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4 Compact Topological Spaces

4.1 Open Covers and Compactness

Let X be a topological space, and let A be a subset of X. A collection of
open sets in X is said to cover A if and only if every point of A belongs to at
least one of these open sets. In particular, an open cover of X is collection
of open sets in X that covers X.

If U and V are open covers of some topological space X then V is said to
be a subcover of U if and only if every open set in V belongs to U .

Definition A topological space X is said to be compact if and only if every
open cover of X possesses a finite subcover.

Lemma 4.1 Let X be a topological space. A subset A of X is compact (with
respect to the subspace topology on A) if and only if, given any collection U
of open sets in X covering A, there exists a finite collection V1, V2, . . . , Vr of
open sets belonging to U such that

A ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.

Proof If U is any collection of open sets in X covering A then {V ∩ A :
V ∈ U} is an open cover of A. Moreover it follows from the definition of the
subspace topology on A that, given any open cover UA of A there exists some
collection U of open sets in X such that

UA = {V ∩ A : V ∈ U}.

The required result now follows directly from the definition of compact-
ness.

4.2 The Heine-Borel Theorem

We now show that any closed bounded interval in the real line is compact.
This result is known as the Heine-Borel Theorem. The proof of this theorem
uses the least upper bound principle which states that, given any non-empty
set S of real numbers which is bounded above, there exists a least upper
bound (or supremum) supS for the set S.

Theorem 4.2 (Heine Borel) Let a and b be real numbers satisfying a < b.
Then the closed bounded interval [a, b] is a compact subset of R.
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Proof Let U be a collection of open sets in R with the property that each
point of the interval [a, b] belongs to at least one of these open sets. We must
show that [a, b] is covered by finitely many of these open sets.

Let S be the set of all τ ∈ [a, b] with the property that [a, τ ] is covered
by finitely many of the open sets belonging to U . Let s = supS. Now s ∈ W
for some open set W belonging to U . But then there exists some δ > 0 such
that (s− δ, s+ δ) ⊂ W (since W is open in R). Also there exists some τ ∈ S
satisfying τ > s− δ (since s− δ is not an upper bound for the set S). Now if
V1, V2, . . . , Vr is any finite collection of open sets belonging to U which cover
[a, τ ] then

[a, t] ⊂ V1 ∪ V2 ∪ · · · ∪ Vr ∪W
for all t ∈ [a, b] satisfying s ≤ t < s + δ. Thus t ∈ S for all t satisfying
a ≤ t ≤ b and s ≤ t < s + δ. In particular s ∈ S. Moreover s = b,
since otherwise s would not be an upper bound of the set s. Thus b ∈ S.
This means that the interval [a, b] can be covered by finitely many open sets
belonging to U , as required.

4.3 Basic Properties of Compact Topological Spaces

Lemma 4.3 Let X be a compact topological space, and let A be a closed
subset of X. Then A is compact.

Proof Let U be a collection of open sets in X covering A. If we adjoin
the open set X \ A to the collection U then we obtain an open cover of the
space X. This open cover possesses a finite subcover, since X is compact. In
particular, there exists a finite collection V1, V2, . . . , Vr of open sets belonging
to the collection U such that A ⊂ V1 ∪ V2 ∪ Vr. Thus A is compact, by
Lemma 4.1.

Lemma 4.4 Let X and Y are topological spaces, and f :X → Y be a con-
tinuous function. Let A be a compact subset of X. Then f(A) is a compact
subset of Y .

Proof Let V be a collection of open sets in Y which covers f(A), and let
W be the collection of open sets in X consisting of all open sets of the
form f−1(V ) for some V ∈ V . Then W covers A. It follows from the
compactness of A that there exist open sets V1, V2, . . . , Vr belonging to V
such that

A ⊂ f−1(V1) ∪ f−1(V2) ∪ · · · ∪ f−1(Vr).
But then

f(A) ⊂ V1 ∪ V2 ∪ · · · ∪ Vr.
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Thus f(A) is compact.

Lemma 4.5 Let X be a compact topological space and let f :X → R be a
continuous function from X to R. Then f is bounded above and below on X.

