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1 The Real Number System

1.1 Sets

A set is a collection of objects. These objects are referred to as the elements
of the set. One can specify a set by enclosing a list of suitable objects within
braces. Thus, for example, {1, 2, 3, 7} denotes the set whose elements are the
numbers 1, 2, 3 and 7. If x is an element of some set X then we denote this
fact by writing x ∈ X. Conversely, if x is not an element of the set X then
we write x 6∈ X. We denote by ∅ the empty set, which is defined to be the
set with no elements.

We denote by N the set {1, 2, 3, 4, 5 . . .} of all natural numbers, and we
denote by Z the set

{. . . ,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, . . .}

of all integers (or ‘whole numbers’). We denote by Q the set of rational
numbers (i.e., numbers of the form p/q where p and q are integers and q 6= 0),
and we denote be R and C the sets of real numbers and complex numbers
respectively.

If X and Y are sets then the union X ∪ Y of X and Y is defined to
be the set of all elements that belong either to X or to Y (or to both), the
intersection X ∩ Y of X and Y is defined to be the set of all elements that
belong to both X and Y , and the difference X \ Y of X and Y is defined to
be the set of all elements that belong to X but do not belong to Y . Thus,
for example, if

X = {2, 4, 6, 8}, Y = {3, 4, 5, 6, 7}
then

X ∪ Y = {2, 3, 4, 5, 6, 7, 8}, X ∩ Y = {4, 6},
X \ Y = {2, 8}, Y \X = {3, 5, 7}.
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If X and Y are sets, and if every element of X is also an element of Y
then we say that X is a subset of Y , and we write X ⊂ Y . We use the
notation {y ∈ Y : P (y)} to denote the subset of a given set Y consisting
of all elements y of Y with some given property P (y). Thus for example
{n ∈ Z : n > 0} denotes the set of all integers n satisfying n > 0 (i.e., the
set N of all natural numbers).

1.2 Rational and Irrational Numbers

Rational numbers are numbers that can be expressed as fractions of the form
p/q, where p and q are integers (i.e., ‘whole numbers’) and q 6= 0. The set
of rational numbers is denoted by Q. Operations of addition, subtraction,
multiplication and division are defined on Q in the usual manner. In addition
the set of rational numbers is ordered.

There are however certain familiar numbers which cannot be represented
in the form p/q, where p and q are integers. These include

√
2,
√

3, π and
e. Such numbers are referred to as irrational numbers. The irrationality of√

2 is an immediate consequence of the following famous result, which was
discovered by the Ancient Greeks.

Proposition 1.1 There do not exist non-zero integers p and q with the prop-
erty that p2 = 2q2.

Proof Let us suppose that there exist non-zero integers p and q with the
property that p2 = 2q2. We show that this leads to a contradiction. Without
loss of generality we may assume that p and q are not both even (since if
both p and q were even then we could replace p and q by p/2k and q/2k

respectively, where k is the largest natural number with the property that
2k divides both p and q). Now p2 = 2q2, hence p2 is even. It follows from
this that p is even (since the square of an odd integer is odd). Therefore
p = 2r for some integer r. But then 2q2 = 4r2, so that q2 = 2r2. Therefore
q2 is even, and hence q is even. We have thus shown that both p and q are
even. But this contradicts our assumption that p and q are not both even.
This contradiction shows that there cannot exist integers p and q with the
property that p2 = 2q2, and thus proves that

√
2 is an irrational number.

This result shows that the rational numbers are not sufficient for the pur-
pose of representing lengths arising in familiar Euclidean geometry. Indeed
consider the right-angled isosceles triangle whose short sides are q units long.
Then the hypotenuse is

√
2q units long, by Pythagoras’ Theorem. Proposi-

tion 1.1 shows that it is not possible to find a unit of length for which the
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two short sides of this right-angled isosceles triangle are q units long and the
hypotenuse is p units long, where both p and q are integers. We must there-
fore enlarge the system of rational numbers to obtain a number system which
contains irrational numbers such as

√
2,
√

3, π and e, and which is capable
of representing the lengths of line segments and similar quantities arising in
geometry and physics. The rational and irrational numbers belonging to this
number system are known as real numbers.

1.3 The Real Number System

The system of real numbers, denoted by R, is an ordered set on which are
defined appropriate operations of addition and multiplication. The system
of real numbers is fully characterized by an axiom system consisting of the
15 axioms (listed below) which describe the algebraic structure and ordering
of the real numbers, together with one further axiom, known as the Least
Upper Bound Axiom, which distinguishes the real number system from other
number systems such as the rational number system. The 15 axioms describ-
ing the algebraic and ordering properties of the real number system are as
follows:

1. if x and y are real numbers then their sum x+ y is also a real number,

2. (the Commutative Law for addition) x+ y = y+ x for all real numbers
x and y,

3. (the Associative Law for addition) (x+ y) + z = x+ (y+ z) for all real
numbers x, y and z,

4. there exists a (necessarily unique) real number, denoted by 0, with the
property that x+ 0 = x = 0 + x for all real numbers x,

5. for each real number x there exists some (necessarily unique) real num-
ber −x with the property that x+ (−x) = 0 = (−x) + x,

6. if x and y are real numbers then their product xy is also a real number,

7. (the Commutative Law for multiplication) xy = yx for all real num-
bers x and y,

8. (the Associative Law for multiplication) (xy)z = x(yz) for all real num-
bers x, y and z,

9. there exists a (necessarily unique) real number, denoted by 1, with the
property that x1 = x = 1x for all real numbers x, and moreover 1 6= 0,
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10. for each real number x satisfying x 6= 0 there exists some (necessarily
unique) real number x−1 with the property that xx−1 = 1 = x−1x,

11. (the Distributive Law) x(y + z) = (xy) + (xz) for all real numbers x y
and z,

12. (the Trichotomy Law) if x and y are real numbers then one and only
one of the three statements x < y, x = y and y < x is true,

13. if x, y and z are real numbers and if x < y and y < z then x < z,

14. if x, y and z are real numbers and if x < y then x+ z < y + z,

15. if x and y are real numbers which satisfy 0 < x and 0 < y then 0 < xy,

The operations of subtraction and division are defined in terms of addition
and multiplication in the obvious fashion: x−y = x+(−y) for all real numbers
x and y, and x/y = xy−1 provided that y 6= 0. The absolute value |x| of a
real number x is defined by

|x| =
{
x if x ≥ 0;
−x if x < 0.

