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7 Infinite Series

An infinite series is the formal sum of the form a1 + a2 + a3 + · · ·, where each

number an is real or complex. Such a formal sum is also denoted by
+∞∑
n=1

an.

Sometimes it is appropriate to consider infinite series
+∞∑
n=m

an of the form

am + am+1 + am+2 + · · ·, where m ∈ Z. Clearly results for such sequences
may be deduced immediately from corresponding results in the case m = 1.

Definition An infinite series
+∞∑
n=1

an is said to converge to some complex

number s if and only if, given any ε > 0, there exists some natural number N

such that

∣∣∣∣∣
m∑

n=1

an − s

∣∣∣∣∣ < ε for all natural numbers m satisfying m ≥ N . If

the infinite series
+∞∑
n=1

an converges to s then we write
+∞∑
n=1

an = s. An infinite

series is said to be divergent if it is not convergent.

For each natural number m, the mth partial sum sn of the infinite se-

ries
+∞∑
n=1

an is given by sm = a1 + a2 + · · · + am. Note that
+∞∑
n=1

an converges

to some complex number s if and only if sm → s as m → +∞. The fol-
lowing proposition therefore follows immediately on applying the results of
Proposition 6.3.

Proposition 7.1 Let
+∞∑
n=1

an and
+∞∑
n=1

bn be convergent infinite series. Then

+∞∑
n=1

(an+bn) is convergent, and
+∞∑
n=1

(an+bn) =
+∞∑
n=1

an+
+∞∑
n=1

bn. Also
+∞∑
n=1

(λan) =
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λ
+∞∑
n=1

an for any complex number λ.

If
+∞∑
n=1

an is convergent then an → 0 as n → +∞. Indeed

lim
n→+∞

an = lim
n→+∞

(sn − sn−1) = lim
n→+∞

sn − lim
n→+∞

sn−1 = s− s = 0,

where sm =
m∑

n=1

an and s =
+∞∑
n=1

an = limm→+∞ sm. However the condition

that an → 0 as n → +∞ is not in itself sufficient to ensure convergence. For

example, the series
+∞∑
n=1

1/n will be shown to be divergent.

Proposition 7.2 Let a1, a2, a3, a4, . . . be an infinite sequence of real num-

bers. Suppose that an ≥ 0 for all n. Then
+∞∑
n=1

an is convergent if and only if

there exists some real number C such that a1 + a2 + · · ·+ an ≤ C for all n.

Proof The sequence s1, s2, s3, . . . of partial sums of the series
+∞∑
n=1

an is non-

decreasing, since an ≥ 0 for all n. The result therefore is a consequence of
the fact that a non-decreasing sequence of real numbers is convergent if and
only if it is bounded above (see Theorem 2.3).

7.1 Some Important Examples

Example Let z be a complex number. The infinite series 1+z+z2 +z3 + · · ·
is referred to as the geometric series. This series is clearly divergent whenever
|z| ≥ 1, since zn does not converge to 0 as n → +∞. We claim that the
series converges to 1/(1− z) whenever |z| < 1. Now

1 + z + z2 + . . . zm =
1− zm+1

1− z
.

(To see this, multiply both sides of the equation by 1 − z.) Thus if |z| < 1
then

lim
m→+∞

(1 + z + z2 + . . . zm) =
1

1− z
.

It is important that the above identity giving the sum of the geometric
series is used only in situations in which the series is convergent. Nonsensical
results will be obtained if one tries to apply the result in cases where the series
diverges. Indeed if one were to set z = +2 one would obtain the nonsensical
identity “1 + 2 + 4 + 8 + 16 + 32 + · · · = −1”
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Example We show that the infinite series 1 +
1

2
+

1

3
+ · · · is divergent. Let

sm denote the mth partial sum of this series, given by sm =
m∑

n=1

1

n
. We claim

that s2k ≥ (k + 2)/2 for all natural numbers k. The result is clearly valid
when k = 1. Now Suppose that s2k−1 ≥ k/2. Then

s2k = s2k−1 +
1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k

≥ s2k−1 + 2k−1 × 1

2k
= s2k−1 +

1

2
.

It therefore follows by induction on k that s2k ≥ (k + 2)/2 for all natural
numbers k. Thus the sequence s1, s2, s3, . . . is not bounded above, and so

cannot converge. We conclude therefore that the infinite series
+∞∑
n=1

1/n is

divergent.

Example Let α be a real number satisfying α > 1. We show that
+∞∑
n=1

1/nα

is convergent. Let sm denote the mth partial sum of this series, given by

sm =
m∑

n=1

1

nα
. Then

s2k = 1 +
1

2α
+

(
1

3α
+

1

4α

)
+

(
1

5α
+

1

6α
+

1

7α
+

1

8α

)
+ · · ·+

(
1

(2k−1 + 1)α
+

1

(2k−1 + 2)α
+ · · ·+ 1

2kα

)
< 1 + 1 + 2× 1

2α
+ 4× 1

4α
+ · · ·+ 2(k−1) × 1

2(k−1)α

< C

for all natural numbers k, where

C = 1 +
+∞∑
n=0

1

2(α−1)n
= 1 +

1

1− 21−α
.

But the sequence s1, s2, s3, . . . of partial sums of the series is increasing.
Therefore Sm < C for all m (provided that α > 1). It follows immediately

from Proposition 7.2 that
+∞∑
n=1

1/nα converges when α > 1.
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7.2 The Comparison Test and Ratio Test

Proposition 7.3 An infinite series
+∞∑
n=1

an of real or complex numbers is con-

vergent if and only if, given any ε > 0, there exists some natural number N
with the property that

|am + am+1 + · · ·+ am+k| < ε

for all m and k satisfying m ≥ N and k ≥ 0.