Proof It follows from Lemma 4.4 that the image f(X) of the function f is a
compact subset of R. Let U1, U2, U3, . . . be the open subsets of R defined by
Um = {t ∈ R : −m < t < m} for all natural numbers m. Then the collection
{Um : m ∈ N} of open sets covers R. It follows from the compactness of
f(X) that f(X) can be covered by finitely many of these open sets. Suppose
that

f(X) ⊂ Um1 ∪ Um2 ∪ · · · ∪ Umr ,

where m1 < m2 < · · · < mr. Then f(X) ⊂ Umr (since Umj
⊂ Umr for all j

satisfying j < r). We deduce that −mr < f(x) < mr for all x ∈ X. Thus
the function f is bounded above and below on X.

Proposition 4.6 Let X be a compact topological space and let f :X → R
be a continuous real-valued function on X. Then there exist points u and v
of X such that f(u) ≤ f(x) ≤ f(v) for all x ∈ X.

Proof Let m = inf{f(x) : x ∈ X} and M = sup{f(x) : x ∈ X}. If
f(x) < M for all x ∈ X then the function g:X → R defined by g(x) =
1/(M − f(x)) would be a continuous function on X that was not bounded
above, contradicting Lemma 4.5. Therefore there must exist v ∈ X for which
f(v) = M . Similarly if f(x) > m for all x ∈ X then the function h:X → R
defined by h(x) = 1/(f(x) −m) would be a continuous function on X that
was not bounded above, again contradicting Lemma 4.5. Therefore there
must exist u ∈ X for which f(u) = m. But then f(u) ≤ f(x) ≤ f(v) for all
x ∈ X, as required.

4.4 Compact Hausdorff Spaces

Proposition 4.7 Let X be a Hausdorff topological space, and let K be a
compact subset of X. Let x be a point of X \ K. Then there exist open
subsets Vx and Wx of X such that x ∈ Vx, K ⊂ Wx and Vx ∩Wx = ∅.

Proof Let x be a point of X \ K. For each point y of K there exist open
sets Vx,y and Wx,y such that x ∈ Vx,y, y ∈ Wx,y and Vx,y ∩Wx,y = ∅ (since X
is a Hausdorff space). But it then follows from the compactness of K that
there exists a finite set {y1, y2, . . . , yr} of points of K such that

K ⊂ Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .
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Define

Vx = Vx,y1 ∩ Vx,y2 ∩ · · · ∩ Vx,yr , Wx = Wx,y1 ∪Wx,y2 ∪ · · · ∪Wx,yr .

Then Vx and Wx are open sets, x belongs to Vx, K ⊂ Wx and Vx ∩Wx = ∅,
as required.

Corollary 4.8 Let X be a Hausdorff topological space, and let K be a com-
pact subset of X. Then K is closed.

Proof It follows immediately from Proposition 4.7 that, for each point x of
X \K, there exists an open set Vx such that x ∈ Vx and Vx ∩K = ∅. But
then X \ K is equal to the union of the open sets Vx as x ranges over all
points of X \ K. But any set that is a union of open sets is itself an open
set. We conclude that X \K is open. Thus K is closed.

Proposition 4.9 Let X be a Hausdorff topological space, and let K1 and K2

be compact subsets of X, where K1 ∩K2 = ∅. Then there exist open sets U1

and U2 such that K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅.

Proof It follows from Proposition 4.7 that, for each point x of K1, there
exist open sets Vx and Wx such that x ∈ Vx, K2 ⊂ Wx and Vx ∩Wx = ∅.
But it then follows from the compactness of K1 that there exists a finite set
{x1, x2, . . . , xr} of points of K1 such that

K1 ⊂ Vx1 ∪ Vx2 ∪ · · · ∪ Vxr .

Define

U1 = Vx1 ∪ Vx2 ∪ · · · ∪ Vx,xr , U2 = Wx1 ∩Wx2 ∩ · · · ∩Wx,xr .

Then U1 and U2 are open sets, K1 ⊂ U1, K2 ⊂ U2 and U1 ∩ U2 = ∅, as
required.

Remark A topological space X is said to be normal if and only if, given any
closed subsets F1 and F2 of X for which F1∩F2 = ∅, there exist open sets U1

and U2 of X for which U1 ∩ U2 = ∅. Now every closed subset of a compact
topological space is compact, by Lemma 4.3. It follows from Proposition 4.9
that every compact Hausdorff space is normal.

