
Course 121: Problems—Hilary Term 2004

D. R. Wilkins

1. The sine and cosine functions satisfy

lim
x→0

sin x

x
= 1, lim

x→0

1− cos x

x
= 0.

Using these results, together with the addition formulae for the sine
and cosine functions, prove that

d

dx
sin(x) = cos x,

d

dx
cos(x) = − sin x.

2. (a) Let f : R → R be a 3-times differentiable function on R. Let a and
b be real numbers satisfying a < b. Suppose that f(a) = 0, f(b) = 0,
f ′(a) = 0 and f ′(b) = 0. prove that there exists some s in the range
a < s < b for which f ′′′(s) = 0.

(b) Let f : R → R be a 5-times differentiable function. Let a, b and c
be real numbers satisfying a < b < c. Suppose that

f(a) = f ′(a) = f(b) = f ′(b) = f(c) = f ′(c) = 0.

Prove that there exists some s satisfying a < s < c for which f (5)(s) =
0.

(c) Let f : R → R be a function from R to R which is 2k + 1 times
differentiable, for some non-negative integer k. Let a and b be real
numbers satisfying a < b. Suppose that f (j)(a) = 0 and f (j)(b) = 0 for
j = 0, 1, . . . , k. Prove that there exists some ξ ∈ R satisfying a < ξ < b
for which f (2k+1)(ξ) = 0.

3. (a) Using the Intermediate Value Theorem and Rolle’s Theorem, show
that the polynomial x5 + 2x3 + 7x− 13 has exactly one real root.
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(b) Prove that the polynomial x4 + x2 − 7x− 2 has exactly 2 distinct
real roots, where one of these roots is positive and the other is negative.

4. (a) Let f : I → R be a differentiable function defined on some open
interval I. Suppose that there exists some non-negative real number K
such that |f ′(x)| ≤ K for all x ∈ I. Prove that |f(x1) − f(x2)| ≤
K|x1 − x2| for all x1, x2 ∈ I.

(b) Show that | sin x| ≤ |x| for all x ∈ R.

5. Let f : R → R be a twice differentiable function. Suppose that f(0) = a,
f ′(0) = b and f ′′(x) ≥ −c for all x > 0, where c > 0. Prove that
f(x) > a + bx− cx2 for all x > 0.

6. Prove that x− x3 ≤ sin x ≤ x for all x ≥ 0.

7. Let f : R → R be a differentiable function. Suppose that f ′(x) ≥ 0 for
all x ∈ [a, b], where a and b are real numbers satisfying a < b. Suppose
also that the derivative f ′ of f is continuous and that f ′(x) > 0 for at
least one value of x in the interval (a, b). Prove that f(b) > f(a).

8. (a) Let f : R → R be a differentiable function. Suppose that f(0) = 0
and |f ′(x)| ≤ A|x|n for some A ≥ 0 and some non-negative integer n.
Use the Cauchy Mean Value Theorem (with an appropriate choice of
the function g occurring in the statement of that theorem) to show that

|f(x)| ≤ A

n + 1
|x|n+1 for all x ∈ R.

(b) Let f : R → R be defined by f(x) = cos
(π

2
cos x

)
. Show that

|f(x)| ≤ π
4
|x|2 for all x.

9. Evaluate the following limits, using l’Hôpital’s Rule:

lim
x→0

sin sin x

sin x
, lim

x→0

sin sin sin x

x
, lim

x→2

x3 − x2 − 8x + 12

x3 − 3x2 + 4
,

lim
x→5

x3 − 12x2 + 45x− 50

x3 − 9x2 + 15x + 25
, lim

x→0

1− cos x

sin2 x
, lim

x→0

cos(x2)− 1

sin x4
.

10. Let f : R → R and g: R → R be differentiable functions on R, where
g(x) and g′(x) are non-zero for all sufficiently large x. Suppose that
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f(x) → 0 and g(x) → 0 as x → +∞ and that lim
x→+∞

f ′(x)

g′(x)
exists. Prove

that

lim
x→+∞

f(x)

g(x)
= lim

x→+∞

f ′(x)

g′(x)
.

[Hint: consider the limits of F (u)/G(u) and F ′(u)/G′(u) as u → 0 from
above, where F (u) = f(1/u) and G(u) = g(1/u).]

11. The exponential function exp satisfies
d

dx
exp(x) = exp(x) for all x

(where exp(x) = ex). Use Taylor’s Theorem to prove that

exp(x) = lim
m→+∞

m∑
n=0

xn

n!

for all real numbers x. [You might need to consider separately the cases
x > 0 and x < 0.]

12. Let f(x) = x2. The purpose of this question is to show from first
principles that the function f is Riemann-integrable on [0, s], where
s > 0, and to evaluate the Riemann integral of f on this interval.

