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8 Covering Maps

8.1 Evenly Covered Open Sets and Covering Maps

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a
continuous map. An open subset U of X is said to be evenly covered by the
map p if and only if p−1(U) is a disjoint union of open sets of X̃ each of
which is mapped homeomorphically onto U by p.

Definition Let X and X̃ be topological spaces and let p: X̃ → X be a
continuous map. The map p: X̃ → X is said to be a covering map over the
topological space X if and only if the following conditions are satisfied:

(i) the map p: X̃ → X is surjective,

(ii) every point of X has an open neighbourhood which is evenly covered
by the map p.

If p: X̃ → X is a covering map over a topological space X then the topological
space X̃ is said to be a covering space of X.

Example Let S1 be the unit circle in R2. Then the map p:R→ S1 defined
by

p(t) = (cos 2πt, sin 2πt)

is a covering map. Indeed let n be a point of S1. Consider the open neigh-
bourhood U of n in S1 defined by U = S1\{−n}. Now n = (cos 2πt0, sin 2πt0)
for some t0 ∈ R. Then p−1(U) is the union of the disjoint open sets Jn for
all integers n, where

Jn = {t ∈ R : t0 + n− 1
2
< t < t0 + n+ 1

2
}.

Each of the open sets Jn is mapped homeomorphically onto U by the map p.
This shows that p:R→ S1 is a covering map.

Example The map p:C→ C\{0} defined by p(z) = exp(2πiz) is a covering
map. Given any θ ∈ [−π, π] let us define

Uθ = {z ∈ C \ {0} : arg z 6= −θ}.

Note the Uθ is evenly covered by the map p. Indeed p−1(Uθ) consists of the
union of the open sets

{z ∈ C :
θ

2π
+ n− 1

2
< Re z <

θ

2π
+ n+ 1

2
},

where each of these open sets is mapped homeomorphically onto Uθ by the
map p.
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Example Let S1 denote the unit circle in R2. Let n be a non-zero integer.
Let βn:S1 → S1 be defined by

βn(cos θ, sin θ) = (cosnθ, sinnθ).

Then βn:S1 → S1 is a covering map.

Example Let RP n denote the real projective n-space. This is the topologi-
cal space obtained from the n-sphere Sn by identifying antipodal points on
Sn. (We regard Sn as the unit n-sphere in Rn+1 consisting of all x ∈ Rn−1

satisfying |x| = 1. We define an equivalence relation on Sn where distinct
points x and y of Sn are equivalent if and only if x = −y. The space RP n

is then defined to be the set of equivalence classes of points of Sn under this
equivalence relation. The topology on RP n is the quotient topology induced
by the quotient map ρ:Sn → RP n. Thus a subset U of RP n is open if and
only if ρ−1(U) is open in Sn.) It is easily verified that the quotient map
ρ:Sn → RP n is a covering map.

Example Consider the map α: (−2, 2)→ S1 defined by α(t) = (cos 2πt, sin 2πt)
for all t ∈ (−2, 2). It can easily be shown that the point (1, 0) of S1 has no
open neighbourhood which is evenly covered by the map α. Indeed suppose
that there existed an open neighbourhood N of (1, 0) which was evenly cov-
ered by α. Then there would exist some δ satisfying 0 < δ < 1

2
such that

Uδ ⊂ N , where

Uδ = {(cos 2πt, sin 2πt) : −δ < t < δ}.

The open set Uδ would then be evenly covered by the map α. However the
connected components of α−1(Uδ) are (−2,−2 + δ), (−1− δ,−1 + δ), (−δ, δ),
(1− δ, 1 + δ) and (2− δ, 2), and neither (−2,−2 + δ) nor (2− δ, 2) is mapped
homeomorphically onto Uδ by α.

8.2 The Path Lifting and Homotopy Lifting Properties

Let p: X̃ → X be a covering map over a topological space X. Let Z be a
topological space, and let f :Z → X be a continuous map from Z to X. A
continuous map f̃ :Z → X̃ is said to be a lift of the map f :Z → X if and
only if p◦ f̃ = f . We shall prove various results concerning the existence and
uniqueness of such lifts.

