Course 212: Academic Year 1989-1990 Section 8: Covering Maps

D. R. Wilkins

Copyright ©1989–1990

Contents

8	Covering Maps		34
	8.1	Evenly Covered Open Sets and Covering Maps	34
	8.2	The Path Lifting and Homotopy Lifting Properties	35
	8.3	The Fundamental Group of the Circle	38
	8.4	Covering Maps over Simply-Connected Spaces	40

8 Covering Maps

8.1 Evenly Covered Open Sets and Covering Maps

Definition Let X and \tilde{X} be topological spaces and let $p: \tilde{X} \to X$ be a continuous map. An open subset U of X is said to be *evenly covered* by the map p if and only if $p^{-1}(U)$ is a disjoint union of open sets of \tilde{X} each of which is mapped homeomorphically onto U by p.

Definition Let X and \tilde{X} be topological spaces and let $p: \tilde{X} \to X$ be a continuous map. The map $p: \tilde{X} \to X$ is said to be a *covering map* over the topological space X if and only if the following conditions are satisfied:

- (i) the map $p: \tilde{X} \to X$ is surjective,
- (ii) every point of X has an open neighbourhood which is evenly covered by the map p.

If $p: \tilde{X} \to X$ is a covering map over a topological space X then the topological space \tilde{X} is said to be a *covering space* of X.

Example Let S^1 be the unit circle in \mathbb{R}^2 . Then the map $p: \mathbb{R} \to S^1$ defined by

$$p(t) = (\cos 2\pi t, \sin 2\pi t)$$

is a covering map. Indeed let **n** be a point of S^1 . Consider the open neighbourhood U of **n** in S^1 defined by $U = S^1 \setminus \{-\mathbf{n}\}$. Now $\mathbf{n} = (\cos 2\pi t_0, \sin 2\pi t_0)$ for some $t_0 \in \mathbb{R}$. Then $p^{-1}(U)$ is the union of the disjoint open sets J_n for all integers n, where

$$J_n = \{ t \in \mathbb{R} : t_0 + n - \frac{1}{2} < t < t_0 + n + \frac{1}{2} \}.$$

Each of the open sets J_n is mapped homeomorphically onto U by the map p. This shows that $p: \mathbb{R} \to S^1$ is a covering map.

Example The map $p: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ defined by $p(z) = \exp(2\pi i z)$ is a covering map. Given any $\theta \in [-\pi, \pi]$ let us define

$$U_{\theta} = \{ z \in \mathbb{C} \setminus \{ 0 \} : \arg z \neq -\theta \}.$$

Note the U_{θ} is evenly covered by the map p. Indeed $p^{-1}(U_{\theta})$ consists of the union of the open sets

$$\{z \in \mathbb{C} : \frac{\theta}{2\pi} + n - \frac{1}{2} < \operatorname{Re} z < \frac{\theta}{2\pi} + n + \frac{1}{2}\},\$$

where each of these open sets is mapped homeomorphically onto U_{θ} by the map p.

Example Let S^1 denote the unit circle in \mathbb{R}^2 . Let *n* be a non-zero integer. Let $\beta_n: S^1 \to S^1$ be defined by

$$\beta_n(\cos\theta,\sin\theta) = (\cos n\theta,\sin n\theta).$$

Then $\beta_n: S^1 \to S^1$ is a covering map.

Example Let $\mathbb{R}P^n$ denote the *real projective n-space*. This is the topological space obtained from the *n*-sphere S^n by identifying antipodal points on S^n . (We regard S^n as the unit *n*-sphere in \mathbb{R}^{n+1} consisting of all $\mathbf{x} \in \mathbb{R}^{n-1}$ satisfying $|\mathbf{x}| = 1$. We define an equivalence relation on S^n where distinct points \mathbf{x} and \mathbf{y} of S^n are equivalent if and only if $\mathbf{x} = -\mathbf{y}$. The space $\mathbb{R}P^n$ is then defined to be the set of equivalence classes of points of S^n under this equivalence relation. The topology on $\mathbb{R}P^n$ is the quotient topology induced by the quotient map $\rho: S^n \to \mathbb{R}P^n$. Thus a subset U of $\mathbb{R}P^n$ is open if and only if $\rho^{-1}(U)$ is open in S^n .) It is easily verified that the quotient map $\rho: S^n \to \mathbb{R}P^n$ is a covering map.