Proof The stated criterion is equivalent to the condition that the sequence
of partial sums of the series be a Cauchy sequence. The required result
thus follows immediately from Cauchy’s Criterion for convergence (Theo-
rem 6.6).

Proposition 7.4 (Comparison Test) Suppose that 0 ≤ |an| ≤ bn for all n,

where an is complex, bn is real, and
+∞∑
n=1

bn is convergent. Then
+∞∑
n=1

an is

convergent.

Proof Let ε > 0 be given. Then there exists some natural number N such
that bm + bm+1 + · · ·+ bm+k < ε for all m and k satisfying m ≥ N and k ≥ 0.
But then

|am + am+1 + · · ·+ am+k| ≤ |am|+ |am+1|+ · · ·+ |am+k|
≤ bm + bm+1 + · · ·+ bm+k < ε

when m ≥ N and k ≥ 0. Thus
+∞∑
n=1

an is convergent, by Proposition 7.3.

Let us apply the Comparison Test in the case when an and bn are non-

negative real numbers satisfying 0 ≤ an ≤ bn for all n. If
+∞∑
n=1

bn is convergent,

then so is
+∞∑
n=1

an. Thus if
+∞∑
n=1

an is divergent then so is
+∞∑
n=1

bn. These results

also follow directly from Proposition 7.2.

Example The series
+∞∑
n=1

1/nα diverges for all α ≤ 1, since 1/n ≤ 1/nα for

all n and
+∞∑
n=1

1/n is divergent.
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Example Comparison with the geometric series shows that the infinite series
+∞∑
n=1

zn/n is convergent whenever |z| < 1.

Example The infinite series
+∞∑
n=1

sin n

10n2 − 7n + 13
is convergent. Indeed

∣∣∣∣ sin n

10n2 − 7n + 13

∣∣∣∣ ≤ 1

3n2

for all n, and
+∞∑
n=1

1/(3n2) is convergent.

Proposition 7.5 (Ratio Test) Let a1, a2, a3 . . . be complex numbers. Sup-

pose that r = lim
n→+∞

an+1

an

exists and satisfies |r| < 1. Then
+∞∑
n=1

an is conver-

gent.

Proof Choose ρ satisfying |r| < ρ < 1. Then there exists some natural
number N such that |an+1/an| < ρ for all n ≥ N . Let

K = maximum

(
|a1|
ρ

,
|a2|
ρ2

,
|a3|
ρ3

, . . .
|aN |
ρN

)
.

Now |an+1| ≤ ρ|an| whenever n ≥ N . Therefore |an| ≤ ρn−N |aN | ≤ Kρn

whenever n ≥ N . But the choice of K also ensures that |an| ≤ Kρn when n <

N . Moreover
+∞∑
n=1

Kρn converges, since ρ < 1. The desired result therefore

follows on applying the Comparison Test (Proposition 7.4).

Example Let z be a complex number. Then
+∞∑
n=0

zn

n!
converges for all values

of z. For if an = zn/n! then an+1/an = z/(n + 1), and hence an+1/an → 0 as
n → +∞. The result therefore follows on applying the Ratio Test.

Let
+∞∑
n=1

an be an infinite series for which r = lim
n→+∞

an+1/an is well-defined.

The series clearly diverges if |r| > 1, since |an| increases without limit as
n → +∞. If however |r| = 1 then the Ratio Test is of no help in deciding
whether or not the series converges, and one must try other more sensitive
tests.
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7.3 Convergence of Alternating Series

Ans alternating series is an infinite series with the property that the signs
of the summands are alternately positive and negative.

Theorem 7.6 (Alternating Series Test) Let a1, a2, a3, . . . be non-negative
real numbers. Suppose that a1 ≥ a2 ≥ a3 ≥ · · · and that an → 0 as n → +∞.

Then the infinite series
+∞∑
n=1

(−1)n−1an is convergent.

Proof For each natural number m let sm =
m∑

n=1

(−1)n−1an. Now

s2k+1 = s2k−1 − a2k + a2k+1 ≤ s2k−1, s2k+2 = s2k + a2k+1 − a2k+2 ≥ s2k

for all natural numbers k (since a2k ≥ a2k+1 ≥ a2k+2). Therefore the subse-
quence s1, s3, s5, s7, . . . is non-increasing and the subsequence s2, s4, s6, s8, . . .
is non-decreasing. But s2 ≤ s2k ≤ s2k−1 ≤ s1 for all natural numbers k.
Thus these subsequences are bounded, and are therefore convergent (since
any bounded non-increasing or non-decreasing sequence of real numbers is
convergent, by Theorem 2.3). Moreover the subsequences have the same
limit, since

lim
k→+∞

s2k − lim
k→+∞

s2k−1 = lim
k→+∞

(s2k − s2k−1) = − lim
k→+∞

a2k = 0.

We claim that
+∞∑
n=1

(−1)n−1an = s, where s = lim
k→+∞

s2k = lim
k→+∞

s2k−1.

Let ε > 0 be given. Then there exist natural numbers K1 and K2 such
that |s − s2k−1| < ε whenever k ≥ K1 and |s − s2k| < ε whenever k ≥ K2.
Choose N such that N ≥ 2K1−1 and N ≥ 2K2. Then |s−sm| < ε whenever

m ≥ N . Thus
+∞∑
n=1

(−1)n−1an = lim
m→+∞

sm = s, as required.

Example The infinite series 1 − 1

2
+

1

3
− 1

4
+ · · · is convergent, by the

Alternating Series Test (Theorem 7.6).

