4 Compact Topological Spaces

4.1 Open Covers and Compactness

Let X be a topological space, and let A be a subset of X. A collection of open sets in X is said to cover A if and only if every point of A belongs to at least one of these open sets. In particular, an open cover of X is collection of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to be a subcover of U if and only if every open set in V belongs to U.

Definition A topological space X is said to be compact if and only if every open cover of X possesses a finite subcover.

Lemma 4.1 Let X be a topological space. A subset A of X is compact (with respect to the subspace topology on A) if and only if, given any collection U of open sets in X covering A, there exists a finite collection V_1, V_2, \ldots, V_r of open sets belonging to U such that

$$A \subset V_1 \cup V_2 \cup \cdots \cup V_r.$$

Proof If U is any collection of open sets in X covering A then $\{V \cap A : V \in U\}$ is an open cover of A. Moreover it follows from the definition of the subspace topology on A that, given any open cover U_A of A there exists some collection U of open sets in X such that

$$U_A = \{V \cap A : V \in U\}.$$

The required result now follows directly from the definition of compactness.

4.2 The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is compact. This result is known as the Heine-Borel Theorem. The proof of this theorem uses the least upper bound principle which states that, given any non-empty set S of real numbers which is bounded above, there exists a least upper bound (or supremum) $\sup S$ for the set S.

Theorem 4.2 (Heine Borel) Let a and b be real numbers satisfying $a < b$. Then the closed bounded interval $[a, b]$ is a compact subset of \mathbb{R}.

1
Proof Let \mathcal{U} be a collection of open sets in \mathbb{R} with the property that each point of the interval $[a, b]$ belongs to at least one of these open sets. We must show that $[a, b]$ is covered by finitely many of these open sets.

Let S be the set of all $\tau \in [a, b]$ with the property that $[a, \tau]$ is covered by finitely many of the open sets belonging to \mathcal{U}. Let $s = \sup S$. Now $s \in W$ for some open set W belonging to \mathcal{U}. But then there exists some $\delta > 0$ such that $(s - \delta, s + \delta) \subset W$ (since W is open in \mathbb{R}). Also there exists some $\tau \in S$ satisfying $\tau > s - \delta$ (since $s - \delta$ is not an upper bound for the set S). Now if V_1, V_2, \ldots, V_r is any finite collection of open sets belonging to \mathcal{U} which cover $[a, \tau]$ then

$$[a, t] \subset V_1 \cup V_2 \cup \cdots \cup V_r \cup W$$

for all $t \in [a, b]$ satisfying $s \leq t < s + \delta$. Thus $t \in S$ for all t satisfying $a \leq t \leq b$ and $s \leq t < s + \delta$. In particular $s \in S$. Moreover $s = b$, since otherwise s would not be an upper bound of the set S. Thus $b \in S$. This means that the interval $[a, b]$ can be covered by finitely many open sets belonging to \mathcal{U}, as required.

4.3 Basic Properties of Compact Topological Spaces

Lemma 4.3 Let X be a compact topological space, and let A be a closed subset of X. Then A is compact.

Proof Let \mathcal{U} be a collection of open sets in X covering A. If we adjoin the open set $X \setminus A$ to the collection \mathcal{U} then we obtain an open cover of the space X. This open cover possesses a finite subcover, since X is compact. In particular, there exists a finite collection V_1, V_2, \ldots, V_r of open sets belonging to the collection \mathcal{U} such that $A \subset V_1 \cup V_2 \cup \cdots \cup V_r$. Thus A is compact, by Lemma 4.1.

Lemma 4.4 Let X and Y are topological spaces, and $f: X \to Y$ be a continuous function. Let A be a compact subset of X. Then $f(A)$ is a compact subset of Y.

Proof Let \mathcal{V} be a collection of open sets in Y which covers $f(A)$, and let \mathcal{W} be the collection of open sets in X consisting of all open sets of the form $f^{-1}(V)$ for some $V \in \mathcal{V}$. Then \mathcal{W} covers A. It follows from the compactness of A that there exist open sets V_1, V_2, \ldots, V_r belonging to \mathcal{V} such that

$$A \subset f^{-1}(V_1) \cup f^{-1}(V_2) \cup \cdots \cup f^{-1}(V_r).$$

But then

$$f(A) \subset V_1 \cup V_2 \cup \cdots \cup V_r.$$
Thus $f(A)$ is compact.

Lemma 4.5 Let X be a compact topological space and let $f: X \to \mathbb{R}$ be a continuous function from X to \mathbb{R}. Then f is bounded above and below on X.