Example Consider the map $\alpha: (-2, 2) \to S^1$ defined by $\alpha(t) = (\cos 2\pi t, \sin 2\pi t)$ for all $t \in (-2, 2)$. It can easily be shown that the point (1, 0) of S^1 has no open neighbourhood which is evenly covered by the map α . Indeed suppose that there existed an open neighbourhood N of (1, 0) which was evenly covered by α . Then there would exist some δ satisfying $0 < \delta < \frac{1}{2}$ such that $U_{\delta} \subset N$, where

$$U_{\delta} = \{(\cos 2\pi t, \sin 2\pi t) : -\delta < t < \delta\}.$$

The open set U_{δ} would then be evenly covered by the map α . However the connected components of $\alpha^{-1}(U_{\delta})$ are $(-2, -2+\delta)$, $(-1-\delta, -1+\delta)$, $(-\delta, \delta)$, $(1-\delta, 1+\delta)$ and $(2-\delta, 2)$, and neither $(-2, -2+\delta)$ nor $(2-\delta, 2)$ is mapped homeomorphically onto U_{δ} by α .

8.2 The Path Lifting and Homotopy Lifting Properties

Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let Z be a topological space, and let $f: Z \to X$ be a continuous map from Z to X. A continuous map $\tilde{f}: Z \to \tilde{X}$ is said to be a *lift* of the map $f: Z \to X$ if and only if $p \circ \tilde{f} = f$. We shall prove various results concerning the existence and uniqueness of such lifts.

Proposition 8.1 Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let Z be a connected topological space, and let $\tilde{f}: Z \to \tilde{X}$ and $\tilde{g}: Z \to \tilde{X}$ be continuous maps. Suppose that $p \circ \tilde{f} = p \circ \tilde{g}$ and that $\tilde{f}(z_0) = \tilde{g}(z_0)$ for some $z_0 \in Z$. Then $\tilde{f} = \tilde{g}$. **Proof** Let $Z_0 = \{z \in Z : \tilde{f}(z) = \tilde{g}(z)\}$. Note that Z_0 is non-empty, by hypothesis. We show that Z_0 is both open and closed.

Let z be a point of Z. There exists an open neighbourhood U of $p(\tilde{f}(z))$ in X which is evenly covered by the map p. Then $p^{-1}(U)$ is a disjoint union of open sets, each of which is mapped homeomorphically onto U by the map p. One of these open sets contains $\tilde{f}(z)$; let this set be denoted by \tilde{U} . Also one of these open sets contains $\tilde{g}(z)$; let this open set be denoted by \tilde{V} . Note that $\tilde{U} = \tilde{V}$ if $z \in Z_0$ (so that $\tilde{f}(z) = \tilde{g}(z)$), and $\tilde{U} \cap \tilde{V} = \emptyset$ if $z \in Z \setminus Z_0$ (so that $\tilde{f}(z) \neq \tilde{g}(z)$). Let $N_z = \tilde{f}^{-1}(\tilde{U}) \cap \tilde{g}^{-1}(\tilde{V})$. Then N_z is an open set in Z containing z.

Consider the case when $z \in Z_0$. In this case $\tilde{V} = \tilde{U}$, so that $\tilde{f}(N_z) \subset \tilde{U}$ and $\tilde{g}(N_z) \subset \tilde{U}$. But $p \circ \tilde{f} = p \circ \tilde{g}$, and the restriction $p|\tilde{U}$ of the map pto \tilde{U} maps \tilde{U} homeomorphically onto U. Therefore $\tilde{f}|_{N_z} = \tilde{g}|_{N_z}$, and thus $N_z \subset Z_0$. We have thus shown that, for each $z \in Z_0$, there exists an open set N_z such that $z \in N_z$ and $N_z \subset Z_0$. We conclude that Z_0 is open.

Next consider the case when $z \in Z \setminus Z_0$. In this case $U \cap V = \emptyset$. But $\tilde{f}(N_z) \subset \tilde{U}$ and $\tilde{g}(N_z) \subset \tilde{V}$. Therefore $\tilde{f}(z') \neq \tilde{g}(z')$ for all $z' \in N_z$, so that $N_z \subset Z \setminus Z_0$. We have thus shown that, for each $z \in Z \setminus Z_0$, there exists an open set N_z such that $z \in N_z$ and $N_z \subset Z \setminus Z_0$. We conclude that $Z \setminus Z_0$ is open, so that Z_0 is closed.

