Course 212: Academic Year 1989-1990 Section 9: Winding Numbers

D. R. Wilkins

Copyright ©1989–1990

Contents

9	Wir	nding Numbers	42
	9.1	Winding Numbers of Closed Curves in the Plane	42
	9.2	The Fundamental Theorem of Algebra	44
	9.3	The Kronecker Principle	45
	9.4	The Borsuk-Ulam Theorem	45
	9.5	Winding Numbers and Contour Integrals	47

9 Winding Numbers

9.1 Winding Numbers of Closed Curves in the Plane

Let $\gamma: [0,1] \to \mathbb{C}$ be a continuous closed curve in the complex plane which is defined on some closed interval [0,1] (so that $\gamma(0) = \gamma(1)$), and let w be a complex number which does not belong to the image of the closed curve γ . The map $p_w: \mathbb{C} \to \mathbb{C} \setminus \{w\}$ defined by $p_w(z) = w + \exp(2\pi i z)$ is a covering map. Observe that if z_1 and z_2 are complex numbers then $p_w(z_1) = p_w(z_2)$ if and only if $z_1 - z_2$ is an integer. Using the Path Lifting Property for covering maps (Theorem 8.3) we see that there exists a continuous path $\tilde{\gamma}: [0, 1] \to \mathbb{C}$ in \mathbb{C} such that $p_w \circ \tilde{\gamma} = \gamma$. Let us define

$$n(\gamma, w) = \tilde{\gamma}(1) - \tilde{\gamma}(0).$$

Now $p_w(\tilde{\gamma}(1)) = p_w(\tilde{\gamma}(0))$ (since $\gamma(1) = \gamma(0)$). It follows from this that $n(\gamma, w)$ is an integer. We claim that the value of $n(\gamma, w)$ is independent of the choice of the path $\tilde{\gamma}$ on \mathbb{C} .

Let $\sigma: [0,1] \to \mathbb{C}$ be a continuous path in \mathbb{C} with the property that $p_w \circ \sigma = \gamma$. Then $p_w(\sigma(t)) = p_w(\tilde{\gamma}(t))$ for all $t \in [0,1]$, and hence $\sigma(t) - \tilde{\gamma}(t)$ is an integer for all $t \in [0,1]$. But the map sending $t \in [0,1]$ to $\sigma(t) - \tilde{\gamma}(t)$ is continuous on [0,1]; therefore this map must be a constant map. Thus there exists some integer m with the property that $\sigma(t) = \tilde{\gamma}(t) + m$ for all $t \in [0,1]$, and hence

$$\sigma(1) - \sigma(0) = \tilde{\gamma}(1) - \tilde{\gamma}(0).$$

This proves that the value of $n(\gamma, w)$ is independent of the choice of the lift $\tilde{\gamma}$ of the closed curve γ .

Definition Let $\gamma: [0,1] \to \mathbb{C}$ be a continuous closed curve in the complex plane, and let w be a complex number which does not belong to the image of the closed curve γ . Then the *winding number* $n(\gamma, w)$ of the closed curve γ about w is defined by

$$n(\gamma, w) \equiv \tilde{\gamma}(1) - \tilde{\gamma}(0),$$

where $\tilde{\gamma}: [0,1] \to \mathbb{C}$ is some continuous path in \mathbb{C} with the property that

$$\gamma(t) = w + \exp(2\pi i \tilde{\gamma}(t))$$

for all $t \in [0, 1]$.

Theorem 9.1 Let w be a complex number and let $\gamma_0: [0, 1] \to \mathbb{C}$ and $\gamma_1: [0, 1] \to \mathbb{C}$ be closed curves in \mathbb{C} which do not pass through w. Suppose that there exists some homotopy $F: [0, 1] \times [0, 1] \to \mathbb{C}$ with the following properties:

- (i) $F(t,0) = \gamma_0(t)$ and $F(t,1) = \gamma_1(t)$ for all $t \in [0,1]$,
- (*ii*) $F(0, \tau) = F(1, \tau)$ for all $\tau \in [0, 1]$,
- (iii) the complex number w does not belong to the image $F([0,1] \times [0,1])$ of the homotopy F.