Lemma 4.10 Let X be a compact topological space, let Y be a Hausdorff
space, and let f :X → Y be a continuous function from X to Y . Then f(K)
is closed in Y for every closed set K in X.
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Proof Let K be a closed subset of X. Every closed subset of a compact
topological space is compact, by Lemma 4.3. Therefore K is compact. It
then follows from Lemma 4.4 that f(K) is compact. But then f(K) is closed,
by Corollary 4.8, since Y is Hausdorff. Thus f(K) is closed in Y for every
closed set K in X.

Theorem 4.11 Let X be a compact topological space, let Y be a Hausdorff
space, and let f :X → Y be a continuous function from X to Y which is
also a bijection (i.e., f is both one-to-one and onto). Then f :X → Y is a
homeomorphism.

Proof The function f is invertible, since it is a bijection. Let g:Y → X be
the inverse of f :X → Y . Let U be an open set in X. Then X \ U is closed
in X, and hence f(X \ U) is closed in Y , by Lemma 4.10. But

f(X \ U) = g−1(X \ U) = Y \ g−1(U).

It follows that g−1(U) is open in Y . Thus g:Y → X is continuous. We
deduce that f :X → Y is a homeomorphism, as required.

We recall that a function f :X → Y from a topological space X to a
topological space Y is said to be an identification map if it is surjective and
satisfies the following condition: a subset U of Y is open in Y if and only if
f−1(U) is open in X.

Proposition 4.12 Let X be a compact topological space, let Y be a Haus-
dorff space. If f :X → Y is a continuous surjection then f is an identification
map.

Proof The function f :X → Y is surjective, and f−1(U) is open in X for
any open subset U of Y , since f is continuous. Thus, to prove that f :X → Y
is an identification map, it only remains to show that if U is a subset of Y
such that f−1(U) is open in X then U is open in Y .

Let K = X \ f−1(U). If f−1(U) is open in X then K is closed. It follows
from Lemma 4.10 that f(K) is closed in Y .

Now if x ∈ K then x 6∈ f−1(U), and hence f(x) ∈ Y \ U . Thus f(K) ⊂
Y \ U . But if y is any point of Y \ U then y = f(x) for some x ∈ X, since
f is surjective, and moreover x ∈ K (since f(x) 6∈ U). Thus f(K) = Y \ U .
But f(K) is closed in Y . It follows that U is open in Y , as required.

Example Let S1 be the unit circle in R2, defined by

S1 = {(x, y) ∈ R2 : x2 + y2 = 1}.
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Let q: [0, 1]→ S1 be the function defined by

q(t) = (cos 2πt, sin 2πt) (t ∈ [0, 1]).

The function q is surjective. Moreover the closed interval [0, 1] is compact,
and the circle S1 is Hausdorff. Therefore the function q: [0, 1] → S1 is an
identification map. Thus a function f :S1 → Z from the circle S1 to some
topological space Z is continuous if and only if the composition function
f ◦ q: [0, 1]→ Z is continuous (see Lemma 2.19).

4.5 Finite Products of Compact Spaces

We shall show that a finite Cartesian product of compact spaces is compact.
To prove this, we apply the following result, known as the Tube Lemma.

Lemma 4.13 Let X and Y be topological spaces, let K be a compact subset
of Y , and U be an open set in X × Y . Let V be the subset of X defined by

V = {x ∈ X : {x} ×K ⊂ U}.

Then V is an open set in X.

Proof Let x be a point of V . For each point y of K there exist open
subsets Dy and Ey of X and Y respectively such that (x, y) ∈ Dy × Ey

and Dy × Ey ⊂ U . But K is compact. Therefore there exists a finite set
{y1, y2, . . . , yk} of points of K such that

K ⊂ Ey1 ∪ Ey2 ∪ · · · ∪ Eyk .

Set
Nx = Dy1 ∩Dy2 ∩ · · · ∩Dyk .

Then Nx is an open set in X. Moreover

Nx ×K ⊂
k⋃

i=1

(Dyi × Eyi) ⊂ U,

so that Nx ⊂ V . It follows that V is the union of the open sets Nx for all
x ∈ V . Thus V is itself an open set in X, as required.

Theorem 4.14 Let X and Y be compact topological spaces. Then X × Y is
compact.
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Proof Let U be an open cover of X×Y . We must show that this open cover
possesses a finite subcover.

