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9 Winding Numbers

9.1 Winding Numbers of Closed Curves in the Plane

Let γ: [0, 1]→ C be a continuous closed curve in the complex plane which is
defined on some closed interval [0, 1] (so that γ(0) = γ(1)), and let w be a
complex number which does not belong to the image of the closed curve γ.
The map pw:C → C \ {w} defined by pw(z) = w + exp(2πiz) is a covering
map. Observe that if z1 and z2 are complex numbers then pw(z1) = pw(z2) if
and only if z1−z2 is an integer. Using the Path Lifting Property for covering
maps (Theorem 8.3) we see that there exists a continuous path γ̃: [0, 1]→ C
in C such that pw ◦ γ̃ = γ. Let us define

n(γ, w) = γ̃(1)− γ̃(0).

Now pw(γ̃(1)) = pw(γ̃(0)) (since γ(1) = γ(0)). It follows from this that
n(γ, w) is an integer. We claim that the value of n(γ, w) is independent of
the choice of the path γ̃ on C.

Let σ: [0, 1]→ C be a continuous path in C with the property that pw◦σ =
γ. Then pw(σ(t)) = pw(γ̃(t)) for all t ∈ [0, 1], and hence σ(t) − γ̃(t) is an
integer for all t ∈ [0, 1]. But the map sending t ∈ [0, 1] to σ(t) − γ̃(t) is
continuous on [0, 1]; therefore this map must be a constant map. Thus there
exists some integer m with the property that σ(t) = γ̃(t)+m for all t ∈ [0, 1],
and hence

σ(1)− σ(0) = γ̃(1)− γ̃(0).

This proves that the value of n(γ, w) is independent of the choice of the lift γ̃
of the closed curve γ.

Definition Let γ: [0, 1] → C be a continuous closed curve in the complex
plane, and let w be a complex number which does not belong to the image of
the closed curve γ. Then the winding number n(γ, w) of the closed curve γ
about w is defined by

n(γ, w) ≡ γ̃(1)− γ̃(0),

where γ̃: [0, 1]→ C is some continuous path in C with the property that

γ(t) = w + exp(2πiγ̃(t))

for all t ∈ [0, 1].

Theorem 9.1 Let w be a complex number and let γ0: [0, 1]→ C and γ1: [0, 1]→
C be closed curves in C which do not pass through w. Suppose that there ex-
ists some homotopy F : [0, 1]× [0, 1]→ C with the following properties:
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(i) F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for all t ∈ [0, 1],

(ii) F (0, τ) = F (1, τ) for all τ ∈ [0, 1],

(iii) the complex number w does not belong to the image F ([0, 1]× [0, 1]) of
the homotopy F .

Then n(γ0, w) = n(γ1, w) (where n(γ0, w) and n(γ1, w) are the winding num-
bers of the closed curves γ0 and γ1).

Proof It follows from the Path Lifting Property for covering maps (Theo-
rem 8.3) that there exists a continuous map g: [0, 1]→ C such that pw(g(t)) =
F (t, 0) for all t ∈ [0, 1] (where pw(z) = w + exp(2πiz) for all z ∈ C). It then
follows from the Homotopy Lifting Property (Theorem 8.4) that there exists a
continuous map F̃ : [0, 1]× [0, 1]→ C such that F̃ (t, 0) = g(t) and pw ◦F̃ = F .
Now the path t 7→ F̃ (t, τ) is a lift of the loop γτ , where γτ : [0, 1]→ C is the

loop given by γτ (t) = F (t, τ). We deduce that n(γτ , w) = F̃ (1, τ)− (̃0, τ) for
all τ ∈ [0, 1]. This implies that the function τ 7→ n(γτ , w) is a continuous
function on the interval [0, 1] taking values in the set Z of integers. But
such a function must be constant on [0, 1]. Thus n(γ0, w) = n(γ1, w), as
required.

Corollary 9.2 Let γ0: [0, 1] → C and γ1: [0, 1] → C be continuous closed
curves in C, and let w be a complex number which does not lie on the images
of the closed curves γ0 and γ1. Suppose that, for all t ∈ [0, 1], the line segment
in the complex plane C joining γ0(t) to γ1(t) does not pass through w. Then
n(γ0, w) = n(γ1, w).

Proof Let F : [0, 1]× [0, 1]→ C be the homotopy defined by

F (t, τ) = (1− τ)γ0(t) + τγ1(t)

for all t ∈ [0, 1] and τ ∈ [0, 1]. Note that w does not lie on the image of
the homotopy F . We can therefore apply Theorem 9.1 to conclude that
n(γ0, w) = n(γ1, w).

Corollary 9.3 (Dog-Walking Principle) Let γ0: [0, 1]→ C and γ1: [0, 1]→
C be continuous closed curves in C, and let w be a complex number which
does not lie on the images of the closed curves γ0 and γ1. Suppose that
|γ1(t)− γ0(t)| < |γ0(t)− w| for all t ∈ [0, 1]. Then n(γ0, w) = n(γ1, w).