The subset Z_0 of Z is both open and closed. Also Z_0 is non-empty, since there exists some point z_0 of Z for which $\tilde{f}(z_0) = \tilde{g}(z_0)$. It follows from the connectedness of Z that $Z_0 = Z$. Therefore $\tilde{f} = \tilde{g}$.

Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let Z be a topological space, let A be a subset of Z, and let $f: Z \to X$ and $g: A \to \tilde{X}$ be continuous maps with the property that $p \circ g = f | A$. In this situation one can ask whether or not the map g can be extended to a map $\tilde{f}: Z \to \tilde{X}$ such that $p \circ \tilde{f} = f$. A problem of this sort is referred to as a *lifting problem*; and a map \tilde{f} with the desired properties is referred to as a *lift* of the map f to \tilde{X} . The next lemma proves the existence of a lift in the special case when A is connected and f(Z) is contained wholly within some open set in X that is evenly covered by the map p. This result is then used to derive more general lifting theorems.

Lemma 8.2 Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let Z be a topological space, let A be a connected subset of Z, and let $f: Z \to X$ and $g: A \to \tilde{X}$ be continuous maps with the property that $p \circ g = f|A$. Suppose that $f(Z) \subset U$, where U is an open subset of X that is evenly covered by the map p. Then there exists a continuous map $\tilde{f}: Z \to \tilde{X}$ such that $\tilde{f}|A = g$ and $p \circ \tilde{f} = f$. **Proof** Choose $a_0 \in A$. Now U is evenly covered by the map p. Therefore $p^{-1}(U)$ is a disjoint union of open sets, each of which is mapped homeomorphically onto U by the map p. One of these open sets contains $g(a_0)$; let this set be denoted by \tilde{U} . Let $s: U \to \tilde{U}$ be the inverse of the homeomorphism $p|\tilde{U}:\tilde{U} \to U$. Now $p \circ (s \circ f)|_A = f|_A = p \circ g$, and $s(f(a_0)) = g(a_0)$. It follows from Proposition 8.1 that $s \circ f|_A = g$, since A is connected. Define $\tilde{f} = s \circ f$. Then $\tilde{f}|_A = g$ and $p \circ \tilde{f} = f$, as required.

Theorem 8.3 (Path Lifting Property) Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let $\gamma: [0,1] \to X$ be a continuous path in X, and let w be a point of \tilde{X} for which $p(w) = \gamma(0)$. Then there exists a unique continuous path $\tilde{\gamma}: [0,1] \to \tilde{X}$ such that $\tilde{\gamma}(0) = w$ and $p \circ \tilde{\gamma} = \gamma$.

Proof We can cover X by a collection \mathcal{U} of open sets, each of which is evenly covered by the map p, since $p: \tilde{X} \to X$ is a covering map. Now the collection of sets of the form $\gamma^{-1}(U)$ with $U \in \mathcal{U}$ is an open cover of the interval [0,1]. Now [0,1] is compact, by the Heine-Borel Theorem (Theorem 4.2). It follows from the Lebesgue Lemma (Lemma 4.20) that there exists some $\delta > 0$ such that every subinterval of length less than δ is mapped by γ into one of the open sets belonging to \mathcal{U} . Partition the interval [0,1] into subintervals $[t_{i-1}, t_i]$, where $0 = t_0 < t_1 < \cdots < t_{n-1} < t_n = 1$, and where the length of each subinterval is less than δ . Now it follows from Lemma 8.2 that once $\tilde{\gamma}(t_{i-1})$ has been determined, we can extend $\tilde{\gamma}$ continuously over the *i*th subinterval $[t_{i-1}, t_i]$. Thus by extending $\tilde{\gamma}$ successively over $[t_0, t_1], [t_1, t_2], \ldots,$ $[t_{n-1}, t_n]$, we can lift the path $\gamma: [0, 1] \to X$ to a path $\tilde{\gamma}: [0, 1] \to \tilde{X}$ starting at w. The uniqueness of $\tilde{\gamma}$ follows from Proposition 8.1.