Let x be a point of X. The set {x} × Y is a compact subset of X × Y ,
hence there exists a finite collection U1, U2, . . . , Ur of open sets belonging to
the open cover U such that

{x} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur.

Let
Vx = {x′ ∈ X : {x′} × Y ⊂ U1 ∪ U2 ∪ · · · ∪ Ur}.

It follows from Lemma 4.13 that Vx is an open set in X. We have therefore
shown that, for each point x in X, there exists an open set Vx in X containing
the point x such that Vx × Y is covered by finitely many of the open sets
belonging to the open cover U .

Now {Vx : x ∈ X} is an open cover of the compact space X. This cover
possesses a finite subcover. Thus there exists a finite set {x1, x2, . . . , xr} of
points of X such that

X = Vx1 ∪ Vx2 ∪ · · · ∪ Vxr .

It follows from this that X × Y can be covered by finitely many open sets
belonging to the open cover U (since X × Y is a finite union of sets of the
form Vx × Y , and each of these sets can be covered by finitely many of the
open sets belonging to U). Therefore X × Y is compact.

Corollary 4.15 Let X1, X2, . . . , Xn be compact topological spaces. Then the
Cartesian product X1 ×X2 × · · · ×Xn is compact.

Proof It follows easily from the definition of the product topology that the
product topologies on X1×X2× · · · ×Xn and (X1×X2× · · · ×Xn−1)×Xn

coincide. The desired result therefore follows from Theorem 4.14 by induction
on n.

Theorem 4.16 Let K be a subset of Rn. Then K is compact if and only if
K is both closed and bounded.

Proof Suppose that K is compact. We show that K is closed and bounded.
Note that K is closed, since Rn is Hausdorff, and all compact subsets of
Hausdorff spaces are closed, by Corollary 4.8. Consider the open cover of Rn

provided by the sets Um for all positive integers m, where

Um = {x ∈ Rn : |x| < m}.
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The set K must be covered by finitely many of these open sets, since K is
compact. Suppose that

K ⊂ Um1 ∪ Um2 ∪ · · · ∪ Umr ,

where m1 < m2 < · · · < mr. Then K ⊂ Umr , and hence |x| < mr for all
x ∈ K. Thus K is bounded.

Conversely suppose that K is both closed and bounded. Then there exists
some real number L such that K is contained within the closed cube C given
by

C = {(x1, x2, . . . , xn) ∈ Rn : −L ≤ xj ≤ L for j = 1, 2, . . . , n}.
Now the closed interval [−L,L] is compact by the Heine-Borel Theorem
(Theorem 4.2), and C is the Cartesian product of n-copies of the compact
set [−L,L]. It follows from Corollary 4.15 that C is compact. But K is a
closed subset of C, and a closed subset of a compact topological space is itself
compact, by Lemma 4.3. Thus K is compact, as required.

4.6 Norms on Vector Spaces

Let V be a vector space over the field F, where F = R or C. A norm ‖.‖
on V is a function sending an element v of V to some real number, denoted
by ‖v‖, which satisfies the following properties:—

(i) ‖v‖ ≥ 0 for all v ∈ V ,

(ii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ for all v, w ∈ V ,

(iii) ‖λv‖ = |λ|‖v‖ for all v ∈ V and λ ∈ F,

(iv) ‖v‖ = 0 if and only if v = 0.

Example Let ‖.‖1, ‖.‖2 and ‖.‖∞ be the functions from Rn to R defined by

‖x‖1 =
n∑

j=1

|xj|,

‖x‖2 =

(
n∑

j=1

x2j

) 1
2

,

‖x‖∞ = max(|x1|, |x2|, . . . , |xn|),

for each x ∈ Rn, where x = (x1, x2, . . . , xn). Then ‖.‖1, ‖.‖2 and ‖.‖∞ are
norms on Rn. (Note that ‖.‖2 is the standard Euclidean norm on Rn, which
we have denoted by |.|.)
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A norm ‖.‖ on a vector space V induces a corresponding distance function
on V : the distance d(v, w) between elements v and w of V is defined by
d(v, w) = ‖v − w‖. This distance function satisfies the metric space axioms.
Thus any vector space with a norm can be regarded as a metric space. The
distance function in turn induces a topology on V : a subset U of V is open
(with respect to the topology induced by the norm ‖.‖) if and only if, given
any point u of U , there exists some δ > 0 such that

{v ∈ V : ‖v − u‖ < δ} ⊂ U.