Proposition 8.1 Let p: X̃ → X be a covering map over a topological space X.
Let Z be a connected topological space, and let f̃ :Z → X̃ and g̃:Z → X̃ be
continuous maps. Suppose that p ◦ f̃ = p ◦ g̃ and that f̃(z0) = g̃(z0) for some
z0 ∈ Z. Then f̃ = g̃.
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Proof Let Z0 = {z ∈ Z : f̃(z) = g̃(z)}. Note that Z0 is non-empty, by
hypothesis. We show that Z0 is both open and closed.

Let z be a point of Z. There exists an open neighbourhood U of p(f̃(z))
in X which is evenly covered by the map p. Then p−1(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by the map p.
One of these open sets contains f̃(z); let this set be denoted by Ũ . Also one
of these open sets contains g̃(z); let this open set be denoted by Ṽ . Note
that Ũ = Ṽ if z ∈ Z0 (so that f̃(z) = g̃(z)), and Ũ ∩ Ṽ = ∅ if z ∈ Z \ Z0 (so
that f̃(z) 6= g̃(z)). Let Nz = f̃−1(Ũ) ∩ g̃−1(Ṽ ). Then Nz is an open set in Z
containing z.

Consider the case when z ∈ Z0. In this case Ṽ = Ũ , so that f̃(Nz) ⊂ Ũ
and g̃(Nz) ⊂ Ũ . But p ◦ f̃ = p ◦ g̃, and the restriction p|Ũ of the map p
to Ũ maps Ũ homeomorphically onto U . Therefore f̃ |Nz = g̃|Nz, and thus
Nz ⊂ Z0. We have thus shown that, for each z ∈ Z0, there exists an open
set Nz such that z ∈ Nz and Nz ⊂ Z0. We conclude that Z0 is open.

Next consider the case when z ∈ Z \ Z0. In this case Ũ ∩ Ṽ = ∅. But
f̃(Nz) ⊂ Ũ and g̃(Nz) ⊂ Ṽ . Therefore f̃(z′) 6= g̃(z′) for all z′ ∈ Nz, so that
Nz ⊂ Z \ Z0. We have thus shown that, for each z ∈ Z \ Z0, there exists an
open set Nz such that z ∈ Nz and Nz ⊂ Z \ Z0. We conclude that Z \ Z0 is
open, so that Z0 is closed.

The subset Z0 of Z is both open and closed. Also Z0 is non-empty, since
there exists some point z0 of Z for which f̃(z0) = g̃(z0). It follows from the
connectedness of Z that Z0 = Z. Therefore f̃ = g̃.

Let p: X̃ → X be a covering map over a topological space X. Let Z be a
topological space, let A be a subset of Z, and let f :Z → X and g:A → X̃
be continuous maps with the property that p◦g = f |A. In this situation one
can ask whether or not the map g can be extended to a map f̃ :Z → X̃ such
that p ◦ f̃ = f . A problem of this sort is referred to as a lifting problem; and
a map f̃ with the desired properties is referred to as a lift of the map f to X̃.
The next lemma proves the existence of a lift in the special case when A is
connected and f(Z) is contained wholly within some open set in X that is
evenly covered by the map p. This result is then used to derive more general
lifting theorems.

Lemma 8.2 Let p: X̃ → X be a covering map over a topological space X.
Let Z be a topological space, let A be a connected subset of Z, and let f :Z →
X and g:A → X̃ be continuous maps with the property that p ◦ g = f |A.
Suppose that f(Z) ⊂ U , where U is an open subset of X that is evenly
covered by the map p. Then there exists a continuous map f̃ :Z → X̃ such
that f̃ |A = g and p ◦ f̃ = f .
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Proof Choose a0 ∈ A. Now U is evenly covered by the map p. Therefore
p−1(U) is a disjoint union of open sets, each of which is mapped homeomor-
phically onto U by the map p. One of these open sets contains g(a0); let this
set be denoted by Ũ . Let s:U → Ũ be the inverse of the homeomorphism
p|Ũ : Ũ → U . Now p ◦ (s ◦ f)|A = f |A = p ◦ g, and s(f(a0)) = g(a0). It
follows from Proposition 8.1 that s ◦ f |A = g, since A is connected. Define
f̃ = s ◦ f . Then f̃ |A = g and p ◦ f̃ = f , as required.