7.4 Absolute Convergence

Definition An infinite series
∑+∞

n=1 an is said to be absolutely convergent if
the infinite series

∑+∞
n=1 |an| is convergent. (A convergent series which is not

absolutely convergent is said to be conditionally convergent.)
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An absolutely convergent infinite series is convergent, and the sum of
any two absolutely convergent series is itself absolutely convergent. These
results follow on applying the Comparison Test (Proposition 7.4). Moreover
the following criterion for absolute convergence follows directly from Propo-
sition 7.3.

Proposition 7.7 An infinite series
+∞∑
n=1

an is absolutely convergent if and

only if, given any ε > 0, there exists some natural number N such that

|am|+ |am+1|+ · · ·+ |am+k| < ε

for all m and k satisfying m ≥ N and k ≥ 0.

Many of the tests for convergence described above do in fact test for
absolute convergence; these include the Comparison Test and the Ratio Test.

A rearrangement of a given infinite series is a new infinite series obtained
on summing up the terms of the given series in a different order. Thus for
example

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+

1

11
− 1

6
+ · · ·

is a rearrangement of the infinite series

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
+ · · · .

It might be supposed that, if one rearranges a convergent infinite series, then
the rearranged series is also convergent and has the same sum as the original
series. This result does in fact hold for absolutely convergent series (see
Theorem 7 in Chapter 22 of Calculus, by M. Spivak). If however an infinite
series is not absolutely convergent, then, given any real number α, there
always exists a rearrangement of the series converging to α (see Theorem 6
in Chapter 22 of Calculus, by M. Spivak). Thus particular care must be
exercised whenever the order of the terms of an infinite series is changed.

7.5 The Cauchy Product of Infinite Series

The Cauchy product of two infinite series
+∞∑
n=0

an and
+∞∑
n=0

bn is defined to be

the series
+∞∑
n=0

cn, where

cn =
n∑

j=0

ajbn−j = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0.
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The convergence of
+∞∑
n=0

an and
+∞∑
n=0

bn is not in itself sufficient to ensure the

convergence of the Cauchy product of these series. Convergence is however

assured provided that the series
+∞∑
n=0

an and
+∞∑
n=0

bn are absolutely convergent.

Theorem 7.8 The Cauchy product
+∞∑
n=0

cn of two absolutely convergent infi-

nite series
+∞∑
n=0

an and
+∞∑
n=0

bn is absolutely convergent, and

+∞∑
n=0

cn =

(
+∞∑
n=0

an

)(
+∞∑
n=0

bn

)
.

Proof For each non-negative integer m, let

Sm = {(j, k) ∈ Z× Z : 0 ≤ j ≤ m, 0 ≤ k ≤ m},
Tm = {(j, k) ∈ Z× Z : j ≥ 0, k ≥ 0, 0 ≤ j + k ≤ m}.

Now
m∑

n=0

cn =
∑

(j,k)∈Tm

ajbk and

(
m∑

n=0

an

)(
m∑

n=0

bn

)
=

∑
(j,k)∈Sm

ajbk. Also

m∑
n=0

|cn| ≤
∑

(j,k)∈Tm

|aj||bk| ≤
∑

(j,k)∈Sm

|aj||bk| ≤

(
+∞∑
n=0

|an|

)(
+∞∑
n=0

|bn|

)
,

since |cn| ≤
n∑

j=0

|aj||bn−j| and the infinite series
+∞∑
n=0

an and
+∞∑
n=0

bn are absolutely

convergent. It follows from Proposition 7.2 that the Cauchy product
+∞∑
n=0

cn

is absolutely convergent, and is thus convergent. Moreover∣∣∣∣∣
2m∑
n=0

cn −

(
m∑

n=0

an

)(
m∑

n=0

bn

)∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(j,k)∈T2m\Sm

ajbk

∣∣∣∣∣∣
≤

∑
(j,k)∈T2m\Sm

|ajbk| ≤
∑

(j,k)∈S2m\Sm

|ajbk|

=

(
2m∑
n=0

|an|

)(
2m∑
n=0

|bn|

)
−

(
m∑

n=0

|an|

)(
m∑

n=0

|bn|

)
,
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since Sm ⊂ T2m ⊂ S2m. But

lim
m→+∞

(
2m∑
n=0

|an|

)(
2m∑
n=0

|bn|

)
=

(
+∞∑
n=0

|an|

)(
+∞∑
n=0

|bn|

)

= lim
m→+∞

(
m∑

n=0

|an|

)(
m∑

n=0

|bn|

)
,

since the infinite series
+∞∑
n=0

an and
+∞∑
n=0

bn are absolutely convergent. It follows

that

lim
m→+∞

(
2m∑
n=0

cn −

(
m∑

n=0

an

)(
m∑

n=0

bn

))
= 0,

and hence
+∞∑
n=0

cn = lim
m→+∞

2m∑
n=0

cn =

(
+∞∑
n=0

an

)(
+∞∑
n=0

bn

)
,

as required.

Example It follows from Theorem 7.8 that exp(z + w) = exp(z) exp(w) for

all complex numbers z and w, where exp(z) =
+∞∑
n=0

zn

n!
. Indeed the infinite

series defining exp(z+w) is the Cauchy product of the infinite series defining
exp(z) and exp(w), since

m∑
n=0

zn

n!

wm−n

(m− n)!
=

1

m!

m∑
n=0

(
m

n

)
znwm−n =

1

m!
(z + w)m

by the Binomial Theorem, where

(
m

n

)
=

m!

n!(m− n)!
.

