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8 Covering Maps

8.1 Evenly Covered Open Sets and Covering Maps

Definition Let X and X be topological spaces and let p: X — X be a
continuous map. An open subset U of X is said to be evenly covered by the
map p if and only if p~'(U) is a disjoint union of open sets of X each of
which is mapped homeomorphically onto U by p.

Definition Let X and X be topological spaces and let p:f( — X be a
continuous map. The map p: X — X is said to be a covering map over the
topological space X if and only if the following conditions are satisfied:

(i) the map p: X — X is surjective,
(ii) every point of X has an open neighbourhood which is evenly covered
by the map p.

Ifp: X — X is a covering map over a topological space X then the topological
space X is said to be a covering space of X.

Example Let S! be the unit circle in R?. Then the map p: R — S defined
by
p(t) = (cos 27t sin 27t)

is a covering map. Indeed let n be a point of S'. Consider the open neigh-
bourhood U of n in S* defined by U = S*\{—n}. Now n = (cos 27tg, sin 27ty)
for some ty € R. Then p~*(U) is the union of the disjoint open sets J, for
all integers n, where

Jo={teR:tg+n—5i<t<to+n+i}.

Each of the open sets J,, is mapped homeomorphically onto U by the map p.
This shows that p: R — S! is a covering map.

Example The map p: C — C\ {0} defined by p(z) = exp(27iz) is a covering
map. Given any 0 € [—m, 7] let us define

Upg={z€C\{0}:argz # —0}.

Note the Uy is evenly covered by the map p. Indeed p~*(Up) consists of the
union of the open sets

0 . 0
{Z€C1%+n—§<Rez<§+n+%},

where each of these open sets is mapped homeomorphically onto Uy by the
map p.
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Example Let S! denote the unit circle in R?. Let n be a non-zero integer.
Let 3,: S — S! be defined by

Br(cos,sinf) = (cosnd, sinnd).
Then f3,: S* — S is a covering map.

Example Let RP™ denote the real projective n-space. This is the topologi-
cal space obtained from the n-sphere S™ by identifying antipodal points on
S™. (We regard S™ as the unit n-sphere in R"™! consisting of all x € R"!
satisfying |x| = 1. We define an equivalence relation on S™ where distinct
points x and y of S™ are equivalent if and only if x = —y. The space RP"
is then defined to be the set of equivalence classes of points of S™ under this
equivalence relation. The topology on RP™ is the quotient topology induced
by the quotient map p: S — RP™. Thus a subset U of RP" is open if and
only if p~'(U) is open in S™.) It is easily verified that the quotient map
p:S™ — RP™ is a covering map.

Example Consider the map a: (—2,2) — S* defined by a(t) = (cos 2t, sin 27t)
for all t € (—2,2). It can easily be shown that the point (1,0) of S has no
open neighbourhood which is evenly covered by the map «. Indeed suppose
that there existed an open neighbourhood N of (1,0) which was evenly cov-
ered by a. Then there would exist some ¢§ satisfying 0 < § < % such that
Us C N, where

Us = {(cos 2mt,sin27t) : —§ < t < §}.

The open set Us would then be evenly covered by the map a. However the
connected components of a~!(Us) are (=2, —2+14), (=1 =0, —1+9), (—4,0),
(1-0,146) and (2 —4,2), and neither (—2, —24J) nor (2 —4,2) is mapped
homeomorphically onto Us by a.

8.2 The Path Lifting and Homotopy Lifting Properties

Let p:X — X be a covering map over a topological space X. Let Z be a
topological space, and let f: Z — X be a continuous map from Z to X. A
continuous map f:Z — X is said to be a lift of the map f:Z — X if and
only if po f = f. We shall prove various results concerning the existence and
uniqueness of such lifts.

Proposition 8.1 Letp: X — X bea covering map over a topological space X .
Let Z be a connected topological space, and let f: Z =X and §:Z — X be
continuous maps. Suppose that po f = po § and that f(z) = §(z0) for some
20 € Z. Then f = §.
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Proof Let Zy = {z € Z : f(z) = §(2)}. Note that Z, is non-empty, by
hypothesis. We show that Z; is both open and closed.