Note that |x| ≥ 0 for all real numbers x and that |x| = 0 if and only if x = 0.
Also |x+ y| ≤ |x|+ |y| and |xy| = |x||y| for all real numbers x and y.

Let D be a subset of R. A real number u is said to be an upper bound of
the set D if x ≤ u for all x ∈ D. The set D is said to be bounded above if
such an upper bound exists.

Definition Let D be some set of real numbers which is bounded above.
A real number s is said to be the least upper bound (or supremum) of D
(denoted by supD) if s is an upper bound of D and s ≤ u for all upper
bounds u of D.

Example The real number 2 is the least upper bound of the sets {x ∈ R :
x ≤ 2} and {x ∈ R : x < 2}. Note that the first of these sets contains its
least upper bound, whereas the second set does not.

The axioms (1)–(15) listed above describing the algebraic and ordering
properties of the real number system are not in themselves sufficient to fully
characterize the real number system. (Indeed any property of real numbers
that could be derived solely from these axioms would be equally valid for
rational numbers.) We require in addition the following axiom:—
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the Least Upper Bound Axiom: if D is any non-empty subset
of R which is bounded above then there exists a least upper
bound supD for the set D.

A lower bound of a set D of real numbers is a real number l with the
property that l ≤ x for all x ∈ D. A set D of real numbers is said to be
bounded below if such a lower bound exists. If D is bounded below, then
there exists a greatest lower bound (or infimum) inf D of the set D. Indeed
inf D = − sup{x ∈ R : −x ∈ D}.

Remark We have simply listed above a complete set of axioms for the real
number system. We have not however proved the existence of a system of
real numbers satisfying these axioms. There are in fact several constructions
of the real number system: one of the most popular of these is the represen-
tation of real numbers as Dedekind sections of the set of rational numbers.
For an account of the this construction, and for a proof that these axioms
are sufficient to characterize the real number system, see chapters 27–29 of
Calculus, by M. Spivak.

1.4 Intervals

Given real numbers a and b satisfying a ≤ b, we define

[a, b] = {x ∈ R : a ≤ x ≤ b}.

If a < b then we define

(a, b) = {x ∈ R : a < x < b}, [a, b) = {x ∈ R : a ≤ x < b},

(a, b] = {x ∈ R : a < x ≤ b}.

For each real number c, we also define

[c,+∞) = {x ∈ R : c ≤ x}, (c,+∞) = {x ∈ R : c < x},

(−∞, c] = {x ∈ R : x ≤ c}, (−∞, c) = {x ∈ R : x < c}.

All these subsets of R are referred to as intervals. An interval I may be
defined as a non-empty set of real numbers with the following property: if s,
t and u are real numbers satisfying s < t < u and if s and u both belong to
the interval I then t also belongs to the interval I. Using the Least Upper
Bound Axiom, one can prove that every interval in R is either one of the
intervals defined above, or else is the whole of R.
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2 Infinite Sequences of Real Numbers

2.1 Convergence

An infinite sequence of real numbers is a sequence of the form a1, a2, a3, . . .,
where each an is a real number. (More formally, one can view an infinite
sequence of real numbers as a function from N to R which sends each natural
number n to some real number an.)

Definition A sequence a1, a2, a3, . . . of real numbers is said to converge to
some real number l if and only if the following criterion is satisfied:

given any real number ε satisfying ε > 0, there exists some natural
number N such that |an − l| < ε for all n satisfying n ≥ N .

If the sequence a1, a2, a3, . . . converges to the limit l then we denote this fact
by writing ‘an → l as n→ +∞’, or by writing ‘ lim

n→+∞
an = l’.

Example A straightforward application of the definition of convergence
shows that 1/n → 0 as n → +∞. Indeed suppose that we are given any
real number ε satisfying ε > 0. If we pick some natural number N large
enough to satisfy N > 1/ε then |1/n| < ε for all natural numbers n satisfy-
ing n ≥ N , as required.

Example We show that (−1)n/n2 → 0 as n → +∞. Indeed, given any
real number ε number satisfying ε > 0, we can find some natural number N
satisfying N2 > 1/ε. If n ≥ N then |(−1)n/n2| < ε, as required.

Example The infinite sequence a1, a2, a3, . . . defined by an = n is not con-
vergent. To prove this formally, we suppose that it were the case that
lim

n→+∞
an = l for some real number l, and derive from this a contradiction. On

setting ε = 1 (say) in the formal definition of convergence, we would deduce
that there would exist some natural number N such that |an − l| < 1 for all
n ≥ N . But then an < l + 1 for all n ≥ N , which is impossible. Thus the
sequence cannot converge.

Example The infinite sequence u1, u2, u3, . . . defined by un = (−1)n is not
convergent. To prove this formally, we suppose that it were the case that
lim

n→+∞
un = l for some real number l. On setting ε = 1

2
in the criterion for

convergence, we would deduce the existence of some natural number N such
that |un − l| < 1

2
for all n ≥ N . But then

|un − un+1| ≤ |un − l|+ |l − un+1| < 1
2

+ 1
2

= 1
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for all n ≥ N , contradicting the fact that un−un+1 = ±2 for all n. Thus the
sequence cannot converge.

Definition We say that an infinite sequence a1, a2, a3, . . . of real numbers is
bounded above if there exists some real number B such that an ≤ B for all n.
Similarly we say that this sequence is bounded below if there exists some real
number A such that an ≥ A for all n. A sequence is said to be bounded if
it is bounded above and bounded below, so that there exist real numbers A
and B such that A ≤ an ≤ B for all n.