Proof It follows from Lemma 4.4 that the image $f(X)$ of the function f is a compact subset of \mathbb{R}. Let U_1, U_2, U_3, \ldots be the open subsets of \mathbb{R} defined by $U_m = \{t \in \mathbb{R} : -m < t < m\}$ for all natural numbers m. Then the collection $\{U_m : m \in \mathbb{N}\}$ of open sets covers \mathbb{R}. It follows from the compactness of $f(X)$ that $f(X)$ can be covered by finitely many of these open sets. Suppose that

$$f(X) \subseteq U_{m_1} \cup U_{m_2} \cup \cdots \cup U_{m_r},$$

where $m_1 < m_2 < \cdots < m_r$. Then $f(X) \subseteq U_{m_r}$ (since $U_{m_j} \subset U_{m_r}$ for all j satisfying $j < r$). We deduce that $-m_r < f(x) < m_r$ for all $x \in X$. Thus the function f is bounded above and below on X.

Proposition 4.6 Let X be a compact topological space and let $f: X \to \mathbb{R}$ be a continuous real-valued function on X. Then there exist points u and v of X such that $f(u) \leq f(x) \leq f(v)$ for all $x \in X$.

Proof Let $m = \inf\{f(x) : x \in X\}$ and $M = \sup\{f(x) : x \in X\}$. If $f(x) < M$ for all $x \in X$ then the function $g: X \to \mathbb{R}$ defined by $g(x) = 1/(M - f(x))$ would be a continuous function on X that was not bounded above, contradicting Lemma 4.5. Therefore there must exist $v \in X$ for which $f(v) = M$. Similarly if $f(x) > m$ for all $x \in X$ then the function $h: X \to \mathbb{R}$ defined by $h(x) = 1/(f(x) - m)$ would be a continuous function on X that was not bounded above, again contradicting Lemma 4.5. Therefore there must exist $u \in X$ for which $f(u) = m$. But then $f(u) \leq f(x) \leq f(v)$ for all $x \in X$, as required.

4.4 Compact Hausdorff Spaces

Proposition 4.7 Let X be a Hausdorff topological space, and let K be a compact subset of X. Let x be a point of $X \setminus K$. Then there exist open subsets V_x and W_x of X such that $x \in V_x$, $K \subset W_x$ and $V_x \cap W_x = \emptyset$.

Proof Let x be a point of $X \setminus K$. For each point y of K there exist open sets $V_{x,y}$ and $W_{x,y}$ such that $x \in V_{x,y}$, $y \in W_{x,y}$ and $V_{x,y} \cap W_{x,y} = \emptyset$ (since X is a Hausdorff space). But it then follows from the compactness of K that there exists a finite set $\{y_1, y_2, \ldots, y_r\}$ of points of K such that

$$K \subset W_{x,y_1} \cup W_{x,y_2} \cup \cdots \cup W_{x,y_r}.$$
Define
\[V_x = V_{x,y_1} \cap V_{x,y_2} \cap \cdots \cap V_{x,y_r}, \quad W_x = W_{x,y_1} \cup W_{x,y_2} \cup \cdots \cup W_{x,y_r}. \]

Then \(V_x \) and \(W_x \) are open sets, \(x \) belongs to \(V_x \), \(K \subset W_x \) and \(V_x \cap W_x = \emptyset \), as required.

Corollary 4.8 Let \(X \) be a Hausdorff topological space, and let \(K \) be a compact subset of \(X \). Then \(K \) is closed.

Proof It follows immediately from Proposition 4.7 that, for each point \(x \) of \(X \setminus K \), there exists an open set \(V_x \) such that \(x \in V_x \) and \(V_x \cap K = \emptyset \). But then \(X \setminus K \) is equal to the union of the open sets \(V_x \) as \(x \) ranges over all points of \(X \setminus K \). But any set that is a union of open sets is itself an open set. We conclude that \(X \setminus K \) is open. Thus \(K \) is closed.

Proposition 4.9 Let \(X \) be a Hausdorff topological space, and let \(K_1 \) and \(K_2 \) be compact subsets of \(X \), where \(K_1 \cap K_2 = \emptyset \). Then there exist open sets \(U_1 \) and \(U_2 \) such that \(K_1 \subset U_1 \), \(K_2 \subset U_2 \) and \(U_1 \cap U_2 = \emptyset \).