7.6 Uniform Convergence for Infinite Series

Let f1, f2, f2, . . . be complex-valued functions defined over a subset D of C.

The infinite series series
+∞∑
n=1

fn(z) is said to converge uniformly on D to some

function s if, given any ε > 0, there exists some natural number N (which

does not depend on the value of z) such that

∣∣∣∣∣s(z)−
n∑

m=0

fm(z)

∣∣∣∣∣ < ε whenever

z ∈ D and n ≥ N .

59



Note that an infinite series
+∞∑
n=0

fn(z) of functions converges uniformly if

and only if the partial sums of this series converge uniformly. It follows
immediately from Theorem 6.12 that if the functions fn are continuous on

D, and if the series
+∞∑
n=0

fn(z) converges uniformly on D to some function,

then that function is also continuous on D.

Proposition 7.9 (The Weierstrass M -Test) Let D be a subset of C and let
f1, f2, f3, . . . be a sequence of functions from D to C, let M1, M2, M3, . . . be
non-negative real numbers satisfying |fn(z)| ≤ Mn for all natural numbers n

and z ∈ D. Suppose that
+∞∑
n=1

Mn converges. Then
+∞∑
n=1

fn(z) converges abso-

lutely and uniformly on D.

Proof It follows immediately from the Comparison Test (Proposition 7.4)

that the series
+∞∑
n=1

fn(z) is absolutely convergent for all z ∈ D. We must

show that the convergence is uniform.
Let ε > 0 be given. Then there exists some natural number N such

that
∑+∞

n=N Mn < 1
2
ε, since

+∞∑
n=1

Mn converges. Now if m and k are integers

satisfying m ≥ N and k ≥ 0 then∣∣∣∣∣
m+k∑
n=1

fn(z)−
m∑

n=1

fn(z)

∣∣∣∣∣ =

∣∣∣∣∣
m+k∑

n=m+1

fn(z)

∣∣∣∣∣ ≤
m+k∑

n=m+1

Mm ≤
+∞∑
n=N

Mn < 1
2
ε

for any z ∈ D. On taking the limit as k → +∞, we see that∣∣∣∣∣
+∞∑
n=1

fn(z)−
m∑

n=1

fn(z)

∣∣∣∣∣ ≤ 1
2
ε < ε

for all z ∈ D and m ≥ N . However N has been chosen independently of z.
Thus the infinite series converges uniformly on D, as required.

7.7 Power Series

A power series is an infinite series of the form
+∞∑
n=0

an(z − z0)
n, where the

coefficients a0, a1, a2, . . . are complex numbers.
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Definition Let
+∞∑
n=0

an(z − z0)
n be a power series centred on some complex

number z0. Suppose that the set of complex numbers z for which the power
series converges is bounded. Then the radius of convergence R0 of the power
series is defined to be the smallest non-negative real number with the property
that every complex number z for which the power series converges satisfies
|z − z0| ≤ R0. The circle {z ∈ C : |z − z0| = R0} is then referred to as
the circle of convergence of the power series. We set R0 = +∞ if the set of
complex numbers z for which the power series converges is unbounded.

Theorem 7.10 Let
+∞∑
n=0

an(z − z0)
n be a power series with radius of conver-

gence R0, and let s(z) denote the sum of the power series at those complex
numbers z at which the series converges.

(i) If R0 = +∞ then s(z) is a continuous function of z defined over the
entire complex plane C.

(ii) If R0 < +∞ then s(z) is a continuous function of z defined over the
whole of the disk

{z ∈ C : |z − z0| < R0}
bounded by the circle of convergence of the power series.

Proof Let z1 be any complex number satisfying |z1−z0| < R0. Then we can
choose R such that |z1−z0| < R < R0 and R < +∞. Now it follows from the
definition of the radius of convergence that there exists some complex num-

ber w such that R < |w| < R0 and
+∞∑
n=0

anw
n converges. Choose some positive

real number A with the property that |anw
n| ≤ A for all n, and set ρ = R/|w|

and Mn = Aρn. If |z − z0| < R then |an(z − z0)
n| ≤ |an|Rn ≤ Aρn = Mn for

all n. Also
∑+∞

n=0 Mn converges to A/(1− ρ). Thus we can apply the Weier-

strass M -Test (Proposition 7.9) to deduce that the power series
+∞∑
n=0

an(z−z0)
n

converges uniformly on the disk {z ∈ C : |z− z0| < R} of radius R about z0.
It then follows from Theorem 6.12 that the restriction of the function s to
this disk is continuous on the disk, and, in particular, is continuous around
z1. We deduce that the function s is continuous throughout the complex
plane when R0 = +∞, and is continuous inside the circle of convergence
when R0 < +∞, as required.

A power series with finite radius of convergence will converge everywhere
within its circle of convergence, and will diverge everywhere outside this cir-
cle. However Theorem 7.10 provides no information concerning the behaviour
of the power series on the circle of convergence itself.
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We can define exponential and trigonometric functions of a complex vari-
able by means of power series. Let

exp(z) =
+∞∑
n=0

zn

n!
, sin(z) =

∞∑
n=0

(−1)nz2n+1

(2n + 1)!
, cos(z) =

∞∑
n=0

(−1)nz2n

(2n)!

Now a straightforward application of the Ratio Test shows that these power
series have infinite radius of convergence. It follows from Theorem 7.10 that
the functions exp, sin and cos defined in this fashion are continuous functions
defined over the whole of C. Moreover they agree with the usual exponential,
sine and cosine functions for all real values of z; this follows on applying
Taylor’s Theorem to these functions. Note that exp(iz) = cos(z) + i sin(z)
for all z ∈ C, and thus

sin(z) =
1

2i
(exp(iz)− exp(−iz)), cos(z) =

1

2
(exp(iz) + exp(−iz)).