Let ‖.‖1 and ‖.‖2 be norms on the vector space V . The norms ‖.‖1 and
‖.‖2 are said to be equivalent if and only if there exist constants c and C,
where 0 < c ≤ C, such that

c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1

for all v ∈ V .

Lemma 4.17 Let V be a real (or complex) vector space, and let ‖.‖1 and
‖.‖2 be norms on V . The norms ‖.‖1 and ‖.‖2 generate the same topology
on V if and only if they are equivalent.

Proof Suppose that the norms ‖.‖1 and ‖.‖2 are equivalent. Then there
exist constants c and C, where 0 < c ≤ C, such that c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1
for all v ∈ V . Thus, for any point u of V ,

{v ∈ V : ‖v − u‖2 < δ} ⊂ {v ∈ V : ‖v − u‖1 < δ/c},
{v ∈ V : ‖v − u‖1 < δ} ⊂ {v ∈ V : ‖v − u‖2 < Cδ}.

Let U be a subset of V . If U is open with respect to the topology induced
by the norm ‖.‖1 then, given any point u of U , there exists some δ > 0 such
that

{v ∈ V : ‖v − u‖1 < δ/c} ⊂ U.

But then

{v ∈ V : ‖v − u‖2 < δ} ⊂ {v ∈ V : ‖v − u‖1 < δ/c} ⊂ U,

so that U is open with respect to the topology induced by the norm ‖.‖2. A
similar proof, using the fact that

{v ∈ V : ‖v − u‖1 < δ} ⊂ {v ∈ V : ‖v − u‖2 < Cδ}
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for all δ > 0, shows that if U is open with respect to the topology induced
by the norm ‖.‖2 then U is open with respect to the topology induced by the
norm ‖.‖1. Thus equivalent norms induce the same topology on V .

Conversely suppose that ‖.‖1 and ‖.‖2 are norms on V which induce the
same topology on V . Now {v ∈ V : ‖v‖2 < 1} is open with respect to
the topology induced by ‖.‖2. This set is therefore open with respect to the
topology induced by ‖.‖1, and hence there exists some δ1 > 0 such that

{v ∈ V : ‖v‖1 < δ1} ⊂ {v ∈ V : ‖v‖2 < 1}.

A similar argument shows that there exists δ2 > 0 such that

{v ∈ V : ‖v‖2 < δ2} ⊂ {v ∈ V : ‖v‖1 < 1}.

Set C = 2/δ1 and c = δ2/2. Let v be a non-zero element of V , and let
λv = δ1/2‖v‖1 Then

‖λvv‖1 = |λv|‖v‖1 = 1
2
δ1 < δ1

and hence ‖λvv‖2 < 1. But

‖λvv‖2 = |λv|‖v‖2 =
‖v‖2
C‖v‖1

.

Thus ‖v‖2 ≤ C‖v‖1. A similar argument shows that ‖v‖1 ≤ c−1‖v‖2. Thus
c‖v‖1 ≤ ‖v‖2 ≤ C‖v‖1 for all non-zero elements v of V . These inequalities
also hold if v = 0. We conclude that if the norms ‖.‖1 and ‖.‖2 induce the
same topology on V then these norms are equivalent.

We shall show that any two norms on Rn are equivalent (Theorem 4.19).
Since any n-dimensional real vector space is isomorphic to Rn for all natural
numbers n, this shows that any two norms on a finite-dimensional real vector
space are equivalent, and thus generate the same topology on that vector
space. (This result does not apply to infinite-dimensional vector spaces.)

Lemma 4.18 Let ‖.‖ be a norm on Rn. Then the function x 7→ ‖x‖ is
continuous with respect to the usual topology on on Rn (i.e., the topology
on Rn induced by the Euclidean norm).

Proof Let e1, e2, . . . , en denote the basis of Rn given by

e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), · · · , en = (0, 0, 0, . . . , 1).
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Let x and y be points of Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn).

Now
|‖x‖ − ‖y‖| ≤ ‖x− y‖

since
‖x‖ ≤ ‖x− y‖+ ‖y‖, ‖y‖ ≤ ‖x− y‖+ ‖x‖.