Let z be a point of Z. There exists an open neighbourhood U of p(f(z))
in X which is evenly covered by the map p. Then p~!(U) is a disjoint union of
open sets, each of which is mapped homeomorphically onto U by the map p.
One of these open sets contains f(z); let this set be denoted by U. Also one
of these open sets contains §(z); let this open set be denoted by V. Note
that U = VleEZO(sothatf( ()) andUﬂV Dif ze Z\ Zy (so
that f(z) # §(z)). Let N, = f1 G (V). Then N. is an open set in Z
containing z.

Consider the case when z € Zy. In this case V = U, so that f(N,) c U
and §(N,) ¢ U. But po f = po g, and the restriction p|U of the map p
to U maps U homeomorphically onto U. Therefore f |IN, = g|N., and thus
N, C Zy. We have thus shown that, for each z € Z;, there exists an open
set N, such that z € N, and N, C Z,. We conclude that Z, is open.

Next consider the case when z € Z \ Zy. In this case UNV = 0. But
f(N.) € U and §(N.) C V. Therefore f(z') # §(2') for all 2’ € N., so that
N, C Z\ Zy. We have thus shown that, for each z € Z \ Zj, there exists an
open set N, such that z € N, and N, C Z \ Zy. We conclude that Z \ Z; is
open, so that Zj is closed.

The subset Z; of Z is both open and closed. Also Z; is non-empty, since
there exists some point z of Z for which f (20) = G(20). It follows from the
connectedness of Z that Zy = Z. Therefore f =g. |}

2) =
)n

Let p: X — X be a covering map over a topological space X. Let Z be a
topological space, let A be a subset of Z, and let f: Z — X and ¢: A — X
be continuous maps with the property that pog = f|A. In this situation one
can ask whether or not the map g can be extended to a map f Z — X such
that po f = f. A problem of this sort is referred to as a lifting problem; and
a map f with the desired properties is referred to as a [ift of the map f to X.
The next lemma proves the existence of a lift in the special case when A is
connected and f(Z) is contained wholly within some open set in X that is
evenly covered by the map p. This result is then used to derive more general
lifting theorems.

Lemma 8.2 Let p: X — X be a covering map over a topological space X .
Let Z be a topological space, let A be a connected subset of Z, and let f: Z —
X and g: A — X be continuous maps with the property that p o g = flA.
Suppose that f(Z) C U, where U is an open subset of X that is evenly
covered by the map p. Then there exists a continuous map f Z — X such
that flJA=g andpo f = f.

36



Proof Choose ag € A. Now U is evenly covered by the map p. Therefore
p~}(U) is a disjoint union of open sets, each of which is mapped homeomor-
phically onto U by the map p. One of these open sets contains g(ag); let this
set be denoted by U. Let s:U — U be the inverse of the homeomorphism
plU:U = U. Now po(so f)|A = f|A = pog, and s(f(as)) = g(ap). It
follows from Proposition 8.1 that s o f|A = g, since A is connected. Define
f=sof. Then flJA=gand po f = f, as required. |

Theorem 8.3 (Path Lifting Property) Letp: X — X be a covering map
over a topological space X . Let v:10,1] — X be a continuous path in X, and
let w be a point of X for which p(w) = ¥(0). Then there exists a unique
continuous path 7:[0,1] — X such that 7(0) = w and po & = 7.

Proof We can cover X by a collection U of open sets, each of which is evenly
covered by the map p, since p: X3 Xisa covering map. Now the collection
of sets of the form v '(U) with U € U is an open cover of the interval
[0,1]. Now [0,1] is compact, by the Heine-Borel Theorem (Theorem 4.2).
It follows from the Lebesgue Lemma (Lemma 4.20) that there exists some
0 > 0 such that every subinterval of length less than ¢ is mapped by ~
into one of the open sets belonging to U. Partition the interval [0, 1] into
subintervals [t; 1,t;], where 0 = tg < t; < -+ < t,_1 < t, = 1, and where the
length of each subinterval is less than . Now it follows from Lemma 8.2 that
once 4(t;—1) has been determined, we can extend 4 continuously over the ith
subinterval [t;_1,t;]. Thus by extending ¥ successively over [to, 1], [t1,12];. - -,
[tn—1,tn], we can lift the path :[0,1] — X to a path 4:[0,1] — X starting
at w. The uniqueness of 4 follows from Proposition 8.1. |}

Theorem 8.4 (Homotopy Lifting Property) Let p: X — X be a cover-
ing map over a topological space X . Let F:[0,1]x[0,1] — X and g:[0,1] — X
be continuous maps with the property that p(g(t)) = F(t,0) for all t € [0,1].
Then g can be extended to a unique continuous map F:[0,1] x [0,1] — X
such that F(t,0) = g(t) for allt € [0,1] and po F = F