Proof The inequality |γ1(t) − γ0(t)| < |γ0(t) − w| ensures that the line
segment in C joining γ0(t) and γ1(t) does not pass through w. The result
therefore follows directly from Corollary 9.2.
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Corollary 9.4 Let γ: [0, 1] → C be a continuous closed curve in C, and let
σ: [0, 1] → C be a continuous path in C whose image does not intersect the
image of γ. Then n(γ, σ(0)) = n(γ, σ(1)). Thus the function w 7→ n(γ, w) is
constant over each path-component of the set C \ γ([0, 1]).

Proof Let F : [0, 1] × [0, 1] → C be defined by F (t, τ) = γ(t) − σ(τ) for all
(t, τ) ∈ [0, 1]× [0, 1]. Then F (t, τ) 6= 0 for all (t, τ) ∈ [0, 1]× [0, 1], since the
path σ does not intersect the closed curve γ. It follows from Theorem 9.1
that n(γ0, 0) = n(γ1, 0), where

γτ (t) = F (t, τ) = γ(t)− σ(τ)

for all t ∈ [0, 1]. Thus

n(γ, σ(0)) = n(γ0, 0) = n(γ1, 0) = n(γ, σ(1)).

9.2 The Fundamental Theorem of Algebra

Theorem 9.5 (The Fundamental Theorem of Algebra) Let P :C→ C
be a non-constant polynomial with complex coefficients. Then there exists
some complex number z0 such that P (z0) = 0.

Proof The result is trivial if P (0) = 0. Thus it suffices to prove the result
when P (0) 6= 0.

For any r > 0, let the closed curve σr denote the circle about zero of
radius r, traversed once in the anticlockwise direction, given by σr(t) =
r exp(2πit) for all t ∈ [0, 1]. Consider the winding number n(P ◦ σr, 0) of
P ◦σr about zero. We claim that this winding number is equal to m for large
values of r, where m is the degree of the polynomial P .

Let P (z) = a0 + a1z + · · · + amz
m, where a1, a2, . . . , an are complex

numbers, and where am 6= 0. We write P (z) = Pm(z) + Q(z), where
Pm(z) = amz

m and

Q(z) = a0 + a1z + · · ·+ am−1z
m−1.

Let R be defined by R = |am|−1(|a0|+ |a1|+ · · ·+ |am|) If |z| > R then |z| > 1
and hence ∣∣∣∣ Q(z)

Pm(z)

∣∣∣∣ =
1

|amz|

∣∣∣ a0
zm−1

+
a1
zm−2

+ · · ·+ am−1

∣∣∣ < 1.

Thus if |z| > R then |P (z) − Pm(z)| < |Pm(z)|. It follows from the Dog-
Walking Principle (Corollary 9.3) that n(P ◦ σr, 0) = n(Pm ◦ σr, 0) = m for
all r satisfying r > R.
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Now were it the case that the polynomial P were everywhere non-zero
then the closed curves P ◦σr would be homotopic in C\{0} for all r ≥ 0 and
thus n(P ◦σr, 0) would be a constant function of r (Theorem 9.1). Now P ◦σ0
is the constant curve at P (0), and hence n(P ◦ σ0, 0) = 0. Thus if P were
everywhere non-zero then n(P ◦σr, 0) = 0 for all r ≥ 0. But n(P ◦σr, 0) = m
if r > R, where m is the degree of the non-constant polynomial P . Since
m > 0, we conclude that P has at least one zero in the complex plane.

9.3 The Kronecker Principle

The proof of the Fundamental Theorem of Algebra given above depends on
continuity of the polynomial P , together with the fact that n(P ◦σr, 0) is non-
zero for sufficiently large r, where σr denotes the circle of radius r about zero,
described once in thef anticlockwise direction. We can therefore generalize
the proof of the Fundamental Theorem of Algebra in order to obtain the
following result, known as the Kronecker Principle.

Theorem 9.6 (Kronecker Principle) Let f :D → C be a continuous map
defined on the closed unit disk D in C. Let w be a complex number which
does not lie on the image f(∂D) of the boundary circle ∂D of D. Suppose
that n(f ◦ σ,w) 6= 0, where σ: [0, 1] → ∂D is the parameterization of the
boundary circle ∂D of D defined by σ(t) = exp(2πit). Then there exists
some z ∈ D \ ∂D with the property that f(z) = w.

Proof Suppose that it were the case that f(z) 6= w for all z ∈ D. It would
then follow from Theorem 9.1 that n(f ◦σr, w) would be a constant function
of r for all r ∈ [0, 1], where σr: [0, 1]→ D is given by σr(t) = r exp(2πit). But
n(f ◦σ0, w) = 0, since (f ◦σ0)(t) = f(0) for all t ∈ [0, 1], and n(f ◦σ1, w) 6= 0
by assumption. This contradiction shows that f(z) = w for some z ∈ D.