8 Euclidean Spaces, Continuity, and

Open Sets

We denote by Rn the set consisting of all n-tuples (x1, x2, . . . , xn) of real
numbers. The set Rn represents n-dimensional Euclidean space (with respect
to the standard Cartesian coordinate system). Let x and y be elements of
Rn, where

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),

and let λ be a real number. We define

x + y = (x1 + y1, x2 + y2, . . . , xn + yn),

x− y = (x1 − y1, x2 − y2, . . . , xn − yn),

λx = (λx1, λx2, . . . , λxn),

x · y = x1y1 + x2y2 + · · ·+ xnyn,

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n.

The quantity x · y is the scalar product (or inner product) of x and y, and
the quantity |x| is the Euclidean norm of x. Note that |x|2 = x · x. The
Euclidean distance between two points x and y of Rn is defined to be the
Euclidean norm |y − x| of the vector y − x.

Lemma 8.1 (Schwarz’ Inequality) Let x and y be elements of Rn. Then
|x · y| ≤ |x||y|.
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Proof We note that |λx + µy|2 ≥ 0 for all real numbers λ and µ. But

|λx + µy|2 = (λx + µy).(λx + µy) = λ2|x|2 + 2λµx · y + µ2|y|2.

Therefore λ2|x|2 + 2λµx · y + µ2|y|2 ≥ 0 for all real numbers λ and µ. In
particular, suppose that λ = |y|2 and µ = −x · y. We conclude that

|y|4|x|2 − 2|y|2(x · y)2 + (x · y)2|y|2 ≥ 0,

so that (|x|2|y|2 − (x · y)2) |y|2 ≥ 0. Thus if y 6= 0 then |y| > 0, and hence

|x|2|y|2 − (x · y)2 ≥ 0.

But this inequality is trivially satisfied when y = 0. Thus |x · y| ≤ |x||y|, as
required.

It follows easily from Schwarz’ Inequality that |x + y| ≤ |x| + |y| for all
x,y ∈ Rn. For

|x + y|2 = (x + y).(x + y) = |x|2 + |y|2 + 2x · y
≤ |x|2 + |y|2 + 2|x||y| = (|x|+ |y|)2.

It follows that
|z− x| ≤ |z− y|+ |y − x|

for all points x, y and |z| of Rn. This important inequality is known as the
Triangle Inequality. It expresses the geometric fact the the length of any
triangle in a Euclidean space is less than or equal to the sum of the lengths
of the other two sides.

Definition A sequence x1,x2,x3, . . . of points in Rn is said to converge to a
point p if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some natural
number N such that |p− xj| < ε whenever j ≥ N .

We refer to p as the limit lim
j→+∞

xj of the sequence x1,x2,x3, . . . .

Lemma 8.2 Let p be a point of Rn, where p = (p1, p2, . . . , pn). Then a
sequence x1,x2,x3, . . . of points in Rn converges to p if and only if the ith
components of the elements of this sequence converge to pi for i = 1, 2, . . . , n.
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Proof Let xji and pi denote the ith components of xj and p, where p =
lim

j→+∞
xj. Then |xji − pi| ≤ |xj − p| for all j. It follows directly from the

definition of convergence that if xj → p as j → +∞ then xji → pi as
j → +∞.

Conversely suppose that, for each i, xji → pi as j → +∞. Let ε > 0 be
given. Then there exist natural numbers N1, N2, . . . , Nn such that |xji−pi| <
ε/
√

n whenever j ≥ Ni. Let N be the maximum of N1, N2, . . . , Nn. If j ≥ N
then

|xj − p|2 =
n∑

i=1

(xji − pi)
2 < n(ε/

√
n)2 = ε2,

so that xj → p as j → +∞.

Definition A sequence x1,x2,x3, . . . of points in Rn is said to be a Cauchy
sequence if and only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some natural
number N such that |xj − xk| < ε whenever j ≥ N and k ≥ N .

Lemma 8.3 A sequence of points in Rn is convergent if and only if it is a
Cauchy sequence.

Proof Let x1,x2,x3, . . . be a sequence of points of Rn converging to some
point p. Let ε > 0 be given. Then there exists some natural number N such
that |xj − p| < 1

2
ε whenever j ≥ N . If j ≥ N and k ≥ N then

|xj − xk| ≤ |xj − p|+ |p− xk| < 1
2
ε + 1

2
ε = ε,

by the Triangle Inequality. Thus every convergent sequence in Rn is a Cauchy
sequence.

Now let x1,x2,x3, . . . be a Cauchy sequence in Rn. Then the ith com-
ponents of the elements of this sequence constitute a Cauchy sequence of
real numbers. This Cauchy sequence must converge to some real number
pi, by Cauchy’s Criterion for Convergence (Theorem 6.6). It follows from
Lemma 8.2 that the Cauchy sequence x1,x2,x3, . . . converges to the point p,
where p = (p1, p2, . . . , pn).

Definition Let X and Y be a subsets of Rm and Rn respectively. A function
f : X → Y from X to Y is said to be continuous at a point p of X if and
only if the following criterion is satisfied:—

given any real number ε satisfying ε > 0 there exists some δ >
0 such that |f(x) − f(p)| < ε for all points x of X satisfying
|x− p| < δ.
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The function f : X → Y is said to be continuous on X if and only if it is
continuous at every point p of X.