Theorem 8.4 (Homotopy Lifting Property) Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Let $F: [0,1] \times [0,1] \to X$ and $g: [0,1] \to \tilde{X}$ be continuous maps with the property that p(g(t)) = F(t,0) for all $t \in [0,1]$. Then g can be extended to a unique continuous map $\tilde{F}: [0,1] \times [0,1] \to \tilde{X}$ such that $\tilde{F}(t,0) = g(t)$ for all $t \in [0,1]$ and $p \circ \tilde{F} = F$.

Proof We can cover X by a collection \mathcal{U} of open sets, each of which is evenly covered by the map p. The collection of sets of the form $F^{-1}(U)$ with $U \in \mathcal{U}$ is an open cover of the square $[0,1] \times [0,1]$. An application of the Lebesgue Lemma (as in the proof of Theorem 8.3) shows that there exists some $\delta > 0$ with the property that any square contained in $[0,1] \times [0,1]$ whose sides have length less than δ is mapped by F into some open set in X which is evenly covered by the map p. It follows from Lemma 8.2 that if the lift \tilde{F} of F has already been determined over a corner, or along one side, or along two adjacent sides of a square whose sides have length less than δ , then \tilde{F} can be extended over the whole of that square. Thus if we subdivide the square $[0,1] \times [0,1]$ into smaller squares whose sides have length less than δ then we can extend the map g to a lift \tilde{F} of F by successively extending \tilde{F} in turn over each of the smaller squares. The uniqueness of \tilde{F} follows from Proposition 8.1.

Theorem 8.4 is in fact a special case of a more general Homotopy Lifting Property. Let $p: \tilde{X} \to X$ be a covering map over a topological space X, let Z be a topological space, and let $F: Z \times [0,1] \to X$ and $g: Z \to \tilde{X}$ be continuous maps with the property that F(z,0) = p(g(z)) for all $z \in Z$. The Homotopy Lifting Property states that, under these conditions, there exists a map $\tilde{F}: Z \times [0,1] \to \tilde{X}$ such that $\tilde{F}(z,0) = g(z)$ for all $z \in Z$ and $p \circ \tilde{F} = F$.

8.3 The Fundamental Group of the Circle

Theorem 8.5 Let $b \in S^1$ be some chosen basepoint of the circle S^1 . Then $\pi_1(S^1, b) \cong \mathbb{Z}$.

Proof We regard S^1 as the unit circle in \mathbb{R}^2 . Let $p: \mathbb{R} \to S^1$ be the map defined by

$$p(t) = (\cos 2\pi t, \sin 2\pi t)$$

The map p is a covering map. We can take b = (1,0) = p(0). We define a function $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ as follows: given a loop $\gamma: [0,1] \to S^1$ based at b we define $\lambda([\gamma]) = \tilde{\gamma}(1)$, where $\tilde{\gamma}: [0,1] \to \mathbb{R}$ is the (unique) lift of γ starting at 0 (so that $\tilde{\gamma}(0) = 0$ and $p \circ \tilde{\gamma} = \gamma$).

First we note that $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ is well-defined. If $\tilde{\gamma}$ is the lift of the loop γ starting at 0 then $\tilde{\gamma}(1) \in \mathbb{Z}$, since $p(\tilde{\gamma}(1)) = \gamma(1) = b$. Suppose that γ_0 and γ_1 are loops in S^1 based at b which represent the same element of $\pi_1(S^1, b)$. This means that there exists a homotopy $F: [0, 1] \times [0, 1] \to S^1$ such that $F(t, 0) = \gamma_0(t)$ and $F(t, 1) = \gamma_1(t)$ for all $t \in [0, 1]$, and $F(0, \tau) =$ $F(1, \tau) = b$ for all $\tau \in [0, 1]$. It follows from the Homotopy Lifting Property (Theorem 8.4) that there exists a lift $\tilde{F}: [0, 1] \times [0, 1] \to \mathbb{R}$ of F such that the (unique) lifts $\tilde{\gamma}_0: [0, 1] \to \mathbb{R}$ and $\tilde{\gamma}_1: [0, 1] \to \mathbb{R}$ of the paths γ_0 and γ_1 respectively starting at 0 are given by $\tilde{\gamma}_0(t) = \tilde{F}(t, 0)$ and $\tilde{\gamma}_1(t) = \tilde{F}(t, 1)$ for all $t \in [0, 1]$. Now the function $\tau \mapsto \tilde{F}(1, \tau)$ takes values in \mathbb{Z} , since $p(\tilde{F}(1, \tau)) = F(1, \tau) = b$, and $p^{-1}(\{b\}) = \mathbb{Z}$. But every continuous integervalued function on [0, 1] is constant. Therefore $\tilde{F}(1, \tau)$ is a constant function of τ . Thus