Then $n(\gamma_0, w) = n(\gamma_1, w)$ (where $n(\gamma_0, w)$ and $n(\gamma_1, w)$ are the winding numbers of the closed curves γ_0 and γ_1).

Proof It follows from the Path Lifting Property for covering maps (Theorem 8.3) that there exists a continuous map $g: [0, 1] \to \mathbb{C}$ such that $p_w(g(t)) = F(t, 0)$ for all $t \in [0, 1]$ (where $p_w(z) = w + \exp(2\pi i z)$ for all $z \in \mathbb{C}$). It then follows from the Homotopy Lifting Property (Theorem 8.4) that there exists a continuous map $\tilde{F}: [0, 1] \times [0, 1] \to \mathbb{C}$ such that $\tilde{F}(t, 0) = g(t)$ and $p_w \circ \tilde{F} = F$. Now the path $t \mapsto \tilde{F}(t, \tau)$ is a lift of the loop γ_τ , where $\gamma_\tau: [0, 1] \to \mathbb{C}$ is the loop given by $\gamma_\tau(t) = F(t, \tau)$. We deduce that $n(\gamma_\tau, w) = \tilde{F}(1, \tau) - (0, \tau)$ for all $\tau \in [0, 1]$. This implies that the function $\tau \mapsto n(\gamma_\tau, w)$ is a continuous function on the interval [0, 1] taking values in the set \mathbb{Z} of integers. But such a function must be constant on [0, 1]. Thus $n(\gamma_0, w) = n(\gamma_1, w)$, as required.

Corollary 9.2 Let $\gamma_0: [0,1] \to \mathbb{C}$ and $\gamma_1: [0,1] \to \mathbb{C}$ be continuous closed curves in \mathbb{C} , and let w be a complex number which does not lie on the images of the closed curves γ_0 and γ_1 . Suppose that, for all $t \in [0,1]$, the line segment in the complex plane \mathbb{C} joining $\gamma_0(t)$ to $\gamma_1(t)$ does not pass through w. Then $n(\gamma_0, w) = n(\gamma_1, w)$.

Proof Let $F: [0,1] \times [0,1] \to \mathbb{C}$ be the homotopy defined by

$$F(t,\tau) = (1-\tau)\gamma_0(t) + \tau\gamma_1(t)$$

for all $t \in [0, 1]$ and $\tau \in [0, 1]$. Note that w does not lie on the image of the homotopy F. We can therefore apply Theorem 9.1 to conclude that $n(\gamma_0, w) = n(\gamma_1, w)$.

Corollary 9.3 (Dog-Walking Principle) Let $\gamma_0: [0, 1] \to \mathbb{C}$ and $\gamma_1: [0, 1] \to \mathbb{C}$ be continuous closed curves in \mathbb{C} , and let w be a complex number which does not lie on the images of the closed curves γ_0 and γ_1 . Suppose that $|\gamma_1(t) - \gamma_0(t)| < |\gamma_0(t) - w|$ for all $t \in [0, 1]$. Then $n(\gamma_0, w) = n(\gamma_1, w)$.

Proof The inequality $|\gamma_1(t) - \gamma_0(t)| < |\gamma_0(t) - w|$ ensures that the line segment in \mathbb{C} joining $\gamma_0(t)$ and $\gamma_1(t)$ does not pass through w. The result therefore follows directly from Corollary 9.2.

Corollary 9.4 Let $\gamma: [0,1] \to \mathbb{C}$ be a continuous closed curve in \mathbb{C} , and let $\sigma: [0,1] \to \mathbb{C}$ be a continuous path in \mathbb{C} whose image does not intersect the image of γ . Then $n(\gamma, \sigma(0)) = n(\gamma, \sigma(1))$. Thus the function $w \mapsto n(\gamma, w)$ is constant over each path-component of the set $\mathbb{C} \setminus \gamma([0,1])$.