Lemma 8.4 Let X, Y and Z be subsets of Rm, Rn and Rk respectively, and
let f : X → Y and g: Y → Z be functions satisfying f(X) ⊂ Y . Suppose that
f is continuous at some point p of X and that g is continuous at f(p). Then
the composition function g ◦ f : X → Z is continuous at p.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(y)−
g(f(p))| < ε for all y ∈ Y satisfying |y − f(p)| < η. But then there exists
some δ > 0 such that |f(x)− f(p)| < η for all x ∈ X satisfying |x− p| < δ.
It follows that |g(f(x)) − g(f(p))| < ε for all x ∈ X satisfying |x − p| < δ,
and thus g ◦ f is continuous at p, as required.

Lemma 8.5 Let X and Y be a subsets of Rm and Rn respectively, and let
f : X → Y be a continuous function from X to Y . Let x1,x2,x3, . . . be a
sequence of points of X which converges to some point p of X. Then the
sequence f(x1), f(x2), f(x3), . . . converges to f(p).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that
|f(x) − f(p)| < ε for all x ∈ X satisfying |x − p| < δ, since the func-
tion f is continuous at p. Also there exists some natural number N such
that |xj − p| < δ whenever j ≥ N , since the sequence x1,x2,x3, . . . con-
verges to p. Thus if j ≥ N then |f(xj) − f(p)| < ε. Thus the sequence
f(x1), f(x2), f(x3), . . . converges to f(p), as required.

Let X and Y be a subsets of Rm and Rn respectively, and let f : X → Y
be a function from X to Y . Then

f(x) = (f1(x), f2(x), . . . , fn(x))

for all x ∈ X, where f1, f2, . . . , fn are functions from X to R, referred to as
the components of the function f .

Proposition 8.6 Let X and Y be a subsets of Rm and Rn respectively. A
function f : X → Y is continuous if and only if its components are continuous.

Proof Note that the ith component fi of f is given by fi = πi ◦ f , where
πi: Rn → R is the continuous function which maps (y1, y2, . . . , yn) ∈ Rn onto
its ith coordinate yi. Now any composition of continuous functions is con-
tinuous, by Lemma 8.4. Thus if f is continuous, then so are the components
of f .
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Conversely suppose that the components of f are continuous at p ∈ X.
Let ε > 0 be given. Then there exist positive real numbers δ1, δ2, . . . , δn such
that |fi(x) − fi(p)| < ε/

√
n for x ∈ X satisfying |x − p| < δi. Let δ be the

minimum of δ1, δ2, . . . , δn. If x ∈ X satisfies |x− p| < δ then

|f(x)− f(p)|2 =
n∑

i=1

|fi(x)− fi(p)|2 < ε2,

and hence |f(x) − f(p)| < ε. Thus the function f is continuous at p, as
required.

Lemma 8.7 The functions s: R2 → R and p: R2 → R defined by s(x, y) =
x + y and p(x, y) = xy are continuous.

Proof Let (u, v) ∈ R2. We first show that s: R2 → R is continuous at (u, v).
Let ε > 0 be given. Let δ = 1

2
ε. If (x, y) is any point of R2 whose distance

from (u, v) is less than δ then |x− u| < δ and |y − v| < δ, and hence

|s(x, y)− s(u, v)| = |x + y − u− v| ≤ |x− u|+ |y − v| < 2δ = ε.

This shows that s: R2 → R is continuous at (u, v).
Next we show that p: R2 → R is continuous at (u, v). Now

p(x, y)− p(u, v) = xy − uv = (x− u)(y − v) + u(y − v) + (x− u)v.

for all points (x, y) of R2. Thus if the distance from (x, y) to (u, v) is less
than δ then |x − u| < δ and |y − v| < δ, and hence |p(x, y) − p(u, v)| <
δ2 + (|u|+ |v|)δ. Let ε > 0 is given. If δ > 0 is chosen to be the minimum of
1 and ε/(1 + |u|+ |v|) then δ2 + (|u|+ |v|)δ < (1 + |u|+ |v|)δ < ε, and thus
|p(x, y)− p(u, v)| < ε for all points (x, y) of R2 whose distance from (u, v) is
less than δ. This shows that p: R2 → R is continuous at (u, v).

Proposition 8.8 Let X be a subset of Rn, and let f : X → R and g: X → R
be continuous functions from X to R. Then the functions f + g, f − g and
f · g are continuous. If in addition g(x) 6= 0 for all x ∈ X then the quotient
function f/g is continuous.

Proof Note that f +g = s◦h and f ·g = p◦h, where h: X → R2, s: R2 → R
and p: R2 → R are given by h(x) = (f(x), g(x)), s(u, v) = u+v and p(u, v) =
uv for all x ∈ X and u, v ∈ R. It follows from Proposition 8.6, Lemma 8.7
and Lemma 8.4 that f + g and f · g are continuous, being compositions
of continuous functions. Now f − g = f + (−g), and both f and −g are
continuous. Therefore f − g is continuous.
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Now suppose that g(x) 6= 0 for all x ∈ X. Note that 1/g = r ◦ g, where
r: R \ {0} → R is the reciprocal function, defined by r(t) = 1/t. Now the
reciprocal function r is continuous. Thus the function 1/g is a composition
of continuous functions and is thus continuous. But then, using the fact that
a product of continuous real-valued functions is continuous, we deduce that
f/g is continuous.

Example Consider the function f : R2 \ {(0, 0)} → R2 defined by

f(x, y) =

(
x

x2 + y2
,

−y

x2 + y2

)
.

The continuity of the components of the function f follows from straightfor-
ward applications of Proposition 8.8. It then follows from Proposition 8.6
that the function f is continuous on R2 \ {(0, 0)}.

