reX:a< f(x) <b}

is an open subset of X, and the set
{reX:a< f(z)<b}

is a closed subset of X.
Similar results hold for continuous functions f: X — C from X to C.
Thus, for example,

{re X :|f(x) <R}, {xr e X :|f(z) >R}
are open subsets of X and
{fzeX:|f@)<R}t,  {eeX:|fl)zR} A{zeX:|f(z)]=R}

are closed subsets of X, for any non-negative real number R.

10



1.6 Homeomorphisms

Let X and Y be metric spaces. A function h: X — Y from X to Y is said to
be a homeomorphism if it is a bijection and both h: X — Y and its inverse
h=:Y — X are continuous. If there exists a homeomorphism h: X — Y
from a metric space X to a metric space Y, then the metric spaces X and Y
are said to be homeomorphic.

Example The interval (—1,1) and the real line R are homeomorphic. A
homeomorphism h: (—1,1) — R is given by h(t) = t/(1 — t?) for all t €
(—1,1). The inverse h™:R — (—1,1) of & is the continuous function given
by

—1+V1+4s2 | _
h(s) = n 7

0 if s =0.

The following result follows directly on applying Proposition 1.12 to
h:X —-Y and to h 1Y — X.

Lemma 1.14 Let X and Y be metric spaces, and let h: X — Y be a homeo-
morphism. Then the homomorphism h induces a one-to-one correspondence
between that open sets of X and the open sets of Y : a subset V' of Y is open
in'Y if and only if h=1(V') is open in X.

Lemma 1.15 Let X and Y be metric spaces, and let h: X — Y be a home-
omorphism. Let Z be a metric space. A function f:Y — Z is continuous if
and only if foh: X — Z is continuous.

Proof If f:Y — Z is continuous then f o h: X — Z is continuous, since a
composition of continuous functions is continuous, by Lemma 1.3. Conversely
if foh'X — Z is continuous then f:Y — Z is continuous, since f =

(foh)oh™. |1

Lemma 1.16 Let X and Y be metric spaces, and let h: X — Y be a home-
omorphism. A sequence x1,xs,T3, Ty, ... of points in X is convergent in X
if and only if the corresponding sequence h(xy), h(xs), h(x3), h(xy), ... is con-
vergent in Y.

Proof This result follows from a direct application of Lemma 1.4 to h: X —
Y and its inverse h 1Y — X. |}

11



1.7 Continuity of Functions into Euclidean Spaces

Let f: X — R"™ be a function mapping a metric space X into R". The
components fi, fa,..., f, of f are the real-valued functions on X defined
such that

f(@) = (fi(x), fo(@), ..., fulz))
for all z € X.

Proposition 1.17 A function f: X — R" from a metric space X to R™ is
continuous if and only if its components f1, fa,..., fn are continuous func-
tions from X to R.

Proof Note that f; = p;o f fori=1,2,..., n, where p;: R — R is the func-
tion which projects a point (y1,¥s,...,¥y,) on R™ onto its ith coordinate y;.
Now p; is continuous for all 7. Also any composition of continuous functions
is continuous, by Lemma 1.3. Thus if f is continuous then its components
fi, fa, ..., fn are all continuous.

Conversely suppose that fi, fa, ..., f, are all continuous at some point z
of X. Let € > 0 be given. Then there exist strictly positive real numbers
01,02, . .., 0, such that | fi(x) — fi(zo)| < €/+/n for all points x of X satisfying
dx(x,x0) < d;, where dy denotes the distance function on X. Let § be the
minimum of dy,ds,...,d,. If x is any point of X satisfying dx(z,z) < 0
then

|f(z) = flao)]? = Z | fi(z) = fi(wo)]? < €7,

and thus |f(z) — f(zo)| < €. This shows that the function f is continuous
at g, as required. |

Lemma 1.18 The functions s: R* — R and p: R* — R defined by s(x,y) =
x4y and p(z,y) = xy are continuous.

Proof First we show that s: R? — R is continuous at every point (u, v) of R?.
Let € > 0 be given. Let § = e. If (x,y) is any point of R? whose distance
from (u,v) is less than ¢ then |z — u| < ¢ and |y — v| < ¢ and hence

Is(z,y) —s(u,v)| =z +y—u—v|<|z—u|l+|y—v| <20 =e.

This shows that the function s is continuous at (u,v).
Next we show that p:R? — R is continuous at every point (u,v) of R
Let € > 0 be given. Let

. 19 g
o = min (2<|v| 1) 2] 1 1)’1> |
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If (z,y) is any point of R? whose distance from (u,v) is less than ¢ then
|z —u] < § and |y — v| < d, and thus

\x—u|<2 ly| < |v| + 1.

[
— —v| <
DE LR

€
ul +1)°
But then
p(x, y) —p(u, v)| = ey —uwo| = |(z—w)y+uly—v)| < [z —ully[+]ully—v] <e.
This shows that the function p is continuous at (u,v). |}

Proposition 1.19 Let X be a metric space, and let f: X — R and g: X — R
be continuous functions from X to R. Then the functions f + g, f — g and
f.g are continuous. If in addition g(x) # 0 for all x € X then the quotient
function f/g is continuous.

Proof Note that f +g = soh and f.g = po h, where h: X — R?, s:R? —
R and p:R? — R are given by h(z) = (f(z),9(x)), s(u,v) = u + v and
p(u,v) = uv for all z € X and u,v € R. It follows from Proposition 1.17,
Lemma 1.18 Lemma 1.3 that f+g and f.g are continuous, being compositions
of continuous functions. Now f — g = f + (—g), and both f and —g are
continuous. Therefore f — g is continous.

Now suppose that g(z) # 0 for all z € X. Note that 1/g = r o g, where
r:R\ {0} — R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/¢ is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous. |

Example Let B™ denote the open unit ball in R", defined by
B"={xeR": x| <1},
and let h: B™ — R" be the function defined by

1

The function h is a bijection from B™ to R"™ whose inverse h1: R" — B is

given by
-1+ /1+4x]2 . _
W (x) = e x if x #0;
0 if x =0.
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Note that A7 (x) = ¢(]x|)x for all x € R™, where ¢: R — R is the continuous
function defined by

4VIraE
p(t) = 212 ife7#0;
| if ¢ = 0.

(The continuity of ¢ at 0 follows from an application of I’'Hopital’s Rule.)
A straighforward application of Lemma 1.3, Proposition 1.17 and Propo-
sition 1.19 shows that h and h~! are continuous. Thus h: B* — R" is a
homeomorphism from B" to R"™.

Example Let S™ denote the n-sphere, defined by
St ={x e R"": x| =1},

and let N be the point of S™ with coordinates (0,0,...,0,1). We show that
S™\ {N} is homeomorphic to R". Define a function h: S™ \ {N} — R" by

T o) Iy
h(x1, Ty ..o Ty Tpy1) = ( .. )

) P
1-— Tpt1 1 - Tnt1 11— Tn41

The function A is a bijection whose inverse h~1: R" — S™\ { N} is given by

211 2y2 2yn |y — 1)
yPP+1 y2+1" T yP+ 1 |y2+1

h_l(y17y27 cee ayn) - (

(where |y|?> =y +y32 + -+ +y2). A straightforward application of Proposi-
tions 1.17 and 1.19 shows that the functions h and h~! are continuous. We
deduce that h: S™\ {N} — R" is a homeomorphism from S™\ {N} to R".
This construction described in this example is referred to as stereographic
projection of S™\ {N} onto R™.
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