Proof Let $F: [0,1] \times [0,1] \to \mathbb{C}$ be defined by $F(t,\tau) = \gamma(t) - \sigma(\tau)$ for all $(t,\tau) \in [0,1] \times [0,1]$. Then $F(t,\tau) \neq 0$ for all $(t,\tau) \in [0,1] \times [0,1]$, since the path σ does not intersect the closed curve γ . It follows from Theorem 9.1 that $n(\gamma_0,0) = n(\gamma_1,0)$, where

$$\gamma_{\tau}(t) = F(t,\tau) = \gamma(t) - \sigma(\tau)$$

for all $t \in [0, 1]$. Thus

$$n(\gamma, \sigma(0)) = n(\gamma_0, 0) = n(\gamma_1, 0) = n(\gamma, \sigma(1)).$$

9.2 The Fundamental Theorem of Algebra

Theorem 9.5 (The Fundamental Theorem of Algebra) Let $P: \mathbb{C} \to \mathbb{C}$ be a non-constant polynomial with complex coefficients. Then there exists some complex number z_0 such that $P(z_0) = 0$.

Proof The result is trivial if P(0) = 0. Thus it suffices to prove the result when $P(0) \neq 0$.

For any r > 0, let the closed curve σ_r denote the circle about zero of radius r, traversed once in the anticlockwise direction, given by $\sigma_r(t) = r \exp(2\pi i t)$ for all $t \in [0, 1]$. Consider the winding number $n(P \circ \sigma_r, 0)$ of $P \circ \sigma_r$ about zero. We claim that this winding number is equal to m for large values of r, where m is the degree of the polynomial P.

Let $P(z) = a_0 + a_1 z + \cdots + a_m z^m$, where a_1, a_2, \ldots, a_n are complex numbers, and where $a_m \neq 0$. We write $P(z) = P_m(z) + Q(z)$, where $P_m(z) = a_m z^m$ and

$$Q(z) = a_0 + a_1 z + \dots + a_{m-1} z^{m-1}.$$

Let *R* be defined by $R = |a_m|^{-1}(|a_0| + |a_1| + \dots + |a_m|)$ If |z| > R then |z| > 1and hence

$$\left|\frac{Q(z)}{P_m(z)}\right| = \frac{1}{|a_m z|} \left|\frac{a_0}{z^{m-1}} + \frac{a_1}{z^{m-2}} + \dots + a_{m-1}\right| < 1.$$

Thus if |z| > R then $|P(z) - P_m(z)| < |P_m(z)|$. It follows from the Dog-Walking Principle (Corollary 9.3) that $n(P \circ \sigma_r, 0) = n(P_m \circ \sigma_r, 0) = m$ for all r satisfying r > R.

Now were it the case that the polynomial P were everywhere non-zero then the closed curves $P \circ \sigma_r$ would be homotopic in $\mathbb{C} \setminus \{0\}$ for all $r \ge 0$ and thus $n(P \circ \sigma_r, 0)$ would be a constant function of r (Theorem 9.1). Now $P \circ \sigma_0$ is the constant curve at P(0), and hence $n(P \circ \sigma_0, 0) = 0$. Thus if P were everywhere non-zero then $n(P \circ \sigma_r, 0) = 0$ for all $r \ge 0$. But $n(P \circ \sigma_r, 0) = m$ if r > R, where m is the degree of the non-constant polynomial P. Since m > 0, we conclude that P has at least one zero in the complex plane.

9.3 The Kronecker Principle

The proof of the Fundamental Theorem of Algebra given above depends on continuity of the polynomial P, together with the fact that $n(P \circ \sigma_r, 0)$ is nonzero for sufficiently large r, where σ_r denotes the circle of radius r about zero, described once in the fanticlockwise direction. We can therefore generalize the proof of the Fundamental Theorem of Algebra in order to obtain the following result, known as the *Kronecker Principle*.