8.1 Open Sets in Euclidean Spaces

Let X be a subset of Rn. Given a point p of X and a non-negative real
number r, the open ball BX(p, r) in X of radius r about p is defined to be
the subset of X given by

BX(p, r) ≡ {x ∈ X : |x− p| < r}.

(Thus BX(p, r) is the set consisting of all points of X that lie within a sphere
of radius r centred on the point p.)

Definition Let X be a subset of Rn. A subset V of X is said to be open
in X if and only if, given any point p of V , there exists some δ > 0 such that
BX(p, δ) ⊂ V .

By convention, we regard the empty set ∅ as being an open subset of X.
(The criterion given above is satisfied vacuously in the case when V is the
empty set.)

In particular, a subset V of Rn is said to be an open set (in Rn) if and only
if, given any point p of V , there exists some δ > 0 such that B(p, δ) ⊂ V ,
where B(p, r) = {x ∈ Rn : |x− p| < r}.

Example Let H = {(x, y, z) ∈ R3 : z > c}, where c is some real number.
Then H is an open set in R3. Indeed let p be a point of H. Then p = (u, v, w),
where w > c. Let δ = w − c. If the distance from a point (x, y, z) to the
point (u, v, w) is less than δ then |z − w| < δ, and hence z > c, so that
(x, y, z) ∈ H. Thus B(p, δ) ⊂ H, and therefore H is an open set.
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The previous example can be generalized. Given any integer i between 1
and n, and given any real number ci, the sets

{(x1, x2, . . . , xn) ∈ Rn : xi > ci}, {(x1, x2, . . . , xn) ∈ Rn : xi < ci}

are open sets in Rn.

Example Let U be an open set in Rn. Then for any subset X of Rn, the
intersection U ∩X is open in X. (This follows directly from the definitions.)
Thus for example, let S2 be the unit sphere in R3, given by

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and let N be the subset of S2 given by

N = {(x, y, z) ∈ Rn : x2 + y2 + z2 = 1 and z > 0}.

Then N is open in S2, since N = H ∩ S2, where H is the open set in R3

given by
H = {(x, y, z) ∈ R3 : z > 0}.

Note that N is not itself an open set in R3. Indeed the point (0, 0, 1) belongs
to N , but, for any δ > 0, the open ball (in R3 of radius δ about (0, 0, 1)
contains points (x, y, z) for which x2 + y2 + z2 6= 1. Thus the open ball of
radius δ about the point (0, 0, 1) is not a subset of N .

Lemma 8.9 Let X be a subset of Rn, and let p be a point of X. Then, for
any positive real number r, the open ball BX(p, r) in X of radius r about p
is open in X.

Proof Let x be an element of BX(p, r). We must show that there exists
some δ > 0 such that BX(x, δ) ⊂ BX(p, r). Let δ = r− |x−p|. Then δ > 0,
since |x− p| < r. Moreover if y ∈ BX(x, δ) then

|y − p| ≤ |y − x|+ |x− p| < δ + |x− p| = r,

by the Triangle Inequality, and hence y ∈ BX(p, r). Thus BX(x, δ) ⊂
BX(p, r). This shows that BX(p, r) is an open set, as required.

Lemma 8.10 Let X be a subset of Rn, and let p be a point of X. Then, for
any non-negative real number r, the set {x ∈ X : |x−p| > r} is an open set
in X.
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Proof Let x be a point of X satisfying |x− p| > r, and let y be any point
of X satisfying |y − x| < δ, where δ = |x− p| − r. Then

|x− p| ≤ |x− y|+ |y − p|,

by the Triangle Inequality, and therefore

|y − p| ≥ |x− p| − |y − x| > |x− p| − δ = r.

Thus BX(x, δ) is contained in the given set. The result follows.

Proposition 8.11 Let X be a subset of Rn. The collection of open sets in X
has the following properties:—

(i) the empty set ∅ and the whole set X are both open in X;

(ii) the union of any collection of open sets in X is itself open in X;

(iii) the intersection of any finite collection of open sets in X is itself open
in X.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole set X. This proves (i).

Let A be any collection of open sets in X, and let U denote the union of
all the open sets belonging to A. We must show that U is itself open in X.
Let x ∈ U . Then x ∈ V for some set V belonging to the collection A. It
follows that there exists some δ > 0 such that BX(x, δ) ⊂ V . But V ⊂ U ,
and thus BX(x, δ) ⊂ U . This shows that U is open in X. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of subsets of X that
are open in X, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let x ∈ V . Now x ∈ Vj for j = 1, 2, . . . , k, and therefore there
exist strictly positive real numbers δ1, δ2, . . . , δk such that BX(x, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now BX(x, δ) ⊂ BX(x, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus BX(x, δ) ⊂ V .
Thus the intersection V of the sets V1, V2, . . . , Vk is itself open in X. This
proves (iii).

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 and z > 1} is an open
set in R3, since it is the intersection of the open ball of radius 2 about the
origin with the open set {(x, y, z) ∈ R3 : z > 1}.

Example The set {(x, y, z) ∈ R3 : x2 + y2 + z2 < 4 or z > 1} is an open set
in R3, since it is the union of the open ball of radius 2 about the origin with
the open set {(x, y, z) ∈ R3 : z > 1}.
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Example The set

{(x, y, z) ∈ R3 : (x− n)2 + y2 + z2 < 1
4

for some n ∈ Z}

is an open set in R3, since it is the union of the open balls of radius 1
2

about
the points (n, 0, 0) for all integers n.

Example For each natural number k, let

Vk = {(x, y, z) ∈ R3 : k2(x2 + y2 + z2) < 1}.