Proof It follows from Proposition 4.7 that, for each point \(x \) of \(K_1 \), there exist open sets \(V_x \) and \(W_x \) such that \(x \in V_x \), \(K_2 \subset W_x \) and \(V_x \cap W_x = \emptyset \). But it then follows from the compactness of \(K_1 \) that there exists a finite set \(\{x_1, x_2, \ldots, x_r\} \) of points of \(K_1 \) such that
\[K_1 \subset V_{x_1} \cup V_{x_2} \cup \cdots \cup V_{x_r}. \]

Define
\[U_1 = V_{x_1} \cup V_{x_2} \cup \cdots \cup V_{x_r}, \quad U_2 = W_{x_1} \cap W_{x_2} \cap \cdots \cap W_{x_r}. \]

Then \(U_1 \) and \(U_2 \) are open sets, \(K_1 \subset U_1 \), \(K_2 \subset U_2 \) and \(U_1 \cap U_2 = \emptyset \), as required.

Remark A topological space \(X \) is said to be normal if and only if, given any closed subsets \(F_1 \) and \(F_2 \) of \(X \) for which \(F_1 \cap F_2 = \emptyset \), there exist open sets \(U_1 \) and \(U_2 \) of \(X \) for which \(U_1 \cap U_2 = \emptyset \). Now every closed subset of a compact topological space is compact, by Lemma 4.3. It follows from Proposition 4.9 that every compact Hausdorff space is normal.

Lemma 4.10 Let \(X \) be a compact topological space, let \(Y \) be a Hausdorff space, and let \(f: X \to Y \) be a continuous function from \(X \) to \(Y \). Then \(f(K) \) is closed in \(Y \) for every closed set \(K \) in \(X \).
Proof Let K be a closed subset of X. Every closed subset of a compact topological space is compact, by Lemma 4.3. Therefore K is compact. It then follows from Lemma 4.4 that $f(K)$ is compact. But then $f(K)$ is closed, by Corollary 4.8, since Y is Hausdorff. Thus $f(K)$ is closed in Y for every closed set K in X. □

Theorem 4.11 Let X be a compact topological space, let Y be a Hausdorff space, and let $f:X \to Y$ be a continuous function from X to Y which is also a bijection (i.e., f is both one-to-one and onto). Then $f:X \to Y$ is a homeomorphism.

Proof The function f is invertible, since it is a bijection. Let $g:Y \to X$ be the inverse of $f:X \to Y$. Let U be an open set in X. Then $X \setminus U$ is closed in X, and hence $f(X \setminus U)$ is closed in Y, by Lemma 4.10. But

$$f(X \setminus U) = g^{-1}(X \setminus U) = Y \setminus g^{-1}(U).$$

It follows that $g^{-1}(U)$ is open in Y. Thus $g:Y \to X$ is continuous. We deduce that $f:X \to Y$ is a homeomorphism, as required. □

We recall that a function $f:X \to Y$ from a topological space X to a topological space Y is said to be an identification map if it is surjective and satisfies the following condition: a subset U of Y is open in Y if and only if $f^{-1}(U)$ is open in X.

Proposition 4.12 Let X be a compact topological space, let Y be a Hausdorff space. If $f:X \to Y$ is a continuous surjection then f is an identification map.

Proof The function $f:X \to Y$ is surjective, and $f^{-1}(U)$ is open in X for any open subset U of Y, since f is continuous. Thus, to prove that $f:X \to Y$ is an identification map, it only remains to show that if U is a subset of Y such that $f^{-1}(U)$ is open in X then U is open in Y.

Let $K = X \setminus f^{-1}(U)$. If $f^{-1}(U)$ is open in X then K is closed. It follows from Lemma 4.10 that $f(K)$ is closed in Y.

Now if $x \in K$ then $x \notin f^{-1}(U)$, and hence $f(x) \in Y \setminus U$. Thus $f(K) \subset Y \setminus U$. But if y is any point of $Y \setminus U$ then $y = f(x)$ for some $x \in X$, since f is surjective, and moreover $x \in K$ (since $f(x) \notin U$). Thus $f(K) = Y \setminus U$. But $f(K)$ is closed in Y. It follows that U is open in Y, as required. □

Example Let S^1 be the unit circle in \mathbb{R}^2, defined by

$$S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$
Let \(q : [0, 1] \to S^1 \) be the function defined by
\[
q(t) = (\cos 2\pi t, \sin 2\pi t) \quad (t \in [0, 1]).
\]
The function \(q \) is surjective. Moreover the closed interval \([0, 1]\) is compact, and the circle \(S^1 \) is Hausdorff. Therefore the function \(q : [0, 1] \to S^1 \) is an identification map. Thus a function \(f : S^1 \to Z \) from the circle \(S^1 \) to some topological space \(Z \) is continuous if and only if the composition function \(f \circ q : [0, 1] \to Z \) is continuous (see Lemma 2.19).