Theorem 9.6 (Kronecker Principle) Let $f: D \to \mathbb{C}$ be a continuous map defined on the closed unit disk D in \mathbb{C} . Let w be a complex number which does not lie on the image $f(\partial D)$ of the boundary circle ∂D of D. Suppose that $n(f \circ \sigma, w) \neq 0$, where $\sigma: [0, 1] \to \partial D$ is the parameterization of the boundary circle ∂D of D defined by $\sigma(t) = \exp(2\pi i t)$. Then there exists some $z \in D \setminus \partial D$ with the property that f(z) = w.

Proof Suppose that it were the case that $f(z) \neq w$ for all $z \in D$. It would then follow from Theorem 9.1 that $n(f \circ \sigma_r, w)$ would be a constant function of r for all $r \in [0, 1]$, where $\sigma_r: [0, 1] \to D$ is given by $\sigma_r(t) = r \exp(2\pi i t)$. But $n(f \circ \sigma_0, w) = 0$, since $(f \circ \sigma_0)(t) = f(0)$ for all $t \in [0, 1]$, and $n(f \circ \sigma_1, w) \neq 0$ by assumption. This contradiction shows that f(z) = w for some $z \in D$.

9.4 The Borsuk-Ulam Theorem

Lemma 9.7 Let $f: S^1 \to \mathbb{C}$ be a continuous function defined on S^1 , where $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. Suppose that f(-z) = -f(z) for all $z \in \mathbb{C}$. Then the winding number $n(f \circ \sigma, 0)$ of $f \circ \sigma$ about 0 is odd, where $\sigma: [0, 1] \to S^1$ is given by $\sigma(t) = \exp(2\pi i t)$.

Proof Let $\tilde{\gamma}: [0,1] \to \mathbb{C}$ be a continuous path in \mathbb{C} such that $\exp(2\pi i \tilde{\gamma}(t)) = f(\sigma(t))$ for all $t \in [0,1]$. (The existence of $\tilde{\gamma}$ is guaranteed by the Path Lifting Property, applied to the covering map from \mathbb{C} to $\mathbb{C} \setminus \{0\}$ sending $z \in \mathbb{C}$ to $\exp(2\pi i z)$.) Now $f(\sigma(t+\frac{1}{2})) = -f(\sigma(t))$ for all $t \in [0,\frac{1}{2}]$, since

 $\sigma(t+\frac{1}{2}) = -\sigma(t)$ and f(-z) = -f(z) for all $z \in \mathbb{C}$. Thus $\exp(2\pi i \tilde{\gamma}(t+\frac{1}{2})) = \exp(2\pi i (\tilde{\gamma}(t)+\frac{1}{2}))$ for all $t \in [0, \frac{1}{2}]$. It follows that $\tilde{\gamma}(t+1 \text{ over } 2) = \tilde{\gamma}(t)+m+\frac{1}{2}$ for some integer m. (The value of m for which this identity is valid does not depend on t, since every continuous function from $[0, \frac{1}{2}]$ to the set of integers is necessarily constant.) Hence

$$n(f \circ \sigma, 0) = (\tilde{\gamma}(1) - \tilde{\gamma}(0)) = (\tilde{\gamma}(1) - \tilde{\gamma}(\frac{1}{2})) - (\tilde{\gamma}(\frac{1}{2}) - \tilde{\gamma}(0)) = 2m + 1.$$

Thus $n(f \circ \sigma, 0)$ is an odd integer, as required.

We shall identify the space \mathbb{R}^2 with \mathbb{C} , identifying $(x, y) \in \mathbb{R}^2$ with the complex number $x + iy \in \mathbb{C}$ for all $x, y \in \mathbb{R}$. This is permissible, since we are interested in purely topological results concerning continuous functions defined on appropriate subsets of these spaces. Under this identification the closed unit disk D is given by

$$D = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1 \}.$$

As usual, we define

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} : x^{2} + y^{2} + z^{2} = 1\}.$$

Lemma 9.8 Let $f: S^2 \to \mathbb{R}^2$ be a continuous map with the property that $f(-\mathbf{n}) = -f(\mathbf{n})$ for all $\mathbf{n} \in S^2$. Then there exists some point \mathbf{n}_0 of S^2 with the property that $f(\mathbf{n}_0) = 0$.