Theorem 8.3 (Path Lifting Property) Let p: X̃ → X be a covering map
over a topological space X. Let γ: [0, 1]→ X be a continuous path in X, and
let w be a point of X̃ for which p(w) = γ(0). Then there exists a unique
continuous path γ̃: [0, 1]→ X̃ such that γ̃(0) = w and p ◦ γ̃ = γ.

Proof We can cover X by a collection U of open sets, each of which is evenly
covered by the map p, since p: X̃ → X is a covering map. Now the collection
of sets of the form γ−1(U) with U ∈ U is an open cover of the interval
[0, 1]. Now [0, 1] is compact, by the Heine-Borel Theorem (Theorem 4.2).
It follows from the Lebesgue Lemma (Lemma 4.20) that there exists some
δ > 0 such that every subinterval of length less than δ is mapped by γ
into one of the open sets belonging to U . Partition the interval [0, 1] into
subintervals [ti−1, ti], where 0 = t0 < t1 < · · · < tn−1 < tn = 1, and where the
length of each subinterval is less than δ. Now it follows from Lemma 8.2 that
once γ̃(ti−1) has been determined, we can extend γ̃ continuously over the ith
subinterval [ti−1, ti]. Thus by extending γ̃ successively over [t0, t1], [t1, t2],. . .,
[tn−1, tn], we can lift the path γ: [0, 1] → X to a path γ̃: [0, 1] → X̃ starting
at w. The uniqueness of γ̃ follows from Proposition 8.1.

Theorem 8.4 (Homotopy Lifting Property) Let p: X̃ → X be a cover-
ing map over a topological space X. Let F : [0, 1]×[0, 1]→ X and g: [0, 1]→ X̃
be continuous maps with the property that p(g(t)) = F (t, 0) for all t ∈ [0, 1].
Then g can be extended to a unique continuous map F̃ : [0, 1] × [0, 1] → X̃
such that F̃ (t, 0) = g(t) for all t ∈ [0, 1] and p ◦ F̃ = F .

Proof We can cover X by a collection U of open sets, each of which is evenly
covered by the map p. The collection of sets of the form F−1(U) with U ∈ U
is an open cover of the square [0, 1]× [0, 1]. An application of the Lebesgue
Lemma (as in the proof of Theorem 8.3) shows that there exists some δ > 0
with the property that any square contained in [0, 1]× [0, 1] whose sides have
length less than δ is mapped by F into some open set in X which is evenly
covered by the map p. It follows from Lemma 8.2 that if the lift F̃ of F
has already been determined over a corner, or along one side, or along two
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adjacent sides of a square whose sides have length less than δ, then F̃ can
be extended over the whole of that square. Thus if we subdivide the square
[0, 1] × [0, 1] into smaller squares whose sides have length less than δ then
we can extend the map g to a lift F̃ of F by successively extending F̃ in
turn over each of the smaller squares. The uniqueness of F̃ follows from
Proposition 8.1.

Theorem 8.4 is in fact a special case of a more general Homotopy Lifting
Property. Let p: X̃ → X be a covering map over a topological space X,
let Z be a topological space, and let F :Z × [0, 1] → X and g:Z → X̃ be
continuous maps with the property that F (z, 0) = p(g(z)) for all z ∈ Z. The
Homotopy Lifting Property states that, under these conditions, there exists
a map F̃ :Z× [0, 1]→ X̃ such that F̃ (z, 0) = g(z) for all z ∈ Z and p◦F̃ = F .

8.3 The Fundamental Group of the Circle

Theorem 8.5 Let b ∈ S1 be some chosen basepoint of the circle S1. Then
π1(S

1, b) ∼= Z.