4.5 Finite Products of Compact Spaces

We shall show that a finite Cartesian product of compact spaces is compact. To prove this, we apply the following result, known as the Tube Lemma.

Lemma 4.13 Let \(X \) and \(Y \) be topological spaces, let \(K \) be a compact subset of \(Y \), and \(U \) be an open set in \(X \times Y \). Let \(V \) be the subset of \(X \) defined by
\[
V = \{ x \in X : \{ x \} \times K \subset U \}.
\]
Then \(V \) is an open set in \(X \).

Proof Let \(x \) be a point of \(V \). For each point \(y \) of \(K \) there exist open subsets \(D_y \) and \(E_y \) of \(X \) and \(Y \) respectively such that \((x, y) \in D_y \times E_y \) and \(D_y \times E_y \subset U \). But \(K \) is compact. Therefore there exists a finite set \(\{y_1, y_2, \ldots, y_k\} \) of points of \(K \) such that
\[
K \subset E_{y_1} \cup E_{y_2} \cup \cdots \cup E_{y_k}.
\]
Set
\[
N_x = D_{y_1} \cap D_{y_2} \cap \cdots \cap D_{y_k}.
\]
Then \(N_x \) is an open set in \(X \). Moreover
\[
N_x \times K \subset \bigcup_{i=1}^{k} (D_{y_i} \times E_{y_i}) \subset U,
\]
so that \(N_x \subset V \). It follows that \(V \) is the union of the open sets \(N_x \) for all \(x \in V \). Thus \(V \) is itself an open set in \(X \), as required. \(\square \)

Theorem 4.14 Let \(X \) and \(Y \) be compact topological spaces. Then \(X \times Y \) is compact.
Proof Let \mathcal{U} be an open cover of $X \times Y$. We must show that this open cover possesses a finite subcover.

Let x be a point of X. The set $\{x\} \times Y$ is a compact subset of $X \times Y$, hence there exists a finite collection U_1, U_2, \ldots, U_r of open sets belonging to the open cover \mathcal{U} such that

$$\{x\} \times Y \subset U_1 \cup U_2 \cup \cdots \cup U_r.$$

Let

$$V_x = \{x' \in X : \{x'\} \times Y \subset U_1 \cup U_2 \cup \cdots \cup U_r\}.$$

It follows from Lemma 4.13 that V_x is an open set in X. We have therefore shown that, for each point x in X, there exists an open set V_x in X containing the point x such that $V_x \times Y$ is covered by finitely many of the open sets belonging to the open cover \mathcal{U}.

Now $\{V_x : x \in X\}$ is an open cover of the compact space X. This cover possesses a finite subcover. Thus there exists a finite set $\{x_1, x_2, \ldots, x_r\}$ of points of X such that

$$X = V_{x_1} \cup V_{x_2} \cup \cdots \cup V_{x_r}.$$

It follows from this that $X \times Y$ can be covered by finitely many open sets belonging to the open cover \mathcal{U} (since $X \times Y$ is a finite union of sets of the form $V_x \times Y$, and each of these sets can be covered by finitely many of the open sets belonging to \mathcal{U}). Therefore $X \times Y$ is compact.

Corollary 4.15 Let X_1, X_2, \ldots, X_n be compact topological spaces. Then the Cartesian product $X_1 \times X_2 \times \cdots \times X_n$ is compact.

Proof It follows easily from the definition of the product topology that the product topologies on $X_1 \times X_2 \times \cdots \times X_n$ and $(X_1 \times X_2 \times \cdots \times X_{n-1}) \times X_n$ coincide. The desired result therefore follows from Theorem 4.14 by induction on n.

Theorem 4.16 Let K be a subset of \mathbb{R}^n. Then K is compact if and only if K is both closed and bounded.

Proof Suppose that K is compact. We show that K is closed and bounded. Note that K is closed, since \mathbb{R}^n is Hausdorff, and all compact subsets of Hausdorff spaces are closed, by Corollary 4.8. Consider the open cover of \mathbb{R}^n provided by the sets U_m for all positive integers m, where

$$U_m = \{x \in \mathbb{R}^n : |x| < m\}.$$

7
The set K must be covered by finitely many of these open sets, since K is compact. Suppose that

$$K \subset U_{m_1} \cup U_{m_2} \cup \cdots \cup U_{m_r},$$

where $m_1 < m_2 < \cdots < m_r$. Then $K \subset U_{m_r}$, and hence $|x| < m_r$ for all $x \in K$. Thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists some real number L such that K is contained within the closed cube C given by

$$C = \{(x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : -L \leq x_j \leq L \text{ for } j = 1, 2, \ldots, n\}.$$

Now the closed interval $[-L, L]$ is compact by the Heine-Borel Theorem (Theorem 4.2), and C is the Cartesian product of n-copies of the compact set $[-L, L]$. It follows from Corollary 4.15 that C is compact. But K is a closed subset of C, and a closed subset of a compact topological space is itself compact, by Lemma 4.3. Thus K is compact, as required.