$$\tilde{\gamma}_0(1) = \tilde{F}(1,0) = \tilde{F}(1,1) = \tilde{\gamma}_1(1).$$

Thus the function $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ is well-defined.

Next we show that λ is a homomorphism. Let α and β be loops based at b, and let $\tilde{\alpha}$ and $\tilde{\beta}$ be the lifts of α and β respectively starting at 0. The element $[\alpha][\beta]$ of $\pi_1(S^1, b)$ is represented by the product path $\alpha.\beta$, where

$$(\alpha.\beta)(t) = \begin{cases} \alpha(2t) & \text{if } 0 \le t \le \frac{1}{2};\\ \beta(2t-1) & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

Define a continuous path $\sigma: [0,1] \to \mathbb{R}$ by

$$\sigma(t) = \begin{cases} \tilde{\alpha}(2t) & \text{if } 0 \le t \le \frac{1}{2}; \\ \tilde{\beta}(2t-1) + \tilde{\alpha}(1) & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$

(Note that $\sigma(t)$ is well-defined when $t = \frac{1}{2}$). Then $p \circ \sigma = \alpha . \beta$ and $\sigma(0) = 0$. It follows that

$$\lambda([\alpha][\beta]) = \lambda([\alpha.\beta]) = \sigma(1) = \tilde{\alpha}(1) + \tilde{\beta}(1) = \lambda([\alpha]) + \lambda([\beta]).$$

Thus λ is a homomorphism from the group $\pi_1(S^1, b)$ to the additive group \mathbb{Z} .

Let α and β be loops in S^1 based at b. Suppose that $\lambda([\alpha]) = \lambda([\beta])$. Then $\tilde{\alpha}(1) = \tilde{\beta}(1)$, where $\tilde{\alpha}$ and $\tilde{\beta}$ be the lifts of α and β respectively starting at 0. Define

$$F(t,\tau) = p\left((1-\tau)\tilde{\alpha}(t) + \tau\tilde{\beta}(t)\right).$$

Then $F: [0,1] \times [0,1] \to S^1$ is a homotopy between α and β , with

$$F(0,\tau) = b = F(1,\tau) \qquad (\tau \in [0,1]).$$

Thus $\alpha \simeq \beta$ rel $\{0, 1\}$, so that $[\alpha] = [\beta]$. This shows that $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ is injective.

Given any $n \in \mathbb{N}$, let $\gamma_n: [0,1] \to S^1$ be the loop based at b defined by

$$\gamma_n(t) = p(nt) = (\cos 2\pi nt, \sin 2\pi nt).$$

Then $\lambda([\gamma_n]) = n$. This shows that the homomorphism λ is surjective. We conclude that $\lambda: \pi_1(S^1, b) \to \mathbb{Z}$ is an isomorphism.

Let D denote the closed unit disk in \mathbb{R}^2 , given by $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$. We now show that every continuous map from D to itself has at least one fixed point.

Theorem 8.6 (The Brouwer Fixed Point Theorem) Let $f: D \to D$ be a continuous map which maps the closed unit disk D into itself. Then there exists some $\mathbf{x}_0 \in D$ such that $f(\mathbf{x}_0) = \mathbf{x}_0$. **Proof** Let S^1 denote the boundary circle of D, and let $i: S^1 \hookrightarrow D$ denote the inclusion map from S^1 to D. This inclusion map induces a corresponding homomorphism $i_{\#}: \pi_1(S^1, \mathbf{b}) \to \pi_1(D, \mathbf{b})$ of fundamental groups, where $\mathbf{b} \in S^1$ is some suitably chosen basepoint.