Proof We can cover X by a collection U of open sets, each of which is evenly
covered by the map p. The collection of sets of the form F~1(U) with U € U
is an open cover of the square [0, 1] x [0,1]. An application of the Lebesgue
Lemma (as in the proof of Theorem 8.3) shows that there exists some § > 0
with the property that any square contained in [0, 1] x [0, 1] whose sides have
length less than ¢ is mapped by F' into some open set in X which is evenly
covered by the map p. It follows from Lemma 8.2 that if the lift F of F
has already been determined over a corner, or along one side, or along two
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adjacent sides of a square whose sides have length less than 8, then F' can
be extended over the whole of that square. Thus if we subdivide the square
[0,1] x [0,1] into smaller squares whose sides have length less than ¢ then
we can extend the map ¢ to a lift F of F by successively extending F in
turn over cach of the smaller squares. The uniqueness of F follows from
Proposition 8.1. |}

Theorem 8.4 is in fact a special case of a more general Homotopy Lifting
Property. Let X — X be a covering map over a topological space X,
let Z be a topological space, and let F:Z x [0,1] — X and ¢: Z — X be
continuous maps with the property that F'(z,0) = p(g(z)) for all z € Z. The
Homotopy Lifting Property states that, under these conditions, there exists
amap F: Z x[0,1] — X such that F(z,0) = g(2) forall z € Z and poF' = F.

8.3 The Fundamental Group of the Circle

Theorem 8.5 Let b € S' be some chosen basepoint of the circle S*. Then
7T1(Sl, b) = 7.

Proof We regard S! as the unit circle in R%. Let p:R — S' be the map
defined by
p(t) = (cos 27t sin 27t).

The map p is a covering map. We can take b = (1,0) = p(0). We define a
function \: (S, 0) — Z as follows: given a loop 7:[0,1] — S* based at b
we define A([y]) = (1), where 7:[0,1] — R is the (unique) lift of v starting
at 0 (so that (0) =0 and po 4 = 7).

First we note that \:m;(S',b) — Z is well-defined. If 7 is the lift of the
loop 7 starting at 0 then (1) € Z, since p(y(1)) = (1) = b. Suppose that
7o and ~y; are loops in S! based at b which represent the same element of
71 (S, 0). This means that there exists a homotopy F:[0,1] x [0,1] — S!
such that F(¢,0) = v (t) and F(t,1) = v(¢) for all t € [0,1], and F(0,7) =
F(1,7) =0 for all 7 € [0, 1]. It follows from the Homotopy Lifting Property
(Theorem 8.4) that there exists a lift F:[0,1] x [0,1] — R of F such that
F(0,7) = 0 for all 7 € [0,1], and po F = F. Note in particular that
the (unique) lifts 9:[0,1] — R and 4;:[0,1] — R of the paths v, and
respectively starting at 0 are given by 7o(t) = F(t,()) and ¥, (t) = F(t, 1)
for all ¢t € [0,1]. Now the function 7 — F(1,7) takes values in Z, since
p(F(1,7)) = F(1,7) = b, and p~1({b}) = Z. But every continuous integer-
valued function on [0, 1] is constant. Therefore F(1,7) is a constant function
of 7. Thus

F(1) = F(1,0) = F(1,1) = %(1).
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Thus the function A: (S, b) — Z is well-defined.

Next we show that A is a homomorphism. Let o and S be loops based
at b, and let @ and J be the lifts of o and § respectively starting at 0. The
element [a][3] of m(S*,b) is represented by the product path .3, where

a(2t) ifo<t<y;

(a-B)(2) = { BRt—1) ifi<t<1.
Define a continuous path o:[0,1] — R by

[ a(2t) if0<t<3;
U(t){ B2t —1) + a(1) if%gtgi.

(Note that o(t) is well-defined when ¢t = 1). Then poo = . and o(0) = 0.
It follows that

o(1) = a(1) + B(1) = Al[a]) + A(8]).

Thus A is a homomorphism from the group 71 (S, b) to the additive group Z.