4.6 Norms on Vector Spaces

Let V be a vector space over the field \mathbb{F}, where $\mathbb{F} = \mathbb{R}$ or \mathbb{C}. A norm $\|\cdot\|$ on V is a function sending an element v of V to some real number, denoted by $\|v\|$, which satisfies the following properties:—

(i) $\|v\| \geq 0$ for all $v \in V$,

(ii) $\|v + w\| \leq \|v\| + \|w\|$ for all $v, w \in V$,

(iii) $\|\lambda v\| = |\lambda| \|v\|$ for all $v \in V$ and $\lambda \in \mathbb{F}$,

(iv) $\|v\| = 0$ if and only if $v = 0$.

Example Let $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_\infty$ be the functions from \mathbb{R}^n to \mathbb{R} defined by

$$\|x\|_1 = \sum_{j=1}^n |x_j|,$$

$$\|x\|_2 = \left(\sum_{j=1}^n x_j^2\right)^{\frac{1}{2}},$$

$$\|x\|_\infty = \max(|x_1|, |x_2|, \ldots, |x_n|),$$

for each $x \in \mathbb{R}^n$, where $x = (x_1, x_2, \ldots, x_n)$. Then $\|\cdot\|_1$, $\|\cdot\|_2$ and $\|\cdot\|_\infty$ are norms on \mathbb{R}^n. (Note that $\|\cdot\|_2$ is the standard Euclidean norm on \mathbb{R}^n, which we have denoted by $|\cdot|$.)
A norm \(\| \cdot \| \) on a vector space \(V \) induces a corresponding distance function on \(V \): the distance \(d(v, w) \) between elements \(v \) and \(w \) of \(V \) is defined by \(d(v, w) = \| v - w \| \). This distance function satisfies the metric space axioms. Thus any vector space with a norm can be regarded as a metric space. The distance function in turn induces a topology on \(V \): a subset \(U \) of \(V \) is open (with respect to the topology induced by the norm \(\| \cdot \| \)) if and only if, given any point \(u \) of \(U \), there exists some \(\delta > 0 \) such that

\[
\{ v \in V : \| v - u \| < \delta \} \subset U.
\]

Let \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) be norms on the vector space \(V \). The norms \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are said to be equivalent if and only if there exist constants \(c \) and \(C \), where \(0 < c \leq C \), such that

\[
c \| v \|_1 \leq \| v \|_2 \leq C \| v \|_1
\]

for all \(v \in V \).

Lemma 4.17 Let \(V \) be a real (or complex) vector space, and let \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) be norms on \(V \). The norms \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) generate the same topology on \(V \) if and only if they are equivalent.

Proof Suppose that the norms \(\| \cdot \|_1 \) and \(\| \cdot \|_2 \) are equivalent. Then there exist constants \(c \) and \(C \), where \(0 < c \leq C \), such that \(c \| v \|_1 \leq \| v \|_2 \leq C \| v \|_1 \) for all \(v \in V \). Thus, for any point \(u \) of \(V \),

\[
\begin{align*}
\{ v \in V : \| v - u \|_2 < \delta \} & \subset \{ v \in V : \| v - u \|_1 < \delta/c \}, \\
\{ v \in V : \| v - u \|_1 < \delta \} & \subset \{ v \in V : \| v - u \|_2 < C\delta \}.
\end{align*}
\]

Let \(U \) be a subset of \(V \). If \(U \) is open with respect to the topology induced by the norm \(\| \cdot \|_1 \) then, given any point \(u \) of \(U \), there exists some \(\delta > 0 \) such that

\[
\{ v \in V : \| v - u \|_1 < \delta/c \} \subset U.
\]

But then

\[
\{ v \in V : \| v - u \|_2 < \delta \} \subset \{ v \in V : \| v - u \|_1 < \delta/c \} \subset U,
\]

so that \(U \) is open with respect to the topology induced by the norm \(\| \cdot \|_2 \). A similar proof, using the fact that

\[
\{ v \in V : \| v - u \|_1 < \delta \} \subset \{ v \in V : \| v - u \|_2 < C\delta \}
\]
for all $\delta > 0$, shows that if U is open with respect to the topology induced by the norm $\| \cdot \|_2$ then U is open with respect to the topology induced by the norm $\| \cdot \|_1$. Thus equivalent norms induce the same topology on V.