Lemma 2.1 Every convergent sequence of real numbers is bounded.

Proof Let a1, a2, a3, . . . be a sequence of real numbers converging to some
real number l. On applying the formal definition of convergence (with ε = 1),
we deduce the existence of some natural number N such that |an − l| < 1
for all n ≥ N . But then A ≤ an ≤ B for all n, where A is the minimum
of a1, a2, . . . , aN−1 and l − 1, and B is the maximum of a1, a2, . . . , aN−1 and
l + 1.

Proposition 2.2 Let a1, a2, a3, . . . and b1, b2, b3, be convergent infinite se-
quences of real numbers. Then the sum, difference and product of these se-
quences are convergent, and

lim
n→+∞

(an + bn) = lim
n→+∞

an + lim
n→+∞

bn,

lim
n→+∞

(an − bn) = lim
n→+∞

an − lim
n→+∞

bn,

lim
n→+∞

(anbn) =

(
lim

n→+∞
an

)(
lim

n→+∞
bn

)
.

If in addition bn 6= 0 for all n and lim
n→+∞

bn 6= 0, then the quotient of the

sequences (an) and (bn) is convergent, and

lim
n→+∞

an
bn

=
lim

n→+∞
an

lim
n→+∞

bn
.

Proof Throughout this proof let l = lim
n→+∞

an and m = lim
n→+∞

bn.

First we prove that an + bn → l + m as n → +∞. Let ε be any given
real number satisfying ε > 0. We must show that there exists some natural
number N such that |an + bn − (l + m)| < ε whenever n ≥ N . Now an → l
as n → +∞, and therefore, given any ε1 > 0, there exists some natural
number N1 with the property that |an − l| < ε1 whenever n ≥ N1. In
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particular, there exists a natural number N1 with the property that |an− l| <
1
2
ε whenever n ≥ N1. (To see this, let ε1 = 1

2
ε.) Similarly there exists some

natural number N2 such that |bn−m| < 1
2
ε whenever n ≥ N2. Let N be the

maximum of N1 and N2. If n ≥ N then

|an + bn − (l +m)| = |(an − l) + (bn −m)| ≤ |an − l|+ |bn −m|
< 1

2
ε+ 1

2
ε = ε.

Thus an + bn → l +m as n→ +∞.
Let c be some real number. We show that cbn → cm as n → +∞. The

case when c = 0 is trivial. Suppose that c 6= 0. Let ε > 0 be given. Then
there exists some natural number N such that |bn − m| < ε/|c| whenever
n ≥ N . But then |cbn − cm| = |c||bn − m| < ε whenever n ≥ N . Thus
cbn → cm as n→ +∞.

If we combine this result, for c = −1, with the previous result, we see
that −bn → −m as n→ +∞, and therefore an − bn → l −m as n→ +∞.

Next we show that if u1, u2, u3, . . . and v1, v2, v3, . . . are infinite sequences,
and if un → 0 and vn → 0 as n → +∞, then unvn → 0 as n → +∞. Let
ε > 0 be given. Then there exist natural numbers N1 and N2 such that
|un| <

√
ε whenever n ≥ N1 and |vn| <

√
ε whenever n ≥ N2. Let N be

the maximum of N1 and N2. If n ≥ N then |unvn| < ε. We deduce that
unvn → 0 as n→ +∞.

We can apply this result with un = an− l and vn = bn−m for all natural
numbers n. Using the results we have already obtained, we see that

0 = lim
n→+∞

(unvn) = lim
n→+∞

(anbn − anm− lbn + lm)

= lim
n→+∞

(anbn)−m lim
n→+∞

an − l lim
n→+∞

bn + lm = lim
n→+∞

(anbn)− lm.

Thus anbn → lm as n→ +∞.
Next we show that if w1, w2, w3, . . . is an infinite sequence of non-zero

real numbers, and if wn → 1 as n → +∞ then 1/wn → 1 as n → +∞. Let
ε > 0 be given. Let ε0 be the minimum of 1

2
ε and 1

2
. Then there exists some

natural number N such that |wn − 1| < ε0 whenever n ≥ N . Thus if n ≥ N
then |wn − 1| < 1

2
ε and 1

2
< wn <

3
2
. But then∣∣∣∣ 1

wn

− 1

∣∣∣∣ =

∣∣∣∣1− wn

wn

∣∣∣∣ =
|wn − 1|
|wn|

< 2|wn − 1| < ε.

We deduce that 1/wn → 1 as n→ +∞.
Finally suppose that lim

n→+∞
an = l and lim

n→+∞
bn = m, where m 6= 0. Let

wn = bn/m. Then wn → 1 as n → +∞, and hence 1/wn → 1 as n → +∞.
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We see therefore that m/bn → 1, and thus 1/bn → 1/m, as n → +∞. The
result we have already obtained for products of sequences then enables us to
deduce that an/bn → l/m as n→ +∞.

Example We shall show that if sn → 2 as n → +∞, where sn =
6n2 − 4n

3n2 + 7
for all natural numbers n. Now neither 6n2−4n nor 3n2 +7 converges to any
(finite) limit as n→ +∞; and therefore we cannot directly apply the result in
Proposition 2.2 concerning the convergence of the quotient of two convergent
sequences. However on dividing both the numerator and the denominator of
the fraction defining sn by n2, we see that

sn =
6n2 − 4n

3n2 + 7
=

6− 4

n

3 +
7

n2

.

Moreover 6− 4

n
→ 6 and 3+

7

n2
→ 3 as n→ +∞, and therefore, on applying

Proposition 2.2, we see that

lim
n→+∞

6n2 − 4n

3n2 + 7
= lim

n→+∞

6− 4

n

3 +
7

n2

=

lim
n→+∞

(
6− 4

n

)
lim

n→+∞

(
3 +

7

n2

) =
6

3
= 2.

