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4 Differentiation

Let s be a real number. We say that a function f : D → R is defined around s
if there exists some δ > 0 with the property that all real numbers x satisfying
|x− s| < δ belong to the domain D of the function f .

Definition Let s be some real number, and let f be a real-valued function
defined around s. The function f is said to be differentiable at s, with
derivative f ′(s), if and only if the limit

f ′(s) = lim
h→0

f(s + h)− f(s)

h

is well-defined. We denote by f ′, or by
df

dx
the function whose value at s is

the derivative f ′(s) of f at s.

Suppose that the real-valued function f is defined around some real num-
ber s and is differentiable at s. Then

lim
x→s

f(x) = lim
h→0

f(s + h) = lim
h→0

f(s) +
(

lim
h→0

h
)(

lim
h→0

f(s + h)− f(s)

h

)
= f(s) + 0.f ′(s) = f(s),

and therefore f is continuous at s (see Lemma 3.3). Thus differentiability
implies continuity.

Example Let f : R → R be the function defined by f(x) = x2. Let s be a
real number. If h 6= 0 then

f(s + h)− f(s)

h
=

(s + h)2 − s2

h
= 2s + h.

Therefore the function f is differentiable at s, and f ′(s) = lim
h→0

(2s + h) = 2s.
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Example Let g: [0, +∞) → R be the function defined by g(x) =
√

x, and
let s ∈ (0, +∞). If h is any real number satisfying h > −s and h 6= 0 then

g(s + h)− g(s)

h
=

√
s + h−

√
s

h
=

(
√

s + h−
√

s)(
√

s + h +
√

s)

h(
√

s + h +
√

s)

=
(s + h)− s

h(
√

s + h +
√

s)
=

1√
s + h +

√
s
.

Now lim
h→0

√
s + h =

√
s (since the function x 7→

√
x is continuous at s). It

follows that the function g is differentiable at s, and

g′(s) = lim
h→0

g(s + h)− g(s)

h
=

1

lim
h→0

(
√

s + h−
√

s)
=

1

2
√

s
.

Theorem 4.1 Let s be some real number, and let f and g be real-valued
functions defined around s. Suppose that the functions f and g are differen-
tiable at s. Then f + g and f − g are differentiable at s, and

(f + g)′(s) = f ′(s) + g′(s), (f − g)′(s) = f ′(s)− g′(s).

Proof It follows from Proposition 3.2 that

lim
h→0

(f + g)(s + h)− (f + g)(s)

h

= lim
h→0

f(s + h)− f(s)

h
+ lim

h→0

g(s + h)− g(s)

h
= f ′(s) + g′(s).

Thus the function f + g is differentiable at s, and (f + g)′(s) = f ′(s) + g′(s).
An analogous proof shows that the function f − g is also differentiable at s
and (f − g)′(s) = f ′(s)− g′(s).

Proposition 4.2 (Product Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f
and g are differentiable at s. Then f · g is also differentiable at s, and
(f · g)′(s) = f ′(s)g(s) + f(s)g′(s).

Proof Note that

f(s + h)g(s + h)− f(s)g(s)

h

=
f(s + h)− f(s)

h
g(s + h) + f(s)

g(s + h)− g(s)

h
.
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Moreover lim
h→0

g(s + h) = g(s) since g is differentiable, and hence continuous,

at s. It follows that

lim
h→0

f(s + h)g(s + h)− f(s)g(s)

h

= lim
h→0

f(s + h)− f(s)

h
lim
h→0

g(s + h) + f(s) lim
h→0

g(s + h)− g(s)

h
= f ′(s)g(s) + f(s)g′(s).

Thus the function f · g is differentiable at s, and (f · g)′(s) = f ′(s)g(s) +
f(s)g′(s), as required.

Proposition 4.3 (Quotient Rule) Let s be some real number, and let f and
g be real-valued functions defined around s. Suppose that the functions f and
g are differentiable at s and that the function g is non-zero around s. Then
f/g is differentiable at s, and

(f/g)′(s) =
f ′(s)g(s)− f(s)g′(s)

g(s)2
.

Proof Note that

f(s + h)

g(s + h)
− f(s)

g(s)
=

f(s + h)g(s)− f(s)g(s + h)

g(s + h)g(s)

=
(f(s + h)− f(s)) g(s)− f(s) (g(s + h)− g(s))

g(s)g(s + h)
.