Conversely suppose that $\| \cdot \|_1$ and $\| \cdot \|_2$ are norms on V which induce the same topology on V. Now $\{ v \in V : \| v \|_2 < 1 \}$ is open with respect to the topology induced by $\| \cdot \|_2$. This set is therefore open with respect to the topology induced by $\| \cdot \|_1$, and hence there exists some $\delta_1 > 0$ such that

$$\{ v \in V : \| v \|_1 < \delta_1 \} \subset \{ v \in V : \| v \|_2 < 1 \}.$$

A similar argument shows that there exists $\delta_2 > 0$ such that

$$\{ v \in V : \| v \|_2 < \delta_2 \} \subset \{ v \in V : \| v \|_1 < 1 \}.$$

Set $C = 2/\delta_1$ and $c = \delta_2/2$. Let v be a non-zero element of V, and let $\lambda_v = \delta_1/2\| v \|_1$. Then

$$\| \lambda_v v \|_1 = |\lambda_v|\| v \|_1 = \frac{1}{2}\delta_1 < \delta_1$$

and hence $\| \lambda_v v \|_2 < 1$. But

$$\| \lambda_v v \|_2 = |\lambda_v|\| v \|_2 = \frac{\| v \|_2}{C\| v \|_1}.$$

Thus $\| v \|_2 \leq C\| v \|_1$. A similar argument shows that $\| v \|_1 \leq c^{-1}\| v \|_2$. Thus $c\| v \|_1 \leq \| v \|_2 \leq C\| v \|_1$ for all non-zero elements v of V. These inequalities also hold if $v = 0$. We conclude that if the norms $\| \cdot \|_1$ and $\| \cdot \|_2$ induce the same topology on V then these norms are equivalent.

We shall show that any two norms on \mathbb{R}^n are equivalent (Theorem 4.19). Since any n-dimensional real vector space is isomorphic to \mathbb{R}^n for all natural numbers n, this shows that any two norms on a finite-dimensional real vector space are equivalent, and thus generate the same topology on that vector space. (This result does not apply to infinite-dimensional vector spaces.)

Lemma 4.18 Let $\| \cdot \|$ be a norm on \mathbb{R}^n. Then the function $x \mapsto \| x \|$ is continuous with respect to the usual topology on \mathbb{R}^n (i.e., the topology on \mathbb{R}^n induced by the Euclidean norm).

Proof Let e_1, e_2, \ldots, e_n denote the basis of \mathbb{R}^n given by

$$e_1 = (1, 0, 0, \ldots, 0), \quad e_2 = (0, 1, 0, \ldots, 0), \quad \ldots \quad e_n = (0, 0, 0, \ldots, 1).$$
Let \(x\) and \(y\) be points of \(\mathbb{R}^n\), where
\[
x = (x_1, x_2, \ldots, x_n), \quad y = (y_1, y_2, \ldots, y_n).
\]

Now
\[
||x|| - ||y|| \leq ||x - y||
\]
since
\[
||x|| \leq ||x - y|| + ||y||, \quad ||y|| \leq ||x - y|| + ||x||.
\]

Also
\[
||x - y|| = \left(\sum_{j=1}^{n} (x_j - y_j)^2 \right)^{1/2} \leq \sum_{j=1}^{n} |x_j - y_j| \cdot ||e_j||.
\]

Let \(c_j = ||e_j||\) for \(j = 1, 2, \ldots, n\). It follows from Schwarz’ Inequality (Lemma 1.1) that
\[
\sum_{j=1}^{n} |x_j - y_j| \cdot ||e_j|| = \sum_{j=1}^{n} |x_j - y_j| \cdot c_j \leq \left(\sum_{j=1}^{n} (x_j - y_j)^2 \right)^{1/2} \left(\sum_{j=1}^{n} c_j^2 \right)^{1/2} = C||x - y||,
\]
where \(C^2 = c_1^2 + c_2^2 + \cdots + c_n^2\), and where \(||x - y||\) denotes the Euclidean norm of \(x - y\). We conclude therefore that
\[
||x|| - ||y|| \leq ||x - y||
\]

This shows that the function from \(\mathbb{R}^n\) to \(\mathbb{R}\) given by \(x \mapsto ||x||\) is continuous on \(\mathbb{R}^n\) with respect to the usual topology on \(\mathbb{R}^n\).