2.2 Monotonic Sequences

An infinite sequence a1, a2, a3, . . . of real numbers is said to be strictly in-
creasing if an+1 > an for all n, strictly decreasing if an+1 < an for all n,
non-decreasing if an+1 ≥ an for all n, or non-increasing if an+1 ≤ an for all n.
A sequence satisfying any one of these conditions is said to be monotonic;
thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem 2.3 Any non-decreasing sequence of real numbers that is bounded
above is convergent. Similarly any non-increasing sequence of real numbers
that is bounded below is convergent.

Proof Let a1, a2, a3, . . . be a non-decreasing sequence of real numbers that
is bounded above. It follows from the Least Upper Bound Axiom that there
exists a least upper bound l for the set {an : n ∈ N}. We claim that the
sequence converges to l.

Let ε > 0 be given. We must show that there exists some natural num-
ber N such that |an − l| < ε whenever n ≥ N . Now l − ε is not an upper
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bound for the set {an : n ∈ N} (since l is the least upper bound), and there-
fore there must exist some natural number N such that aN > l−ε. But then
l − ε < an ≤ l whenever n ≥ N , since the sequence is non-decreasing and
bounded above by l. Thus |an − l| < ε whenever n ≥ N . Therefore an → l
as n→ +∞, as required.

If the sequence a1, a2, a3, . . . is non-increasing and bounded below then
the sequence −a1,−a2,−a3, . . . is non-decreasing and bounded above, and
is therefore convergent. It follows that the sequence a1, a2, a3, . . . is also
convergent.

Example Let a1 = 2 and

an+1 = an −
a2n − 2

2an

for all natural numbers n. Now

an+1 =
a2n + 2

2an
and a2n+1 = a2n − (a2n − 2) +

(
a2n − 2

2an

)2

= 2 +

(
a2n − 2

2an

)2

.

It therefore follows by induction on n that an > 0 and a2n > 2 for all natural
numbers n. But then an+1 < an for all n, and thus the sequence a1, a2, a3, . . .
is decreasing and bounded below. It follows from Theorem 2.3 that this
sequence converges to some real number α. Also an > 1 for all n (since an > 0
and a2n > 2), and therefore α ≥ 1. But then, on applying Proposition 2.2,
we see that

α = lim
n→+∞

an+1 = lim
n→+∞

(
an −

a2n − 2

2an

)
= α− α2 − 2

2α
.

Thus α2 = 2, and so α =
√

2.

2.3 Subsequences and the Bolzano-Weierstrass Theo-
rem

Let a1, a2, a3, . . . be an infinite sequence of real numbers. A subsequence of
this sequence is a sequence of the form an1 , an2 , an3 , . . ., where n1, n2, n3, . . .
are natural numbers satisfying n1 < n2 < n3 < · · · . Thus, for example,
a2, a4, a6, . . . and a1, a4, a9, . . . are subsequences of the given sequence.

Theorem 2.4 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.
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Proof Let a1, a2, a3, . . . be a bounded sequence of real numbers, and let

S = {n ∈ N : an ≥ ak for all k ≥ n}

(i.e., S is the set of all natural numbers n with the property that an is greater
than or equal to all the succeeding members of the sequence).

First let us suppose that the set S is infinite. Arrange the elements of S in
increasing order so that S = {n1, n2, n3, n4, . . .}, where n1 < n2 < n3 < n4 <
· · ·. It follows from the manner in which the set S was defined that an1 ≥
an2 ≥ an3 ≥ an4 ≥ · · · . Thus an1 , an2 , an3 , . . . is a non-increasing subsequence
of the original sequence a1, a2, a3, . . .. This subsequence is bounded below
(since the original sequence is bounded). It follows from Theorem 2.3 that
an1 , an2 , an3 , . . . is a convergent subsequence of the original sequence.

Now suppose that the set S is finite. Choose a natural number n1 which
is greater than every natural number belonging to S. Then n1 does not
belong to S. Therefore there must exist some natural number n2 satisfying
n2 > n1 such that an2 > an1 . Moreover n2 does not belong to S (since n2 is
greater than n1 and n1 is greater than every natural number belonging to S).
Therefore there must exist some natural number n3 satisfying n3 > n2 such
that an3 > an2 . We can continue in this way to construct (by induction on j)
a strictly increasing subsequence an1 , an2 , an3 , . . . of our original sequence.
This increasing subsequence is bounded above (since the original sequence is
bounded) and thus is convergent, by Theorem 2.3. This completes the proof
of the Bolzano-Weierstrass Theorem.

3 Limits and Continuity

3.1 Limits of Functions of a Real Variable

Definition Let D be a subset of the set R of real numbers, and let s be
a real number (which may or may not belong to D). We say that s is a
limit point of D if, given any δ > 0, there exists some x ∈ D which satisfies
0 < |x− s| < δ.

We now define the limit of a real-valued function at any limit point of
the domain of that function.

Definition Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s be a limit point of D. A real number l is said to be the
limit of the function f as x tends to s in D if, given any ε > 0, there exists
some δ > 0 such that |f(x)− l| < ε for all x ∈ D satisfying 0 < |x− s| < δ.
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If l is the limit of f(x) as x tends to s, for some s, then we denote this
fact either by writing ‘f(x)→ l as x→ s’ or by writing ‘lim

x→s
f(x) = l’.

Note that lim
x→s

f(x) = l if and only if lim
h→0

f(s+h) = l: this follows directly

from the definition given above.

Lemma 3.1 Let f :D → R be a real-valued function defined over some sub-
set D of R, and let s be a limit point of D. Then the limit lim

x→s
f(x), if it

exists, is unique.

Proof Suppose that lim
x→s

f(x) = l and lim
x→s

f(x) = m. We must show that

l = m. Let ε > 0 be given. Then there exist δ1 > 0 and δ2 > 0 such that
|f(x)− l| < ε whenever x ∈ D satisfies 0 < |x− s| < δ1 and |f(x)−m| < ε
whenever x ∈ D satisfies 0 < |x − s| < δ2. Choose x ∈ D satisfying 0 <
|x− s| < δ, where δ is the minimum of δ1 and δ2. (This is possible since s is
a limit point of D.) Then |f(x)− l| < ε and |f(x)−m| < ε, and hence

|l −m| ≤ |l − f(x)|+ |f(x)−m| < 2ε

by the Triangle Inequality. Since |l−m| < 2ε for all ε > 0, we conclude that
l = m, as required.

