Course 212, 1989–90, Scholarship Examination (SF)

- 1. Consider the following subsets of \mathbb{R}^3 . Determine which are open and which are closed in \mathbb{R}^3 .
 - (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 7\},\$
 - (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \ge 7 \text{ and } z \le 0\},\$
 - (iii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \ge 7 \text{ or } z > 0\},\$
 - (iv) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } y^2 + z^2 = 1/x\},\$
- 2. (a) Define what is meant by saying that a metric space (X, d) is complete.
 - (b) State and prove the *Contraction Mapping Theorem* (also known as the *Banach Contraction Principle*).
- 3. (a) Define the concept of a *topological space*.
 - (b) Let (X, d) be a metric space. A subset V of X is said to be open in X if and only if, given any $v \in V$, there exists some $\delta > 0$ such that $\{x \in X : d(x, v) < \delta\} \subset V$. Prove that X, with these open sets, is a topological space.
 - (c) Let X be a topological space. Prove that a subset V of X is open if and only if, given any $v \in V$, there exists some open set N such that $v \in N$ and $N \subset V$.
- 4. Let X be a topological space, and let A be a subset of X.
 - (a) Give the definition of the closure \overline{A} of A.
 - (b) Let a_1, a_2, a_3, \ldots be an infinite sequence of points of A. Suppose that $\lim_{n \to +\infty} a_n = l$ for some $l \in X$. Prove that l belongs to the closure \overline{A} of A.
 - (c) What is the closure in \mathbb{R} of the set $\{1/n : n \in \mathbb{N}\}$?
 - (d) Let x be a point of X. Prove that $x \in \overline{A}$ if and only if $U \cap A$ is non-empty for all open sets U in X containing x.
- 5. (a) Define the *product topology* on the Cartesian Product $X_1 \times X_2 \times \cdots \times X_n$ of topological spaces X_1, X_2, \ldots, X_n .

- (b) Prove that the topology on *n*-dimensional Euclidean space \mathbb{R}^n induced by the Euclidean distance function coincides with the product topology obtained on regarding \mathbb{R}^n as the Cartesian product of *n* copies of \mathbb{R} .
- 6. (a) Let X be a topological space. Define what is meant by saying that X is *compact*.
 - (b) Let $f: X \to Y$ be a continuous function, and let A be a compact subset of X. Prove that the image f(A) of A under the map f is compact.
 - (c) Let K be a compact subset of a Hausdorff space X. Prove that K is closed.
 - (d) Let X be a compact topological space, let Y be a Hausdorff space, and let $f: X \to Y$ be a continuous function. Prove that f(A) is closed in Y for every closed set A in X.
- 7. Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be continuous functions from \mathbb{R}^n into \mathbb{R} . Suppose that $f(\mathbf{x}) > 0$ and $g(\mathbf{x}) > 0$ for all $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$. Suppose also that $f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ and $g(\lambda \mathbf{x}) = \lambda^3 g(\mathbf{x})$ for all $\lambda > 0$. Prove that there exist constants c and C satisfying $0 < c \leq C$ such that $c|\mathbf{x}|^2 f(\mathbf{x}) \leq g(\mathbf{x}) \leq C|\mathbf{x}|^2 f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$.
- 8. (a) Let X be a topological space. Define what is meant by saying that X is *connected*. Prove that X is connected if and only if every continuous function $f: X \to \mathbb{Z}$ is constant.
 - (b) A topological space X is said to be *path-connected* if, given any two points x_0 and x_1 of X, there exists a continuous function $\gamma: [0,1] \to X$ with $\gamma(0) = x_0$ and $\gamma(1) = x_1$. Prove that every path-connected topological space is connected.
 - (c) Let X be connected topological space. Suppose that every point of X has an open neighbourhood homeomorphic to an open set in \mathbb{R}^n . Prove that X is path-connected. [Hint: choose $x_0 \in X$ and show that the sets
 - $U_0 = \{x \in X : x \text{ can be joined to } x_0 \text{ by a path} \}$ $U_0 = \{x \in X : x \text{ cannot be joined to } x_0 \text{ by a path} \}$

are both open in X.]

9. (a) Let M be a metric space. Define what is meant by saying that M is a *topological manifold* of dimension n.

- (b) Define the concept of a continuous coordinate system (x¹, x²,..., xⁿ) on a topological manifold M of dimension n. Define what is meant by saying that two continuous coordinate systems (x¹, x²,..., xⁿ) and (y¹, y²,..., yⁿ) are smoothly compatible.
- (c) Let \mathcal{A} be a collection of continuous coordinate systems on a topological manifold M of dimension n. Define what is meant by saying that \mathcal{A} is a *smooth atlas* on M.
- (d) Let \mathcal{A} be a smooth atlas on a topological manifold M of dimension n. Prove that \mathcal{A} is contained in an atlas \mathcal{A}_{\max} which is maximal in the following sense: if (x^1, x^2, \ldots, x^n) is any continuous coordinate system that is smoothly compatible with all the coordinate systems belonging to \mathcal{A}_{\max} then (x^1, x^2, \ldots, x^n) must itself belong to \mathcal{A}_{\max} .
- (e) Define the concept of a smooth manifold of dimension n.
- 10. Let X be a topological space, and let x_0 be a point of X. Define the fundamental group $\pi_1(X, x_0)$ of X based at x_0 , and prove that $\pi_1(X, x_0)$ is indeed a well-defined group.

©TRINITY COLLEGE DUBLIN, THE UNIVERSITY OF DUBLIN 1990