Theorem 4.19 Any two norms on \(\mathbb{R}^n\) are equivalent, and therefore induce the same topology on \(\mathbb{R}^n\). (This topology is the usual topology on \(\mathbb{R}^n\).)

Proof Let \(||.||_1\) be any norm on \(\mathbb{R}^n\). We show that \(||.||_1\) is equivalent to the Euclidean norm \(|.|\). Let \(S^{n-1}\) denote the unit sphere in \(\mathbb{R}^n\), defined by
\[
S^{n-1} = \{x \in \mathbb{R}^n : |x| = 1\}.
\]

Now \(S^{n-1}\) is a compact subset of \(\mathbb{R}^n\), by Theorem 4.16, since it is both closed and bounded. Also the function \(f: S^{n-1} \to \mathbb{R}\) defined by \(f(x) = ||x||_1\) is continuous, by Lemma 4.18. Note that \(f(x) > 0\) for all \(x \in S^{n-1}\) (see properties \((i)\) and \((iv)\) in the definition of norms). It follows from Proposition 4.6 that there exist points \(u\) and \(v\) of \(S^{n-1}\) such that \(f(u) \leq f(x) \leq f(v)\) for all \(x \in S^{n-1}\). Set \(c_1 = f(u) = ||u||_1\) and \(C_1 = f(v) = ||v||_1\). Then \(0 < c_1 \leq C_1\).
If \mathbf{x} is any non-zero element of \mathbb{R}^n then $(1/|\mathbf{x}|)\mathbf{x}$ is an element of S^{n-1}, and hence

$$c_1 \leq \left\| \frac{\mathbf{x}}{|\mathbf{x}|} \right\|_1 \leq C_1.$$

Thus $c_1|x| \leq \|x\|_1 \leq C_1|x|$ for all $\mathbf{x} \in \mathbb{R}^n$, showing that the norm $\|\cdot\|_1$ is equivalent to the Euclidean norm $|\cdot|$ on \mathbb{R}^n.

If $\|\cdot\|_2$ is any other norm on \mathbb{R}^n then $\|\cdot\|_2$ is also equivalent to the Euclidean norm on \mathbb{R}^n, and hence there exist constants c_2 and C_2 satisfying $0 < c_2 \leq C_2$ such that $c_2|x| \leq \|x\|_2 \leq C_2|x|$ for all $\mathbf{x} \in \mathbb{R}^n$. But then

$$\frac{c_2}{C_1}\|\mathbf{x}\|_1 \leq \|\mathbf{x}\|_2 \leq \frac{C_2}{c_1}\|\mathbf{x}\|_1.$$

Thus the norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent. This shows that any two norms on \mathbb{R}^n are equivalent. It then follows from Lemma 4.17 that any two norms on \mathbb{R}^n generate the same topology on \mathbb{R}^n.

4.7 The Lebesgue Lemma

Definition Let (X, d) be a metric space, and let A be a subset of X. The *diameter* of the set A is defined to be the supremum

$$\sup_{u, v \in A} d(u, v)$$

of the distance from the point u to the point v as u and v range over all the points of the set A. (If the distance $d(u, v)$ from u to v is not bounded above as u and v range over the set A then the diameter of A is defined to be $+\infty$.)

We now state and prove the *Lebesgue Lemma*.

Lemma 4.20 (Lebesgue Lemma) Let (X, d) be a compact metric space. Let \mathcal{U} be an open cover of X. Then there exists a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover \mathcal{U}.

Proof Every point of X is contained in at least one of the open sets belonging to the open cover \mathcal{U}. It follows from this that, for each point x of X, there exists some $\delta_x > 0$ such that the open ball $B(x, 2\delta_x)$ of radius $2\delta_x$ about the point x is contained wholly within one of the open sets belonging to the open cover \mathcal{U}. But then the collection consisting of the open balls $B(x, \delta_x)$ of radius δ_x about the points x of X forms an open cover of the compact
space X. Therefore there exists a finite set x_1, x_2, \ldots, x_r of points of X such that

$$B(x_1, \delta_1) \cup B(x_2, \delta_2) \cup \cdots \cup B(x_r, \delta_r) = X,$$

where $\delta_i = \delta_{x_i}$ for $i = 1, 2, \ldots, r$. Let $\delta > 0$ be given by

$$\delta = \min(\delta_1, \delta_2, \ldots, \delta_r).$$

Suppose that A is a subset of X whose diameter is less than δ. Let u be a point of A. Then u belongs to $B(x_i, \delta_i)$ for some integer i between 1 and r. But then it follows that $A \subset B(x_i, 2\delta_i)$, since, for each point v of A,

$$d(v, x_i) \leq d(v, u) + d(u, x_i) < \delta + \delta_i \leq 2\delta_i.$$

But $B(x_i, 2\delta_i)$ is contained wholly within one of the open sets belonging to the open cover U. Thus A is contained wholly within one of the open sets belonging to U, as required.