Let o and 3 be loops in S based at b. Suppose that A([a]) = A([F]).
Then a(1) = 3 (1), where & and 8 be the lifts of a and 3 respectively starting
at 0. Define

>
£
=
I
>
o
ASS)
I

Ft,r) =p (1= )a) +73(1))
Then F:[0,1] x [0,1] — S* is a homotopy between a and 3, with
F0,7)=b=F(1,7) (1 €10,1]).
Thus a ~ B rel {0,1}, so that [a] = [3]. This shows that A:m (S, b) — Z is
injective.
Given any n € N, let v,:[0,1] — S* be the loop based at b defined by
Yn(t) = p(nt) = (cos 2mnt, sin 2wnt).

Then A([v,]) = n. This shows that the homomorphism A is surjective. We
conclude that \: (S, b) — Z is an isomorphism. [

Let D denote the closed unit disk in R2, given by D = {(z,y) € R? :
22 +y? < 1}. We now show that every continuous map from D to itself has
at least one fixed point.

Theorem 8.6 (The Brouwer Fixed Point Theorem) Let f: D — D be
a continuous map which maps the closed unit disk D into itself. Then there
exists some Xo € D such that f(xo) = Xo.
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Proof Let S! denote the boundary circle of D, and let i: S' < D denote
the inclusion map from S* to D. This inclusion map induces a corresponding
homomorphism i4:m (S',b) — 71 (D, b) of fundamental groups, where b €
S is some suitably chosen basepoint.

Suppose that it were the case that the map f has no fixed point in D.
Then one could define a continuous map r: D — S' as follows: for each
x € D, let r(x) be the point on the boundary S* of D obtained by continuing
the line segment joining f(x) to x beyond x until it intersects S! at the point
r(x). Note that r|S! is the identity map of S*.

Let ry:m (D, b) — 7 (S, b) be the homomorphism of fundamental groups
induced by r: D — S'. Now (r o 4)y:m(S*, b) — 71(S*,b) is the identity
isomorphism of (S, b), since r 0 i:S1 — S! is the identity map. But
(roi)y =ryoiy (see Lemma 7.5). It follows that iy:m(S', b) — m (D, b)
is injective, and ry:m (D, b) — m (S, b) is surjective. But this is impos-
sible, since m1(S',b) = Z (Theorem 8.5) and (D, b) is the trivial group.
This contradiction shows that the continuous map f: D — D must have at
least one fixed point. |}

Remark The Brouwer Fixed Point Theorem is also valid in higher dimen-
sions. This theorem states that any continuous map from the closed n-
dimensional ball into itself must have at least one fixed point. The proof
of the theorem for n > 2 is analogous to the proof for n = 2, but with the
fundamental groups of the ball and its boundary sphere being replaced by
another topologicical invariant, namely the n-dimensional homology groups
of the closed ball and its boundary sphere.

8.4 Covering Maps over Simply-Connected Spaces

Theorem 8.7 Let p: X = X bea covering map over a topological space X .
Suppose that X is path-connected and that X s simply-connected. Then the
covering map p: X — X is a homeomorphism.

Proof Themap p: X — X is surjective (since covering maps are by definition
surjective). We must show that it is also injective. Let wy and w; be points
of X for which p(wg) = p(w;). There exists a continuous path o:[0,1] — X
with o(0) = wy and ¢(1) = wy, since X is path-connected. Then po o is a
loop in X based at the point xy, where g = p(wg). But every loop based
at xo is homotopic (rel {0,1}) to the constant loop based at xy. Thus there
exists a continuous homotopy F': [0, 1] x [0, 1] — X such that F'(t,0) = p(o(t))
and F(t,1) = zo for all t € [0,1], and F(0,7) = F(1,7) = x. Now it follows
from the Homotopy Lifting Property (Theorem 8.4) that there exists a lift

40



F:10,1] x [0,1] = X of F such that F(t,0) = o(t) for all t € [0,1] and
po ' = F. Now it follows from the uniqueness of lifts of paths that the lift
to X of a constant path in X is a constant path in X. It follows that F is
constant on the three sides of the square [0, 1] x [0, 1] that are mapped by p
onto the point xy. Thus

wo = a(0) = F(0,0) = F(0,1) = F(1,1) = F(1,0) = o(1) = .

This shows that p: X — X is injective.

Now the covering map p: X — X is a bijection. It is a straightforward
exercise to verify that p(V) is open in X for every open set V in X. Thus
p 1 X — X is continuous. We conclude that p: X — X is a homeomor-
phism. |}
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