Proof We regard S1 as the unit circle in R2. Let p:R → S1 be the map
defined by

p(t) = (cos 2πt, sin 2πt).

The map p is a covering map. We can take b = (1, 0) = p(0). We define a
function λ: π1(S

1, b) → Z as follows: given a loop γ: [0, 1] → S1 based at b
we define λ([γ]) = γ̃(1), where γ̃: [0, 1]→ R is the (unique) lift of γ starting
at 0 (so that γ̃(0) = 0 and p ◦ γ̃ = γ).

First we note that λ: π1(S
1, b) → Z is well-defined. If γ̃ is the lift of the

loop γ starting at 0 then γ̃(1) ∈ Z, since p(γ̃(1)) = γ(1) = b. Suppose that
γ0 and γ1 are loops in S1 based at b which represent the same element of
π1(S

1, b). This means that there exists a homotopy F : [0, 1] × [0, 1] → S1

such that F (t, 0) = γ0(t) and F (t, 1) = γ1(t) for all t ∈ [0, 1], and F (0, τ) =
F (1, τ) = b for all τ ∈ [0, 1]. It follows from the Homotopy Lifting Property
(Theorem 8.4) that there exists a lift F̃ : [0, 1] × [0, 1] → R of F such that
F̃ (0, τ) = 0 for all τ ∈ [0, 1], and p ◦ F̃ = F . Note in particular that
the (unique) lifts γ̃0: [0, 1] → R and γ̃1: [0, 1] → R of the paths γ0 and γ1
respectively starting at 0 are given by γ̃0(t) = F̃ (t, 0) and γ̃1(t) = F̃ (t, 1)
for all t ∈ [0, 1]. Now the function τ 7→ F̃ (1, τ) takes values in Z, since
p(F̃ (1, τ)) = F (1, τ) = b, and p−1({b}) = Z. But every continuous integer-
valued function on [0, 1] is constant. Therefore F̃ (1, τ) is a constant function
of τ . Thus

γ̃0(1) = F̃ (1, 0) = F̃ (1, 1) = γ̃1(1).
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Thus the function λ: π1(S
1, b)→ Z is well-defined.

Next we show that λ is a homomorphism. Let α and β be loops based
at b, and let α̃ and β̃ be the lifts of α and β respectively starting at 0. The
element [α][β] of π1(S

1, b) is represented by the product path α.β, where

(α.β)(t) =

{
α(2t) if 0 ≤ t ≤ 1

2
;

β(2t− 1) if 1
2
≤ t ≤ 1.

Define a continuous path σ: [0, 1]→ R by

σ(t) =

{
α̃(2t) if 0 ≤ t ≤ 1

2
;

β̃(2t− 1) + α̃(1) if 1
2
≤ t ≤ 1.

(Note that σ(t) is well-defined when t = 1
2
). Then p ◦ σ = α.β and σ(0) = 0.

It follows that

λ([α][β]) = λ([α.β]) = σ(1) = α̃(1) + β̃(1) = λ([α]) + λ([β]).

Thus λ is a homomorphism from the group π1(S
1, b) to the additive group Z.

Let α and β be loops in S1 based at b. Suppose that λ([α]) = λ([β]).
Then α̃(1) = β̃(1), where α̃ and β̃ be the lifts of α and β respectively starting
at 0. Define

F (t, τ) = p
(

(1− τ)α̃(t) + τ β̃(t)
)
.

Then F : [0, 1]× [0, 1]→ S1 is a homotopy between α and β, with

F (0, τ) = b = F (1, τ) (τ ∈ [0, 1]).

Thus α ' β rel {0, 1}, so that [α] = [β]. This shows that λ: π1(S
1, b)→ Z is

injective.
Given any n ∈ N, let γn: [0, 1]→ S1 be the loop based at b defined by

γn(t) = p(nt) = (cos 2πnt, sin 2πnt).

Then λ([γn]) = n. This shows that the homomorphism λ is surjective. We
conclude that λ: π1(S

1, b)→ Z is an isomorphism.