Also

‖x− y‖ =

∥∥∥∥∥
n∑

j=1

(xj − yj)ej

∥∥∥∥∥ ≤
n∑

j=1

|xj − yj| ‖ej‖ .

Let cj = ‖ej‖ for j = 1, 2, . . . , n. It follows from Schwarz’ Inequality
(Lemma 1.1) that

n∑
j=1

|xj−yj| ‖ej‖ =
n∑

j=1

|xj−yj|cj ≤

(
n∑

j=1

(xj − yj)2
) 1

2
(

n∑
j=1

c2j

) 1
2

= C|x−y|,

where C2 = c21 + c22 + · · ·+ c2n, and where |x−y| denotes the Euclidean norm
of x− y. We conclude therefore that

|‖x‖ − ‖y‖| ≤ |x− y|

This shows that the function from Rn to R given by x 7→ ‖x‖ is continuous
on Rn with respect to the usual topology on Rn.

Theorem 4.19 Any two norms on Rn are equivalent, and therefore induce
the same topology on Rn. (This topology is the usual topology on Rn.)

Proof Let ‖.‖1 be any norm on Rn. We show that ‖.‖1 is equivalent to the
Euclidean norm |.|. Let Sn−1 denote the unit sphere in Rn, defined by

Sn−1 = {x ∈ Rn : |x = 1}.

Now Sn−1 is a compact subset of Rn, by Theorem 4.16, since it is both closed
and bounded. Also the function f :Sn−1 → R defined by f(x) = ‖x‖1 is con-
tinuous, by Lemma 4.18. Note that f(x) > 0 for all x ∈ Sn−1 (see properties
(i) and (iv) in the definition of norms). It follows from Proposition 4.6 that
there exist points u and v of Sn−1 such that f(u) ≤ f(x) ≤ f(v) for all
x ∈ Sn−1. Set c1 = f(u) = ‖u‖1 and C1 = f(v) = ‖v‖1. Then 0 < c1 ≤ C1.
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If x is any non-zero element of Rn then (1/|x|)x is an element of Sn−1, and
hence

c1 ≤
∥∥∥∥ x

|x|

∥∥∥∥
1

≤ C1.

Thus c1|x| ≤ ‖x‖1 ≤ C1|x| for all x ∈ Rn, showing that the norm ‖.‖1 is
equivalent to the Euclidean norm |.| on Rn.

If ‖.‖2 is any other norm on Rn then ‖.‖2 is also equivalent to the Eu-
clidean norm on Rn, and hence there exist constants c2 and C2 satisfying
0 < c2 ≤ C2 such that c2|x| ≤ ‖x‖2 ≤ C2|x| for all x ∈ Rn. But then

c2
C1

‖x‖1 ≤ ‖x‖2 ≤
C2

c1
‖x‖1.

Thus the norms ‖.‖1 and ‖.‖2 are equivalent. This shows that any two norms
on Rn are equivalent. It then follows from Lemma 4.17 that any two norms
on Rn generate the same topology on Rn.

4.7 The Lebesgue Lemma

Definition Let (X, d) be a metric space, and let A be a subset of X. The
diameter of the set A is defined to be the supremum

sup
u,v∈A

d(u, v)

of the distance from the point u to the point v as u and v range over all the
points of the set A. (If the distance d(u, v) from u to v is not bounded above
as u and v range over the set A then the diameter of A is defined to be +∞.)

We now state and prove the Lebesgue Lemma.

Lemma 4.20 (Lebesgue Lemma) Let (X, d) be a compact metric space.
Let U be an open cover of X. Then there exists a positive real number δ
such that every subset of X whose diameter is less than δ is contained wholly
within one of the open sets belonging to the open cover U .

Proof Every point ofX is contained in at least one of the open sets belonging
to the open cover U . It follows from this that, for each point x of X, there
exists some δx > 0 such that the open ball B(x, 2δx) of radius 2δx about
the point x is contained wholly within one of the open sets belonging to the
open cover U . But then the collection consisting of the open balls B(x, δx)
of radius δx about the points x of X forms an open cover of the compact
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space X. Therefore there exists a finite set x1, x2, . . . , xr of points of X such
that

B(x1, δ1) ∪B(x2, δ2) ∪ · · · ∪B(xr, δr) = X,

where δi = δxi
for i = 1, 2, . . . , r. Let δ > 0 be given by

δ = minimum(δ1, δ2, . . . , δr).