Example We show that lim
x→0

1
4
x2 = 0. Let ε > 0 be given. Suppose that

we choose δ = 2
√
ε, for example. If 0 < |x| < δ then |1

4
x2| < 1

4
δ2 = ε, as

required.

Example We show that lim
x→0

3x cos(1/x) = 0. Let ε > 0 be given. Choose

δ = 1
3
ε. Then δ > 0. Moreover if 0 < |x| < δ then |3x cos(1/x)| < ε, as

required.

Proposition 3.2 Let f :D → R and g:D → R be functions defined over
some subset D of R. Let s be a limit point of D. Suppose that lim

x→s
f(x) and

lim
x→s

g(x) exist. Then lim
x→s

(f(x) + g(x)), lim
x→s

(f(x)− g(x)) and lim
x→s

(f(x)g(x))

exist, and

lim
x→s

(f(x) + g(x)) = lim
x→s

f(x) + lim
x→s

g(x),

lim
x→s

(f(x)− g(x)) = lim
x→s

f(x)− lim
x→s

g(x),

lim
x→s

(f(x)g(x)) = lim
x→s

f(x) lim
x→s

g(x).

12



If in addition g(x) 6= 0 for all x ∈ D and lim
x→s

g(x) 6= 0, then lim
x→s

f(x)/g(x)

exists, and

lim
x→s

f(x)

g(x)
=

lim
x→s

f(x)

lim
x→s

g(x)
.

Proof Let l = lim
x→s

f(x) and m = lim
x→s

g(x).

First we prove that lim
x→s

(f(x) + g(x)) = l + m. Let ε > 0 be given. We

must prove that there exists some δ > 0 such that |f(x)+g(x)− (l+m)| < ε
for all x ∈ D satisfying 0 < |x − s| < δ. Now there exist δ1 > 0 and δ2 > 0
such that |f(x) − l| < 1

2
ε for all x ∈ D satisfying 0 < |x − s| < δ1, and

|g(x)−m| < 1
2
ε for all x ∈ D satisfying 0 < |x− s| < δ2, since l = lim

x→s
f(x)

and m = lim
x→s

g(x). Let δ be the minimum of δ1 and δ2. If x ∈ D satisfies

0 < |x− s| < δ then |f(x)− l| < 1
2
ε and |g(x)−m| < 1

2
ε, and hence

|f(x) + g(x)− (l +m)| ≤ |f(x)− l|+ |g(x)−m| < 1
2
ε+ 1

2
ε = ε

This shows that lim
x→s

(f(x) + g(x)) = l +m.

Let c be some real number. We show that lim
x→s

(cg(x)) = cm. The case

when c = 0 is trivial. Suppose that c 6= 0. Let ε > 0 be given. Then there
exists some δ > 0 such that |g(x) − m| < ε/|c| whenever 0 < |x − s| < δ.
But then |cg(x) − cm| = |c||g(x) −m| < ε whenever 0 < |x − s| < δ. Thus
lim
x→s

(cg(x)) = cm.

If we combine this result, for c = −1, with the previous result, we see
that lim

x→s
(−g(x)) = −m, and therefore lim

x→s
(f(x)− g(x)) = l −m.

Next we show that if p:D → R and q:D → R are functions with the
property that lim

x→s
p(x) = lim

x→s
q(x) = 0, then lim

x→s
(p(x)q(x)) = 0. Let ε > 0 be

given. Then there exist real numbers δ1 > 0 and δ2 > 0 such that |p(x)| <
√
ε

whenever 0 < |x − s| < δ1 and |q(x)| <
√
ε whenever 0 < |x − s| < δ2. Let

δ be the minimum of δ1 and δ2. If 0 < |x − s| < δ then |p(x)q(x)| < ε. We
deduce that lim

x→s
(p(x)q(x)) = 0.

We can apply this result with p(x) = f(x) − l and q(x) = g(x) −m for
all x ∈ D. Using the results we have already obtained, we see that

0 = lim
x→s

(p(x)q(x)) = lim
x→s

(f(x)g(x)− f(x)m− lg(x) + lm)

= lim
x→s

(f(x)g(x))−m lim
x→s

f(x)− l lim
x→s

g(x) + lm = lim
x→s

(f(x)g(x))− lm.

Thus lim
x→s

(f(x)g(x)) = lm.

13



Next we show that if h:D → R is a function that is non-zero through-
out D, and if lim

x→s
h(x) → 1 then lim

x→s
(1/h(x)) = 1. Let ε > 0 be given. Let

ε0 be the minimum of 1
2
ε and 1

2
. Then there exists some δ > 0 such that

|h(x) − 1| < ε0 whenever 0 < |x − s| < δ. Thus if 0 < |x − s| < δ then
|h(x)− 1| < 1

2
ε and 1

2
< h(x) < 3

2
. But then∣∣∣∣ 1

h(x)
− 1

∣∣∣∣ =

∣∣∣∣h(x)− 1

h(x)

∣∣∣∣ =
|h(x)− 1|
|h(x)|

< 2|h(x)− 1| < ε.

We deduce that lim
x→s

1/h(x) = 1. If we apply this result with h(x) = g(x)/m,

where m 6= 0, we deduce that lim
x→s

m/g(x) = 1, and thus lim
x→s

1/g(x) = 1/m.

The result we have already obtained for products of functions then enables
us to deduce that lim

x→s
(f(x)/g(x))→ l/m.

3.2 Continuous Functions of a Real Variable

Definition Let D be a subset of R, and let f :D → R be a real-valued
function on D. Let s be a point of D. The function f is said to be continuous
at s if, given any ε > 0, there exists some δ > 0 such that |f(x)− f(s)| < ε
for all x ∈ D satisfying |x − s| < δ. If f is continuous at every point of D
then we say that f is continuous on D.