(a) For each natural number n let Pn denote the partition {x0, x1, . . . , xn}
of [0, s] into n subintervals of equal length, given by xi = is/n for
i = 0, 1, . . . , n. By making use of the identities

n∑
i=1

i =
1

2
n(n + 1),

n∑
i=1

i2 =
1

6
n(n + 1)(2n + 1),

or otherwise, show that the lower sum L(Pn, f) is given by

L(Pn, f) =
s3

3

(
1− 3

2n
+

1

2n2

)
and calculate the upper sum U(Pn, f).

(b) Show that lim
n→+∞

L(Pn, f) = 1
3
s3 and lim

n→+∞
U(Pn, f) = 1

3
s3. Hence

prove that the function is Riemann-integrable, and

∫ s

0

x2 dx =
1

3
s3.

13. Let f(x) = ekx, where k ≥ 0. The purpose of this question is to show
from first principles that the function f is Riemann-integrable on [0, s],
where s > 0, and to evaluate the Riemann integral of f on this interval.
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(a) For each natural number n let Pn denote the partition {x0, x1, . . . , xn}
of [0, s] into n subintervals of equal length, given by xi = is/n for
i = 0, 1, . . . , n). By making use of the identities

1 + u + u2 + · · ·+ un−1 =
un − 1

u− 1
(u 6= 1), lim

h→0

1

h
(eh − 1) = 1,

or otherwise, show that the lower sum L(Pn, f) is given by

L(Pn, f) =
s
(
eks − 1

)
n

(
e

ks
n − 1

) ,

and calculate the upper sum U(Pn, f).

(b) Show that lim
n→+∞

L(Pn, f) = lim
n→+∞

U(Pn, f) =
1

k
(eks − 1). Hence

prove that the function is Riemann-integrable on [0, s], and∫ s

0

ekx dx =
1

k
(eks − 1).

14. Let g: [0, 1] → R be the function on [0, 1] defined by

g(x) =

{
1 if x 6= 1

2
;

0 if x = 1
2
.

Given δ satisfying 0 < δ < 1
2
, calculate the upper sum U(g,Qδ) and

the lower sum U(g,Qδ) for the partition Qδ of [0, 1], where Qδ ={
0, 1

2
− δ, 1

2
+ δ, 1

}
. Calculate lim

δ→0
U(g,Qδ) and lim

δ→0
L(g,Qδ). Explain

why the function g is Riemann-integrable on [0, 1] and write down the
value of the Riemann integral of g on [0, 1].

15. (a) Prove that if a and b are real numbers satisfying a < b and if
f : [a, b] → R is a continuous real-valued function defined on the closed
interval [a, b] then

d

dx

∫ b

x

f(t) dt = −f(x)

for all x ∈ (a, b).

(b) Evaluate
d

dx

∫ sin x+2

cos x−5

t5e−t dt.
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16. Let a and h be real numbers, and let f be a real-valued function, defined
on some open interval containing a and a + h, with the property that
the first k derivatives f ′, f ′′, . . . , f (k) of f exist and are continuous on
this interval.

(a) Let

rm(a, h) =
hm

(m− 1)!

∫ 1

0

(1− x)m−1f (m)(a + xh) dx

for m = 1, 2, . . . , k − 1. Show that

rm(a, h) =
hm

m!
f (m)(a) + rm+1(a, h).

(b) Using (a) and induction on k, show that

f(a+h) = f(a)+
k−1∑
n=1

hn

n!
f (n)(a)+

hk

(k − 1)!

∫ 1

0

(1−x)k−1f (k)(a+xh) dx.

(c) By applying (b) to the function t 7→ xα, show that

(1 + h)α = 1 +
k−1∑
n=1

Cn,αhn + Rk(h)

for all α ∈ R and h > −1, where

Cn,α =
α(α− 1) · · · (α− n + 1)

n!
,

Rk(h) = kCk,αhk

∫ 1

0

(1− x)k−1(1 + xh)α−k dx.

Using the fact that

0 ≤ 1− t

1 + th
≤ 1

for all t and h satisfying 0 ≤ t ≤ 1 and h > −1, show that

|Rk(h)| ≤ k|Ck,α||h|k−1|Iα(h)|,

for all h > −1, where

Iα(h) = h

∫ 1

0

(1 + xh)α−1 dx =

{
α−1 ((1 + h)α − 1) if α 6= 0;
log(1 + h) if α = 0.
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(Note that the value of Iα(h) is independent of k.) Hence prove that
|Rk(h)| → 0 as k → +∞ for all h satisfying |h| < 1, and thus

(1 + h)α = 1 +
+∞∑
n=1

α(α− 1) · · · (α− n + 1)

n!
hn

whenever |h| < 1.

17. (a) Let hn(x) =
n

x2 + n2
for all natural numbers n and real numbers t.

Prove that the sequence h1, h2, h3, . . . of functions converges uniformly
on R to the zero function.

(b) Calculate
∫ +∞
−∞ hn(x) dx for all natural numbers n. Is it true that

lim
n→+∞

∫ +∞

−∞
hn(x) dx =

∫ +∞

−∞

(
lim

n→+∞
hn(x)

)
dx

in this case?
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