Suppose that A is a subset of X whose diameter is less than δ. Let u be a
point of A. Then u belongs to B(xi, δi) for some integer i between 1 and r.
But then it follows that A ⊂ B(xi, 2δi), since, for each point v of A,

d(v, xi) ≤ d(v, u) + d(u, xi) < δ + δi ≤ 2δi.

But B(xi, 2δi) is contained wholly within one of the open sets belonging to
the open cover U . Thus A is contained wholly within one of the open sets
belonging to U , as required.

Let U be an open cover of a compact metric space X. A Lebesgue number
for the open cover U is a positive real number δ such that every subset of X
whose diameter is less than δ is contained wholly within one of the open sets
belonging to the open cover U . The Lebesgue Lemma thus states that there
exists a Lebesgue number for every open cover of a compact metric space.

The following result follows from the Heine-Borel Theorem (Theorem 4.2)
and the Lebesgue Lemma (Lemma 4.20).

Theorem 4.21 Let X be a topological space, and let U be an open cover of
X. Let a and b be real numbers satisfying a < b, and let γ: [a, b] → X be
a continuous function from the closed bounded interval [a, b] into X. Then
there exist t0, t1, . . . , tr ∈ [a, b], where

a = t0 < t1 < t2 < · · · < tr = b,

such that, for each i, γ([ti−1, ti]) is contained wholly within one of the open
sets belonging to the open cover U .

Proof Let V be the open cover of [a, b] consisting of all the subsets of [a, b]
that are of the form γ−1(U) for some open set U belonging to U . The closed
bounded interval [a, b] is a compact metric space. Let δ > 0 be a Lebesgue
number for this open cover. Choose t0, t1, . . . , tr such that t0 = a, tr = b and
0 < ti − ti−1 < δ for i = 1, 2, . . . , r. Then, for each i, [ti−1, ti] ⊂ γ−1(U) and
that γ([ti−1, ti] ⊂ U for some open set U belonging to the open cover U .
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Let X and Y be metric spaces with distance functions dX and dY respec-
tively, and let f :X → Y be a function from X to Y . The function f is said
to be uniformly continuous on X if and only if, given ε > 0, there exists some
δ > 0 such that dY (f(x), f(x′)) < ε for all points x and x′ of X satisfying
dX(x, x′) < δ. (The value of δ should be independent of both x and x′.)

Theorem 4.22 Let X and Y be metric spaces. Suppose that X is compact.
Then every continuous function from X to Y is uniformly continuous.

Proof Let dX and dY denote the distance functions for the metric spaces X
and Y respectively. Let f :X → Y be a continuous function from X to Y .
We must show that f is uniformly continuous.

Let ε > 0 be given. For each y ∈ Y , define

Vy = {x ∈ X : dY (f(x), y) < 1
2
ε}.

Note that Vy = f−1
(
BY (y, 1

2
ε)
)
, where BY (y, 1

2
ε) denotes the open ball of

radius 1
2
ε about y in Y . Now BY (y, 1

2
ε) is open in Y (see Lemma 1.5), and f

is continuous. Therefore Vy is open in X for all y ∈ Y . Note that x ∈ Vf(x)
for all x ∈ X.

Now {Vy : y ∈ Y } is an open cover of the compact metric space X. It
follows from the Lebesgue Lemma (Lemma 4.20) that there exists some δ > 0
such that every subset of X whose diameter is less than δ is a subset of some
set Vy. Let x and x′ be points of X satisfying dX(x, x′) < δ. The diameter
of the set {x, x′} is dX(x, x′) which is less than δ. Therefore there exists
some y ∈ Y such that x ∈ Vy and x′ ∈ Vy. But then dY (f(x), y) < 1

2
ε and

dY (f(x′), y) < 1
2
ε, and hence

dY (f(x), f(x′)) ≤ dY (f(x), y) + dY (y, f(x′)) < ε.

This shows that f :X → Y is uniformly continuous, as required.

Let K be a closed bounded subset of Rn. It follows from Theorem 4.16
and Theorem 4.22 that any continuous function f :K → Rk is uniformly
continuous.
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