Example Consider the function f :R→ R defined by

f(x) =

{
1 if x > 0;
0 if x ≤ 0.

The function f is not continuous at 0. To prove this formally we note that
when 0 < ε ≤ 1 there does not exist any δ > 0 with the property that
|f(x) − f(0)| < ε for all x satisfying |x| < δ (since |f(x) − f(0)| = 1 for all
x > 0).

Example Let f :R→ R be the function defined by

f(x) =

{
sin

1

x
if x 6= 0;

0 if x = 0.

We show that this function is not continuous at 0. Suppose that ε is chosen
to satisfy 0 < ε < 1. No matter how small we choose δ, where δ > 0, we can
always find x ∈ R for which |x| < δ and |f(x)− f(0)| ≥ ε. Indeed, given any
δ > 0, we can choose some integer n large enough to ensure that 0 < xn < δ,
where xn satisfies 1/xn = (4n+1)π/2. Moreover f(xn) = 1. This shows that
the criterion defining the concept of continuity is not satisfied at x = 0.

14



Example Let f :R→ R be the function defined by

f(x) =

{
3x sin

1

x
if x 6= 0;

0 if x = 0.

We claim that the function f is continuous at 0. To prove this, we must
apply the definition of continuity directly. Suppose we are given any real
number ε satisfying ε > 0. If δ = 1

3
ε then |f(x)| ≤ 3|x| < ε for all real

numbers x satisfying |x| < δ, as required.

The following lemma describes the relationship between limits and con-
tinuity.

Lemma 3.3 Let D be a subset of R, and let s ∈ D.

(i) Suppose that s is a limit point of D. Then a function f :D → R with
domain D is continuous at s if and only if lim

x→s
f(x) = f(s);

(ii) Suppose that s is not a limit point of D. Then every function f :D → R
with domain D is continuous at s.

Proof If s is a limit point ofD belonging toD then the required result follows
immediately on comparing the formal definition of the limit of a function with
the formal definition of continuity (since the condition |f(x) − f(s)| < ε is
automatically satisfied for any ε > 0 when x = s).

Suppose that s is not a limit point of D. Then there exists some δ > 0
such that the only element x of D satisfying |x − s| < δ is s itself. The
definition of continuity is therefore satisfied trivially at s by any function
f :D → R with domain D.

Given functions f :D → R and g:D → R defined over some subset D
of R, we denote by f + g, f − g, f · g and |f | the functions on D defined by

(f + g)(x) = f(x) + g(x), (f − g)(x) = f(x)− g(x),

(f · g)(x) = f(x)g(x), |f |(x) = |f(x)|.

Proposition 3.4 Let f :D → R and g:D → R be functions defined over
some subset D of R. Suppose that f and g are continuous at some point s
of D. Then the functions f + g, f − g and f · g are also continuous at s. If
moreover the function g is everywhere non-zero on D then the function f/g
is continuous at s.
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Proof This result follows directly from Proposition 3.2, using the fact that
a function f :D → R is continuous at a limit point s of D belonging to D if
and only if lim

x→s
f(x) = f(s) (Lemma 3.3).

Remark Proposition 3.4 can also be proved directly from the formal defi-
nition of continuity by a straightforward adaptation of the proof of Proposi-
tion 3.2. Indeed suppose that f :D → R and g:D → R are continuous at s,
where s ∈ D. We show that f + g is continuous at s. Let ε > 0 be given.
Then there exist δ1 > 0 and δ2 > 0 such that |f(x) − f(s)| < 1

2
ε for all

x ∈ D satisfying |x− s| < δ1, and |g(x)− g(s)| < 1
2
ε for all x ∈ D satisfying

|x− s| < δ2. Let δ be the minimum of δ1 and δ2. If |x− s| < δ then

|f(x) + g(x)− (f(s) + g(s))| ≤ |f(x)− f(s)|+ |g(x)− g(s)| < 1
2
ε+ 1

2
ε = ε,

showing that f + g is continuous at s. The proof of Proposition 3.2 can
be adapted in a similar fashion to show that f − g, f · g and f/g are also
continuous at s.

Proposition 3.5 Let f :D → R and g:E → R be functions defined on D
and E respectively, where D and E are subsets of R satisfying f(D) ⊂ E.
Let s be an element of D. Suppose that the function f is continuous at s and
that the function g is continuous at f(s). Then the composition g ◦ f of f
and g is continuous at s.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(u) −
g(f(s))| < ε for all u ∈ E satisfying |u − f(s)| < η. But then there exists
some δ > 0 such that |f(x) − f(s)| < η for all x ∈ D satisfying |x − s| < δ.
Thus if |x − s| < δ then |g(f(x)) − g(f(s))| < ε. Hence g ◦ f is continuous
at s.

Lemma 3.6 Let f :D → R be a function defined on some subset D of R,
and let a1, a2, a3, . . . be a sequence of real numbers belonging to D. Suppose
that an → s as n→ +∞, where s ∈ D, and that f is continuous at s. Then
f(an)→ f(s) as n→ +∞.

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(x)−
f(s)| < ε for all x ∈ D satisfying |x − s| < δ. But then there exists some
positive integer N such that |an − s| < δ for all n satisfying n ≥ N . Thus
|f(an)− f(s)| < ε for all n ≥ N . Hence f(an)→ f(s) as n→ +∞.

Proposition 3.7 Let f :D → R and g:E → R be functions defined on D and
E respectively, where D and E are subsets of R satisfying f(D) ⊂ E. Let s
be a limit point of D, and let l be an element of E. Suppose that lim

x→s
f(x) = l

and that the function g is continuous at l. Then lim
x→s

g(f(x)) = g(l).
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Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(u) −
g(l)| < ε for all u ∈ E satisfying |u − l| < η. But then there exists δ > 0
such that |f(x) − l| < η for all x ∈ D satisfying 0 < |x − s| < δ. Thus if
0 < |x− s| < δ then |g(f(x))− g(l)| < ε. Hence lim

x→s
g(f(x)) = g(l).