Proof Let $\varphi: D \to S^2$ be the map defined by

$$\varphi(x,y) = (x,y, +\sqrt{1-x^2-y^2}).$$

(Thus the map φ maps the closed disk D homeomorphically onto the upper hemisphere in \mathbb{R}^3 .) Let $\sigma: [0, 1] \to S^2$ be the parameterization of the equator in S^2 defined by

$$\sigma(t) = (\cos 2\pi t, \sin 2\pi t, 0)$$

for all $t \in [0,1]$. Let $f: S^2 \to \mathbb{R}^2$ be a continuous map with the property that $f(-\mathbf{n}) = -f(\mathbf{n})$ for all $\mathbf{n} \in S^2$. The winding number $n(f \circ \sigma, 0)$ is an odd integer, by Lemma 9.7, and is thus non-zero. It follows from the Kronecker Principle (Theorem 9.6), applied to $f \circ \varphi: D \to \mathbb{R}^2$, that there exists some point (u, v) of D such that $f(\varphi(u, v)) = 0$. Thus $f(\mathbf{n}_0) = 0$, where $\mathbf{n}_0 = \sigma(u, v)$.

We conclude immediately from this result that there are no continuous maps $f: S^2 \to S^1$ from the 2-sphere S^2 to the circle S^1 with the property that $f(-\mathbf{n}) = -f(\mathbf{n})$ for all $\mathbf{n} \in S^2$.

Theorem 9.9 (Borsuk-Ulam) Let $f: S^2 \to \mathbb{R}^2$ be a continuous map. Then there exists some point \mathbf{n} of S^2 with the property that $f(-\mathbf{n}) = f(\mathbf{n})$.

Proof This result follows immediately on applying Lemma 9.8 to the continuous function $g: S^2 \to \mathbb{R}^2$ defined by $g(\mathbf{n}) = f(\mathbf{n}) - f(-\mathbf{n})$.

Remark It is possible to generalize the Borsuk-Ulam Theorem to n dimensions. Let S^n be the unit n-sphere centered on the origin in \mathbb{R}^n . The Borsuk-Ulam Theorem in n-dimensions states that if $f: S^n \to \mathbb{R}^n$ is a continuous map then there exists some point \mathbf{x} of S^n with the property that $f(\mathbf{x}) - f(-\mathbf{x})$.

9.5 Winding Numbers and Contour Integrals

A continuous curve is said to be *piecewise* C^1 if it is made up of a finite number of continuously differentiable segments. We now show how the winding number of a piecewise C^1 closed curve in the complex plane can be expressed as a contour integral.

Proposition 9.10 Let $\gamma: [0,1] \to \mathbb{C}$ be a piecewise C^1 closed curve in the complex plane, and let w be a point of \mathbb{C} that does not lie on the curve γ . Then the winding number $n(\gamma, w)$ of γ about w is given by

$$n(\gamma, w) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - w}.$$

Proof By definition $n(\gamma, w) = \alpha(1) - \alpha(0)$, where $\alpha: [0, 1] \to \mathbb{C}$ is a path in \mathbb{C} such that

$$\gamma(t) = w + \exp(2\pi i\alpha(t))$$

for all $t \in [0, 1]$. Taking derivatives, we see that

$$\gamma'(t) = 2\pi i \exp(2\pi i \alpha(t)) \alpha'(t) = 2\pi i (\gamma(t) - w) \alpha'(t).$$

Thus

$$n(\gamma, w) = \alpha(1) - \alpha(0) = \int_0^1 \alpha'(t) \, dt = \frac{1}{2\pi i} \int_0^1 \frac{\gamma'(t) \, dt}{\gamma(t) - w} = \frac{1}{2\pi i} \int_\gamma \frac{dz}{z - w}.$$