9.4 The Borsuk-Ulam Theorem

Lemma 9.7 Let f :S1 → C be a continuous function defined on S1, where
S1 = {z ∈ C : |z| = 1}. Suppose that f(−z) = −f(z) for all z ∈ C. Then
the winding number n(f ◦ σ, 0) of f ◦ σ about 0 is odd, where σ: [0, 1] → S1

is given by σ(t) = exp(2πit).

Proof Let γ̃: [0, 1]→ C be a continuous path in C such that exp(2πiγ̃(t)) =
f(σ(t)) for all t ∈ [0, 1]. (The existence of γ̃ is guaranteed by the Path
Lifting Property, applied to the covering map from C to C \ {0} sending
z ∈ C to exp(2πiz).) Now f(σ(t + 1

2
)) = −f(σ(t)) for all t ∈ [0, 1

2
], since
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σ(t+ 1
2
) = −σ(t) and f(−z) = −f(z) for all z ∈ C. Thus exp(2πiγ̃(t+ 1

2
)) =

exp(2πi(γ̃(t)+ 1
2
)) for all t ∈ [0, 1

2
]. It follows that γ̃(t+1 over2) = γ̃(t)+m+ 1

2

for some integer m. (The value of m for which this identity is valid does not
depend on t, since every continuous function from [0, 1

2
] to the set of integers

is necessarily constant.) Hence

n(f ◦ σ, 0) = (γ̃(1)− γ̃(0)) = (γ̃(1)− γ̃(1
2
))− (γ̃(1

2
)− γ̃(0)) = 2m+ 1.

Thus n(f ◦ σ, 0) is an odd integer, as required.

We shall identify the space R2 with C, identifying (x, y) ∈ R2 with the
complex number x + iy ∈ C for all x, y ∈ R. This is permissible, since we
are interested in purely topological results concerning continuous functions
defined on appropriate subsets of these spaces. Under this identification the
closed unit disk D is given by

D = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

As usual, we define

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Lemma 9.8 Let f :S2 → R2 be a continuous map with the property that
f(−n) = −f(n) for all n ∈ S2. Then there exists some point n0 of S2 with
the property that f(n0) = 0.

Proof Let ϕ:D → S2 be the map defined by

ϕ(x, y) = (x, y,+
√

1− x2 − y2).

(Thus the map ϕ maps the closed disk D homeomorphically onto the upper
hemisphere in R3.) Let σ: [0, 1]→ S2 be the parameterization of the equator
in S2 defined by

σ(t) = (cos 2πt, sin 2πt, 0)

for all t ∈ [0, 1]. Let f :S2 → R2 be a continuous map with the property
that f(−n) = −f(n) for all n ∈ S2. The winding number n(f ◦ σ, 0) is
an odd integer, by Lemma 9.7, and is thus non-zero. It follows from the
Kronecker Principle (Theorem 9.6), applied to f ◦ ϕ:D → R2, that there
exists some point (u, v) of D such that f(ϕ(u, v)) = 0. Thus f(n0) = 0,
where n0 = σ(u, v).

We conclude immediately from this result that there are no continuous
maps f :S2 → S1 from the 2-sphere S2 to the circle S1 with the property
that f(−n) = −f(n) for all n ∈ S2.
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Theorem 9.9 (Borsuk-Ulam) Let f :S2 → R2 be a continuous map. Then
there exists some point n of S2 with the property that f(−n) = f(n).

Proof This result follows immediately on applying Lemma 9.8 to the con-
tinuous function g:S2 → R2 defined by g(n) = f(n)− f(−n).

Remark It is possible to generalize the Borsuk-Ulam Theorem to n dimen-
sions. Let Sn be the unit n-sphere centered on the origin in Rn. The Borsuk-
Ulam Theorem in n-dimensions states that if f :Sn → Rn is a continuous map
then there exists some point x of Sn with the property that f(x)− f(−x).

9.5 Winding Numbers and Contour Integrals

A continuous curve is said to be piecewise C1 if it is made up of a finite num-
ber of continuously differentiable segments. We now show how the winding
number of a piecewise C1 closed curve in the complex plane can be expressed
as a contour integral.

Proposition 9.10 Let γ: [0, 1] → C be a piecewise C1 closed curve in the
complex plane, and let w be a point of C that does not lie on the curve γ.
Then the winding number n(γ, w) of γ about w is given by

n(γ, w) =
1

2πi

∫
γ

dz

z − w
.

Proof By definition n(γ, w) = α(1) − α(0), where α: [0, 1] → C is a path
in C such that

γ(t) = w + exp(2πiα(t))

for all t ∈ [0, 1]. Taking derivatives, we see that

γ′(t) = 2πi exp(2πiα(t))α′(t) = 2πi(γ(t)− w)α′(t).

Thus

n(γ, w) = α(1)−α(0) =

∫ 1

0

α′(t) dt =
1

2πi

∫ 1

0

γ′(t) dt

γ(t)− w
=

1

2πi

∫
γ

dz

z − w
.
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