3.3 The Intermediate Value Theorem

Theorem 3.8 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof We first prove the result in the special case in which c = 0 and
f(a) ≤ 0 ≤ f(b). We must show that there exists some s ∈ [a, b] for which
f(s) = 0. Let S be the subset of [a, b] defined by S = {x ∈ [a, b] : f(x) ≤ 0}.
The set S is non-empty and bounded above (since a ∈ S and b is an upper
bound for the set S). Therefore there exists a least upper bound supS for
the set S. Let s = supS. Then a ≤ s ≤ b, since a ∈ S and S ⊂ [a, b]. We
show that f(s) = 0.

Now if it were the case that f(s) 6= 0. An application of the definition
of continuity (with 0 < ε ≤ |f(s)|) shows that there exists some δ > 0 such
that f(x) has the same sign as f(s) for all x ∈ [a, b] satisfying |x − s| < δ.
(Thus if f(s) > 0 then f(x) > 0 whenever |x − s| < δ, or if f(s) < 0 then
f(x) < 0 whenever |x− s| < δ.)

In particular, suppose that it were the case that f(s) < 0. Then s < b
(since f(b) ≥ 0 by hypothesis), and hence f(x) < 0, and thus x ∈ S, for some
x ∈ [a, b] satisfying s < x < s + δ. But this would contradict the definition
of s.

Next suppose that it were the case that f(s) > 0. Then s > a (since
f(a) ≤ 0 by hypothesis), and hence f(x) > 0, and thus x 6∈ S, for all
x ∈ [a, b] satisfying x > s − δ. But then f(x) > 0 for all x ≥ s − δ, and
thus s − δ would be an upper bound of the set S, which also contradicts
the definition of s. The only remaining possibility is that f(s) = 0, which is
what we are seeking to prove.

The result in the general case follows from that in the case c = 0 by
applying the result in this special case to the function x 7→ f(x) − c when
f(a) ≤ c ≤ f(b), and to the function x 7→ c−f(x) when f(a) ≥ c ≥ f(b).

Corollary 3.9 Given any positive real number b and natural number n, there
exists some positive real number a satisfying an = b.
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Proof Let f(x) = xn−b, and let c = max(b, 1). Then f(0) < 0 and f(c) ≥ 0.
It follows from the Intermediate Value Theorem (Theorem 3.8) that f(a) = 0
for some real number a satisfying 0 < a ≤ c. But then an = b, as required.

Corollary 3.10 Let P be a polynomial of odd degree with real coefficients.
Then P has at least one real root.

Proof Let us write P (x) = a0 + a1x + a2x
2 + · · · + anx

n, where n is odd
and an 6= 0. Without loss of generality we may suppose that an > 0 (after
replacing the polynomial P by −P if necessary). We claim that P (K) >
0 and P (−K) < 0 for some sufficiently large real number K. (Indeed if
K is chosen large enough to ensure that K > 1 and |an|K ≥ 2n|aj| for
j = 0, 1, . . . , n − 1 then |P (x) − anx

n| ≤ 1
2
|anxn| whenever |x| ≥ K. But

then P (x) and anx
n have the same sign whenever |x| ≥ K. In particular,

P (K) > 0 and P (−K) < 0.) It follows immediately from the Intermediate
Value Theorem (Theorem 3.8) that there exists some x0 ∈ [−K,K] for which
P (x0) = 0. Thus the polynomial P has at least one real root.

A function f is said to be strictly increasing on an interval I if f(x1) <
f(x2) for all x1, x2 ∈ I satisfying x1 < x2.

The next theorem is useful in verifying the continuity of functions involv-
ing square roots, nth roots, inverse trigonometric and logarithm functions.

Theorem 3.11 A continuous strictly increasing function f : [a, b]→ R on an
interval [a, b] has a well-defined continuous inverse f−1: [c, d]→ [a, b] defined
over the interval [c, d], where c = f(a) and d = f(b).

Proof It follows from the Intermediate Value Theorem that, for each ele-
ment y of the interval [c, d], there exists an element x of the interval [a, b]
for which f(x) = y. There cannot exist two distinct elements u and v of
the interval [a, b] satisfying f(u) = f(v), for if u < v then f(u) < f(v), and
if u > v then f(u) > f(v). Therefore, for each element y of the interval
[c, d], the corresponding element x of the interval [a, b] satisfying f(x) = y is
uniquely determined; we denote this element x by f−1(y). We obtain in this
fashion a function f−1: [c, d]→ [a, b]. This function is the inverse function to
of f : [a, b]→ [c, d].

Let v satisfy c < v < d, and let u = f−1(v) (so that f(u) = v). We
show that f−1 is continuous at v. Let ε > 0 be given. Now a < u < b,
and hence there exist real numbers u− and u+ in the interval [a, b] satisfying
u − ε < u− < u < u+ < u + ε. Let v− = f(u−) and v+ = f(u+), and
let δ be the minimum of v+ − v and v − v−. Then δ > 0, and if y ∈ [c, d]
satisfies |y − v| < δ then v− < y < v+. But then u− < f−1(y) < u+, and
thus |f−1(y)− f−1(v)| < ε. We deduce that f−1 is continuous at v whenever
c < v < d. A similar proof shows that f−1 is continuous at both c and d.
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3.4 Continuous Functions on Closed Bounded Inter-
vals

Theorem 3.12 Let f : [a, b]→ R be a continuous real-valued function defined
on the interval [a, b]. Then there exists a constant M with the property that
|f(x)| ≤M for all x ∈ [a, b].

We give two proofs of this theorem. The first uses the Bolzano-Weierstrass
Theorem which states that every bounded sequence of real numbers possesses
a convergent subsequence. The second makes use of the Least Upper Bound
Axiom.