Let U be an open cover of a compact metric space X. A Lebesgue number for the open cover U is a positive real number δ such that every subset of X whose diameter is less than δ is contained wholly within one of the open sets belonging to the open cover U. The Lebesgue Lemma thus states that there exists a Lebesgue number for every open cover of a compact metric space.

The following result follows from the Heine-Borel Theorem (Theorem 4.2) and the Lebesgue Lemma (Lemma 4.20).

Theorem 4.21 Let X be a topological space, and let U be an open cover of X. Let a and b be real numbers satisfying $a < b$, and let $\gamma : [a, b] \to X$ be a continuous function from the closed bounded interval $[a, b]$ into X. Then there exist $t_0, t_1, \ldots, t_r \in [a, b]$, where

$$a = t_0 < t_1 < t_2 < \cdots < t_r = b,$$

such that, for each i, $\gamma([t_{i-1}, t_i])$ is contained wholly within one of the open sets belonging to the open cover U.

Proof Let V be the open cover of $[a, b]$ consisting of all the subsets of $[a, b]$ that are of the form $\gamma^{-1}(U)$ for some open set U belonging to U. The closed bounded interval $[a, b]$ is a compact metric space. Let $\delta > 0$ be a Lebesgue number for this open cover. Choose t_0, t_1, \ldots, t_r such that $t_0 = a$, $t_r = b$ and $0 < t_i - t_{i-1} < \delta$ for $i = 1, 2, \ldots, r$. Then, for each i, $[t_{i-1}, t_i] \subset \gamma^{-1}(U)$ and that $\gamma([t_{i-1}, t_i]) \subset U$ for some open set U belonging to the open cover U.

Let X and Y be metric spaces with distance functions d_X and d_Y respectively, and let $f: X \rightarrow Y$ be a function from X to Y. The function f is said to be uniformly continuous on X if and only if, given $\varepsilon > 0$, there exists some $\delta > 0$ such that $d_Y(f(x), f(x')) < \varepsilon$ for all points x and x' of X satisfying $d_X(x, x') < \delta$. (The value of δ should be independent of both x and x'.)

Theorem 4.22 Let X and Y be metric spaces. Suppose that X is compact. Then every continuous function from X to Y is uniformly continuous.

Proof Let d_X and d_Y denote the distance functions for the metric spaces X and Y respectively. Let $f: X \rightarrow Y$ be a continuous function from X to Y. We must show that f is uniformly continuous.

Let $\varepsilon > 0$ be given. For each $y \in Y$, define

$$V_y = \{x \in X : d_Y(f(x), y) < \frac{1}{2}\varepsilon\}.$$

Note that $V_y = f^{-1}(B_Y(y, \frac{1}{2}\varepsilon))$, where $B_Y(y, \frac{1}{2}\varepsilon)$ denotes the open ball of radius $\frac{1}{2}\varepsilon$ about y in Y. Now $B_Y(y, \frac{1}{2}\varepsilon)$ is open in Y (see Lemma 1.5), and f is continuous. Therefore V_y is open in X for all $y \in Y$. Note that $x \in V_{f(x)}$ for all $x \in X$.

Now $\{V_y : y \in Y\}$ is an open cover of the compact metric space X. It follows from the Lebesgue Lemma (Lemma 4.20) that there exists some $\delta > 0$ such that every subset of X whose diameter is less than δ is a subset of some set V_y. Let x and x' be points of X satisfying $d_X(x, x') < \delta$. The diameter of the set $\{x, x'\}$ is $d_X(x, x')$ which is less than δ. Therefore there exists some $y \in Y$ such that $x \in V_y$ and $x' \in V_y$. But then $d_Y(f(x), y) < \frac{1}{2}\varepsilon$ and $d_Y(f(x'), y) < \frac{1}{2}\varepsilon$, and hence

$$d_Y(f(x), f(x')) \leq d_Y(f(x), y) + d_Y(y, f(x')) < \varepsilon.$$

This shows that $f: X \rightarrow Y$ is uniformly continuous, as required.

Let K be a closed bounded subset of \mathbb{R}^n. It follows from Theorem 4.16 and Theorem 4.22 that any continuous function $f: K \rightarrow \mathbb{R}^k$ is uniformly continuous.