Now each set Vk is an open ball of radius 1/k about the origin, and is therefore
an open set in R3. However the intersection of the sets Vk for all natural
numbers k is the set {(0, 0, 0)}, and thus the intersection of the sets Vk for all
natural numbers k is not itself an open set in R3. This example demonstrates
that infinite intersections of open sets need not be open.

Lemma 8.12 A sequence x1,x2,x3, . . . of points in Rn converges to a point p
if and only if, given any open set U which contains p, there exists some
natural number N such that xj ∈ U for all j satisfying j ≥ N .

Proof Suppose that the sequence x1,x2,x3, . . . has the property that, given
any open set U which contains p, there exists some natural number N such
that xj ∈ U whenever j ≥ N . Let ε > 0 be given. The open ball B(p, ε) of
radius ε about p is an open set by Lemma 8.9. Therefore there exists some
natural number N such that xj ∈ B(p, ε) whenever j ≥ N . Thus |xj−p| < ε
whenever j ≥ N . This shows that the sequence converges to p.

Conversely, suppose that the sequence x1,x2,x3, . . . converges to p. Let
U be an open set which contains p. Then there exists some ε > 0 such that
the open ball B(p, ε) of radius ε about p is a subset of U . Thus there exists
some ε > 0 such that U contains all points x of X that satisfy |x − p| < ε.
But there exists some natural number N with the property that |xj −p| < ε
whenever j ≥ N , since the sequence converges to p. Therefore xj ∈ U
whenever j ≥ N , as required.

8.2 Closed Sets

Let X be a subset of Rn. A subset F of X is said to be closed in X if and
only if its complement X \ F in X is open in X. (Recall that X \ F = {x ∈
X : x 6∈ F}.)

Example The sets {(x, y, z) ∈ R3 : z ≥ c}, {(x, y, z) ∈ R3 : z ≤ c}, and
{(x, y, z) ∈ R3 : z = c} are closed sets in R3 for each real number c, since the
complements of these sets are open in R3.
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Example Let X be a subset of Rn, and let x0 be a point of X. Then the
sets {x ∈ X : |x − x0| ≤ r} and {x ∈ X : |x − x0| ≥ r} are closed for
each non-negative real number r. In particular, the set {x0} consisting of
the single point x0 is a closed set in X. (These results follow immediately
using Lemma 8.9 and Lemma 8.10 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 8.11.

Proposition 8.13 Let X be a subset of Rn. The collection of closed sets
in X has the following properties:—

(i) the empty set ∅ and the whole set X are both closed in X;

(ii) the intersection of any collection of closed sets in X is itself closed in
X;

(iii) the union of any finite collection of closed sets in X is itself closed in
X.

Lemma 8.14 Let X be a subset of Rn, and let F be a subset of X which is
closed in X. Let x1,x2,x3, . . . be a sequence of points of F which converges
to a point p of X. Then p ∈ F .

Proof The complement X \F of F in X is open, since F is closed. Suppose
that p were a point belonging to X\F . It would then follow from Lemma 8.12
that xj ∈ X \ F for all values of j greater than some positive integer N ,
contradicting the fact that xj ∈ F for all j. This contradiction shows that p
must belong to F , as required.

8.3 Continuous Functions and Open Sets

Let X and Y be subsets of Rm and Rn, and let f : X → Y be a function
from X to Y . We recall that the function f is continuous at a point p of X
if, given any ε > 0, there exists some δ > 0 such that |f(u) − f(p)| < ε
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for all points u of X satisfying |u − p| < δ. Thus the function f : X → Y
is continuous at p if and only if, given any ε > 0, there exists some δ > 0
such that the function f maps BX(p, δ) into BY (f(p), ε) (where BX(p, δ)
and BY (f(p), ε) denote the open balls in X and Y of radius δ and ε about
p and f(p) respectively).

Given any function f : X → Y , we denote by f−1(V ) the preimage of a
subset V of Y under the map f , defined by f−1(V ) = {x ∈ X : f(x) ∈ V }.

Proposition 8.15 Let X and Y be subsets of Rm and Rn, and let f : X → Y
be a function from X to Y . The function f is continuous if and only if f−1(V )
is open in X for every open subset V of Y .

Proof Suppose that f : X → Y is continuous. Let V be an open set in Y .
We must show that f−1(V ) is open in X. Let p ∈ f−1(V ). Then f(p) ∈
V . But V is open, hence there exists some ε > 0 with the property that
BY (f(p), ε) ⊂ V . But f is continuous at p. Therefore there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε) (see the remarks above).
Thus f(x) ∈ V for all x ∈ BX(p, δ), showing that BX(p, δ) ⊂ f−1(V ). This
shows that f−1(V ) is open in X for every open set V in Y .

Conversely suppose that f : X → Y is a function with the property that
f−1(V ) is open in X for every open set V in Y . Let p ∈ X. We must
show that f is continuous at p. Let ε > 0 be given. Then BX(f(p), ε) is
an open set in Y , by Lemma 8.9, hence f−1 (BY (f(p), ε)) is an open set
in X which contains p. It follows that there exists some δ > 0 such that
BX(p, δ) ⊂ f−1 (BY (f(p), ε)). Thus, given any ε > 0, there exists some
δ > 0 such that f maps BX(p, δ) into BY (f(p), ε). We conclude that f is
continuous at p, as required.

Let X be a subset of Rn, let f : X → R be continuous, and let c be some
real number. Then the sets {x ∈ X : f(x) > c} and {x ∈ X : f(x) < c}
are open in X, and, given real numbers a and b satisfying a < b, the set
{x ∈ X : a < f(x) < b} is open in X.
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