Suppose that it were the case that the map f has no fixed point in D. Then one could define a continuous map $r: D \to S^1$ as follows: for each $\mathbf{x} \in D$, let $r(\mathbf{x})$ be the point on the boundary S^1 of D obtained by continuing the line segment joining $f(\mathbf{x})$ to \mathbf{x} beyond \mathbf{x} until it intersects S^1 at the point $r(\mathbf{x})$. Note that $r|S^1$ is the identity map of S^1 .

Let $r_{\#}: \pi_1(D, \mathbf{b}) \to \pi_1(S^1, \mathbf{b})$ be the homomorphism of fundamental groups induced by $r: D \to S^1$. Now $(r \circ i)_{\#}: \pi_1(S^1, \mathbf{b}) \to \pi_1(S^1, \mathbf{b})$ is the identity isomorphism of $\pi_1(S^1, \mathbf{b})$, since $r \circ i: S^1 \to S^1$ is the identity map. But $(r \circ i)_{\#} = r_{\#} \circ i_{\#}$ (see Lemma 7.5). It follows that $i_{\#}: \pi_1(S^1, \mathbf{b}) \to \pi_1(D, \mathbf{b})$ is injective, and $r_{\#}: \pi_1(D, \mathbf{b}) \to \pi_1(S^1, \mathbf{b})$ is surjective. But this is impossible, since $\pi_1(S^1, \mathbf{b}) \cong \mathbb{Z}$ (Theorem 8.5) and $\pi_1(D, \mathbf{b})$ is the trivial group. This contradiction shows that the continuous map $f: D \to D$ must have at least one fixed point.

Remark The Brouwer Fixed Point Theorem is also valid in higher dimensions. This theorem states that any continuous map from the closed *n*-dimensional ball into itself must have at least one fixed point. The proof of the theorem for n > 2 is analogous to the proof for n = 2, but with the fundamental groups of the ball and its boundary sphere being replaced by another topologicical invariant, namely the *n*-dimensional homology groups of the closed ball and its boundary sphere.

8.4 Covering Maps over Simply-Connected Spaces

Theorem 8.7 Let $p: \tilde{X} \to X$ be a covering map over a topological space X. Suppose that \tilde{X} is path-connected and that X is simply-connected. Then the covering map $p: \tilde{X} \to X$ is a homeomorphism.

Proof The map $p: \tilde{X} \to X$ is surjective (since covering maps are by definition surjective). We must show that it is also injective. Let w_0 and w_1 be points of \tilde{X} for which $p(w_0) = p(w_1)$. There exists a continuous path $\sigma: [0, 1] \to \tilde{X}$ with $\sigma(0) = w_0$ and $\sigma(1) = w_1$, since \tilde{X} is path-connected. Then $p \circ \sigma$ is a loop in X based at the point x_0 , where $x_0 = p(w_0)$. But every loop based at x_0 is homotopic (rel $\{0, 1\}$) to the constant loop based at x_0 . Thus there exists a continuous homotopy $F: [0, 1] \times [0, 1] \to X$ such that $F(t, 0) = p(\sigma(t))$ and $F(t, 1) = x_0$ for all $t \in [0, 1]$, and $F(0, \tau) = F(1, \tau) = x_0$. Now it follows from the Homotopy Lifting Property (Theorem 8.4) that there exists a lift $\tilde{F}:[0,1] \times [0,1] \to \tilde{X}$ of F such that $\tilde{F}(t,0) = \sigma(t)$ for all $t \in [0,1]$ and $p \circ \tilde{F} = F$. Now it follows from the uniqueness of lifts of paths that the lift to \tilde{X} of a constant path in X is a constant path in \tilde{X} . It follows that \tilde{F} is constant on the three sides of the square $[0,1] \times [0,1]$ that are mapped by p onto the point x_0 . Thus

$$w_0 = \sigma(0) = F(0,0) = F(0,1) = F(1,1) = F(1,0) = \sigma(1) = w_1.$$

This shows that $p: \tilde{X} \to X$ is injective.

Now the covering map $p: \tilde{X} \to X$ is a bijection. It is a straightforward exercise to verify that p(V) is open in \tilde{X} for every open set V in X. Thus $p^{-1}: X \to \tilde{X}$ is continuous. We conclude that $p: \tilde{X} \to X$ is a homeomorphism.