1. Consider the following subsets of \mathbb{R}^3. Determine which are open and which are closed in \mathbb{R}^3.
 (i) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 7\}$,
 (ii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \geq 7 \text{ and } z \leq 0\}$,
 (iii) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \geq 7 \text{ or } z > 0\}$,
 (iv) $\{(x, y, z) \in \mathbb{R}^3 : x > 0 \text{ and } y^2 + z^2 = 1/x\}$.

2. (a) Define what is meant by saying that a metric space (X, d) is complete.
 (b) State and prove the Contraction Mapping Theorem (also known as the Banach Contraction Principle).

3. (a) Define the concept of a topological space.
 (b) Let (X, d) be a metric space. A subset V of X is said to be open in X if and only if, given any $v \in V$, there exists some $\delta > 0$ such that $\{x \in X : d(x, v) < \delta\} \subset V$. Prove that X, with these open sets, is a topological space.
 (c) Let X be a topological space. Prove that a subset V of X is open if and only if, given any $v \in V$, there exists some open set N such that $v \in N$ and $N \subset V$.

4. Let X be a topological space, and let A be a subset of X.
 (a) Give the definition of the closure \overline{A} of A.
 (b) Let a_1, a_2, a_3, \ldots be an infinite sequence of points of A. Suppose that $\lim_{n \to +\infty} a_n = l$ for some $l \in X$. Prove that l belongs to the closure \overline{A} of A.
 (c) What is the closure in \mathbb{R} of the set $\{1/n : n \in \mathbb{N}\}$?
 (d) Let x be a point of X. Prove that $x \in \overline{A}$ if and only if $U \cap A$ is non-empty for all open sets U in X containing x.

5. (a) Define the product topology on the Cartesian Product $X_1 \times X_2 \times \cdots \times X_n$ of topological spaces X_1, X_2, \ldots, X_n.

Course 212, 1989–90, Scholarship Examination (SF)
(b) Prove that the topology on \(n \)-dimensional Euclidean space \(\mathbb{R}^n \) induced by the Euclidean distance function coincides with the product topology obtained on regarding \(\mathbb{R}^n \) as the Cartesian product of \(n \) copies of \(\mathbb{R} \).

6. (a) Let \(X \) be a topological space. Define what is meant by saying that \(X \) is compact.

(b) Let \(f: X \to Y \) be a continuous function, and let \(A \) be a compact subset of \(X \). Prove that the image \(f(A) \) of \(A \) under the map \(f \) is compact.

(c) Let \(K \) be a compact subset of a Hausdorff space \(X \). Prove that \(K \) is closed.

(d) Let \(X \) be a compact topological space, let \(Y \) be a Hausdorff space, and let \(f: X \to Y \) be a continuous function. Prove that \(f(A) \) is closed in \(Y \) for every closed set \(A \) in \(X \).

7. Let \(f: \mathbb{R}^n \to \mathbb{R} \) and \(g: \mathbb{R}^n \to \mathbb{R} \) be continuous functions from \(\mathbb{R}^n \) into \(\mathbb{R} \). Suppose that \(f(x) > 0 \) and \(g(x) > 0 \) for all \(x \in \mathbb{R}^n \setminus \{0\} \). Suppose also that \(f(\lambda x) = \lambda f(x) \) and \(g(\lambda x) = \lambda^3 g(x) \) for all \(\lambda > 0 \). Prove that there exist constants \(c \) and \(C \) satisfying \(0 < c \leq C \) such that \(c|x|^2 f(x) \leq g(x) \leq C|x|^2 f(x) \) for all \(x \in \mathbb{R}^n \).

8. (a) Let \(X \) be a topological space. Define what is meant by saying that \(X \) is connected. Prove that \(X \) is connected if and only if every continuous function \(f: X \to \mathbb{Z} \) is constant.

(b) A topological space \(X \) is said to be path-connected if, given any two points \(x_0 \) and \(x_1 \) of \(X \), there exists a continuous function \(\gamma: [0, 1] \to X \) with \(\gamma(0) = x_0 \) and \(\gamma(1) = x_1 \). Prove that every path-connected topological space is connected.

(c) Let \(X \) be connected topological space. Suppose that every point of \(X \) has an open neighbourhood homeomorphic to an open set in \(\mathbb{R}^n \). Prove that \(X \) is path-connected. [Hint: choose \(x_0 \in X \) and show that the sets

\[
U_0 = \{ x \in X : x \text{ can be joined to } x_0 \text{ by a path} \} \\
U_0 = \{ x \in X : x \text{ cannot be joined to } x_0 \text{ by a path} \}
\]

are both open in \(X \).]

9. (a) Let \(M \) be a metric space. Define what is meant by saying that \(M \) is a topological manifold of dimension \(n \).
(b) Define the concept of a continuous coordinate system \((x^1, x^2, \ldots, x^n)\) on a topological manifold \(M\) of dimension \(n\). Define what is meant by saying that two continuous coordinate systems \((x^1, x^2, \ldots, x^n)\) and \((y^1, y^2, \ldots, y^n)\) are smoothly compatible.

(c) Let \(\mathcal{A}\) be a collection of continuous coordinate systems on a topological manifold \(M\) of dimension \(n\). Define what is meant by saying that \(\mathcal{A}\) is a smooth atlas on \(M\).

(d) Let \(\mathcal{A}\) be a smooth atlas on a topological manifold \(M\) of dimension \(n\). Prove that \(\mathcal{A}\) is contained in an atlas \(\mathcal{A}_{\text{max}}\) which is maximal in the following sense: if \((x^1, x^2, \ldots, x^n)\) is any continuous coordinate system that is smoothly compatible with all the coordinate systems belonging to \(\mathcal{A}_{\text{max}}\) then \((x^1, x^2, \ldots, x^n)\) must itself belong to \(\mathcal{A}_{\text{max}}\).

(e) Define the concept of a smooth manifold of dimension \(n\).

10. Let \(X\) be a topological space, and let \(x_0\) be a point of \(X\). Define the fundamental group \(\pi_1(X, x_0)\) of \(X\) based at \(x_0\), and prove that \(\pi_1(X, x_0)\) is indeed a well-defined group.