1st Proof Suppose that the function were not bounded on the interval [a, b].
Then there would exist a sequence x1, x2, x3, . . . of real numbers in the interval
[a, b] such that |f(xn)| > n for all n. The bounded sequence x1, x2, x3, . . .
would possess a convergent subsequence xn1 , xn2 , xn3 , . . ., by the Bolzano-
Weierstrass Theorem (Theorem 2.4). Moreover the limit l of this subsequence
would belong to [a, b]. But then f(xnk

)→ f(l) as k → +∞, by Lemma 3.6.
It follows that there exists some natural number N with the property that
|f(xnk

) − f(l)| < 1 whenever k ≥ N , so that |f(xnk
)| ≤ |f(l)| + 1 whenever

k ≥ N . But this is a contradiction, since |f(xnk
)| > nk for all k and nk

increases without limit as k → +∞. Thus the function f is indeed bounded
on the closed interval [a, b].

2nd Proof Define S = {τ ∈ [a, b] : f is bounded on [a, τ ]}. Clearly a ∈ S
and S ⊂ [a, b]. Thus the set S is non-empty and bounded. It follows from
the Least Upper Bound axiom that there exists a least upper bound for the
set S. Let s = supS. Then s ∈ [a, b]. The function f is continuous at s.
Therefore there exists some δ > 0 such that |f(x) − f(s)| < 1, and thus
|f(x)| < |f(s)|+ 1, for all x ∈ [a, b] satisfying |x− s| < δ.

Now s−δ is not an upper bound for the set S and hence s−δ < τ ≤ s for
some τ ∈ S. But then the function f is bounded on [a, τ ] (since τ ∈ S) and
on [τ, s] (since |f(s)| + 1 is an upper bound on this interval). We conclude
that f is bounded on [a, s], and thus s ∈ S. Moreover if it were the case that
s < b then the function f would be bounded on [a, x], and thus x ∈ S, for
all x ∈ [a, b] satisfying s < x < s+ δ, contradicting the definition of s as the
least upper bound of the set S. Thus s = b. But then b ∈ S, so that the
function f is bounded on the interval [a, b] as required.

Theorem 3.13 Let f : [a, b]→ R be a continuous real-valued function defined
on the interval [a, b]. Then there exist u, v ∈ [a, b] with the property that
f(u) ≤ f(x) ≤ f(v) for all x ∈ [a, b].
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Proof Let C = sup{f(x) : a ≤ x ≤ b}. If there did not exist any v ∈ [a, b] for
which f(v) = C then the function x 7→ 1/(C − f(x)) would be a continuous
function on the interval [a, b] which was not bounded above on this interval,
thus contradicting Theorem 3.12. Thus there must exist some v ∈ [a, b] with
the property that f(v) = C. A similar proof shows that there must exist some
u ∈ [a, b] with the property that g(u) = c, where c = inf{f(x) : a ≤ x ≤ b}.
But then f(u) ≤ f(x) ≤ f(v) for all x ∈ [a, b], as required.

3.5 One-Sided Limits and Limits involving Infinity

Let f :D → R be a real-valued function defined on some subset D of R.
We write lim

x→s+
f(x) = l if, given any ε > 0, there exists some δ > 0 such

that |f(x) − l| < ε for all x ∈ D satisfying s < x < s + δ. Similarly we
write lim

x→s−
f(x) = l if, given any ε > 0, there exists some δ > 0 such that

|f(x)− l| < ε for all x ∈ D satisfying s− δ < x < s. Let f :D → R be a real
valued function. Note that lim

x→s+
f(x) = l if and only if f(x)→ l as x→ s in

D ∩ {x ∈ R : x > s}, and lim
x→s−

f(x) = l if and only if f(x) → l as x → s in

D ∩ {x ∈ R : x < s}, Also lim
x→s

f(x) = l if and only if both lim
x→s+

f(x) = l and

lim
x→s−

f(x) = l.

We next give the formal definition of the limit of a function of a real
variable x as x→ +∞ or x→ −∞.

Let f :R → R be a function of a real variable. We write lim
x→+∞

f(x) = l,

where l is some real number, if and only if, given any ε > 0, there exists some
real number L with the property that |f(x)− l| < ε for all x ∈ R satisfying
x > L. Similarly we write lim

x→−∞
f(x) = l if and only if, given any ε > 0,

there exists some real number L with the property that |f(x)− l| < ε for all
x ∈ R satisfying x < L.

Example Using the formal definition of the limit, one can show that

lim
x→+∞

x2

1 + x2
= 1.

Indeed suppose that ε > 0 is given. Choose L such that L > 1/
√
ε. If x > L

then
x2

1 + x2
= 1− 1

1 + x2
> 1− 1

L2
> 1− ε

and thus

∣∣∣∣ x2

1 + x2
− 1

∣∣∣∣ < ε, as required.
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Let f :D → R be a real-valued function defined over a subset D of R,
and let s be a limit point of D where s 6∈ D. We write lim

x→s
f(x) = +∞ if,

given any real number K (no matter how large), there exists some δ > 0
such that f(x) > K for all x ∈ D satisfying 0 < |x − s| < δ. Similarly we
write lim

x→s
f(x) = −∞ if and only if, given any real number K, there exists

some δ > 0 such that f(x) < K for all x ∈ D satisfying 0 < |x− s| < δ.

Example One can use the formal definition given above to verify that
lim
x→0

1/x2 = +∞. Indeed let the real number K be given. If K > 0 choose δ

large enough to ensure that δ > 1/
√
K. Otherwise let δ be any positive real

number. If |x| < δ then 1/x2 > K, as required.

Let f :R→ R be a function of a real variable. We write lim
x→+∞

f(x) = +∞
if and only if, given any real number K (no matter how large), there exists
a real number L such that f(x) > K for all x ∈ R satisfying x > L.

In an analogous fashion one can associate a precise meaning to the state-
ments ‘ lim

x→+∞
f(x) = −∞’, ‘ lim

x→−∞
f(x) = +∞’ and ‘ lim

x→−∞
f(x) = −∞’.
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