Let D denote the closed unit disk in R2, given by D = {(x, y) ∈ R2 :
x2 + y2 ≤ 1}. We now show that every continuous map from D to itself has
at least one fixed point.

Theorem 8.6 (The Brouwer Fixed Point Theorem) Let f :D → D be
a continuous map which maps the closed unit disk D into itself. Then there
exists some x0 ∈ D such that f(x0) = x0.
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Proof Let S1 denote the boundary circle of D, and let i:S1 ↪→ D denote
the inclusion map from S1 to D. This inclusion map induces a corresponding
homomorphism i#: π1(S

1,b) → π1(D,b) of fundamental groups, where b ∈
S1 is some suitably chosen basepoint.

Suppose that it were the case that the map f has no fixed point in D.
Then one could define a continuous map r:D → S1 as follows: for each
x ∈ D, let r(x) be the point on the boundary S1 of D obtained by continuing
the line segment joining f(x) to x beyond x until it intersects S1 at the point
r(x). Note that r|S1 is the identity map of S1.

Let r#: π1(D,b)→ π1(S
1,b) be the homomorphism of fundamental groups

induced by r:D → S1. Now (r ◦ i)#: π1(S
1,b) → π1(S

1,b) is the identity
isomorphism of π1(S

1,b), since r ◦ i:S1 → S1 is the identity map. But
(r ◦ i)# = r# ◦ i# (see Lemma 7.5). It follows that i#: π1(S

1,b)→ π1(D,b)
is injective, and r#: π1(D,b) → π1(S

1,b) is surjective. But this is impos-
sible, since π1(S

1,b) ∼= Z (Theorem 8.5) and π1(D,b) is the trivial group.
This contradiction shows that the continuous map f :D → D must have at
least one fixed point.

Remark The Brouwer Fixed Point Theorem is also valid in higher dimen-
sions. This theorem states that any continuous map from the closed n-
dimensional ball into itself must have at least one fixed point. The proof
of the theorem for n > 2 is analogous to the proof for n = 2, but with the
fundamental groups of the ball and its boundary sphere being replaced by
another topologicical invariant, namely the n-dimensional homology groups
of the closed ball and its boundary sphere.

8.4 Covering Maps over Simply-Connected Spaces

Theorem 8.7 Let p: X̃ → X be a covering map over a topological space X.
Suppose that X̃ is path-connected and that X is simply-connected. Then the
covering map p: X̃ → X is a homeomorphism.

Proof The map p: X̃ → X is surjective (since covering maps are by definition
surjective). We must show that it is also injective. Let w0 and w1 be points
of X̃ for which p(w0) = p(w1). There exists a continuous path σ: [0, 1]→ X̃
with σ(0) = w0 and σ(1) = w1, since X̃ is path-connected. Then p ◦ σ is a
loop in X based at the point x0, where x0 = p(w0). But every loop based
at x0 is homotopic (rel {0, 1}) to the constant loop based at x0. Thus there
exists a continuous homotopy F : [0, 1]×[0, 1]→ X such that F (t, 0) = p(σ(t))
and F (t, 1) = x0 for all t ∈ [0, 1], and F (0, τ) = F (1, τ) = x0. Now it follows
from the Homotopy Lifting Property (Theorem 8.4) that there exists a lift
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F̃ : [0, 1] × [0, 1] → X̃ of F such that F̃ (t, 0) = σ(t) for all t ∈ [0, 1] and
p ◦ F̃ = F . Now it follows from the uniqueness of lifts of paths that the lift
to X̃ of a constant path in X is a constant path in X̃. It follows that F̃ is
constant on the three sides of the square [0, 1]× [0, 1] that are mapped by p
onto the point x0. Thus

w0 = σ(0) = F (0, 0) = F (0, 1) = F (1, 1) = F (1, 0) = σ(1) = w1.

This shows that p: X̃ → X is injective.
Now the covering map p: X̃ → X is a bijection. It is a straightforward

exercise to verify that p(V ) is open in X̃ for every open set V in X. Thus
p−1:X → X̃ is continuous. We conclude that p: X̃ → X is a homeomor-
phism.
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