Therefore

(f/g)′(s) = lim
h→0

1

h

(
f(s + h)

g(s + h)
− f(s)

g(s)

)
=

1

g(s)2

(
lim
h→0

f(s + h)− f(s)

h
g(s)− f(s) lim

h→0

g(s + h)− g(s)

h

)
=

f ′(s)g(s)− f(s)g′(s)

g(s)2
,

since lim
h→0

g(s)g(s + h) = g(s)2 > 0.

Proposition 4.4 (Chain Rule) Let a be some real number, let f be a real-
valued function defined around a, and let g be a real-valued function defined
around f(a). Suppose that the function f is differentiable at a, and the
function g is differentiable at f(a). Then the composition function g ◦ f is
differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).
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Proof Let b = f(a), and let

R(y) =


g(y)− g(b)

y − b
if y 6= b;

g′(b) if y = b.

for values of y around b. By considering separately the cases when f(a+h) 6=
f(a) and f(a + h) = f(a), we see that

g(f(a + h))− g(f(a)) = R(f(a + h))(f(a + h)− f(a)).

Now the function f is continuous at a, because it is differentiable at a. Also
the function R is continuous at b, where b = f(a), since

lim
y→b

R(y) = lim
y→b

g(y)− g(b)

y − b
= lim

k→0

g(b + k)− g(b)

k
= g′(b) = R(b).

It follows from Proposition 3.5 that the composition function R ◦ f is con-
tinuous at a, and therefore

lim
h→0

R(f(a + h)) = R(f(a)) = g′(f(a))

by Lemma 3.3. It follows that g ◦ f is differentiable at a, and

(g ◦ f)′(a) = lim
h→0

g(f(a + h))− g(f(a))

h

= lim
h→0

R(f(a + h)) lim
h→0

f(a + h)− f(a)

h
= g′(f(a))f ′(a),

as required.

4.1 Rolle’s Theorem and the Mean Value Theorem

Theorem 4.5 (Rolle’s Theorem) Let f : [a, b] → R be a real-valued function
defined on some interval [a, b]. Suppose that f is continuous on [a, b] and
is differentiable on (a, b). Suppose also that f(a) = f(b). Then there exists
some real number s satisfying a < s < b which has the property that f ′(s) = 0.

Proof First we show that if the function f attains its minimum value at u,
and if a < u < b, then f ′(u) = 0. Now the difference quotient

f(u + h)− f(u)

h
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is non-negative for all sufficiently small positive values of h; therefore f ′(u) ≥
0. On the other hand, this difference quotient is non-positive for all suffi-
ciently small negative values of h; therefore f ′(u) ≤ 0. We deduce therefore
that f ′(u) = 0.

Similarly if the function f attains its maximum value at v, and if a < v <
b, then f ′(v) = 0. (Indeed the result for local maxima can be deduced from
the corresponding result for local minima simply by replacing the function f
by −f .)

Now the function f is continuous on the closed bounded interval [a, b].
It therefore follows from Theorem 3.13 that there must exist real numbers u
and v in the interval [a, b] with the property that f(u) ≤ f(x) ≤ f(v) for all
x ∈ [a, b]. If a < u < b then f ′(u) = 0 and we can take s = u. Similarly if
a < v < b then f ′(v) = 0 and we can take s = v. The only remaining case
to consider is when both u and v are endpoints of [a, b]. In that case the
function f is constant on [a, b], since f(a) = f(b), and we can choose s to be
any real number satisfying a < s < b.

Rolle’s Theorem can be generalized to yield the following important the-
orem.

Theorem 4.6 (The Mean Value Theorem) Let f : [a, b] → R be a real-valued
function defined on some interval [a, b]. Suppose that f is continuous on [a, b]
and is differentiable on (a, b). Then there exists some real number s satisfying
a < s < b which has the property that

f(b)− f(a) = f ′(s)(b− a).

Proof Let g: [a, b] → R be the real-valued function on the closed inter-
val [a, b] defined by

g(x) = f(x)− b− x

b− a
f(a)− x− a

b− a
f(b).

Then the function g is continuous on [a, b] and differentiable on (a, b). More-
over g(a) = 0 and g(b) = 0. It follows from Rolle’s Theorem (Theorem 4.5)
that g′(s) = 0 for some real number s satisfying a < s < b. But

g′(s) = f ′(s)− f(b)− f(a)

b− a
.

Therefore f(b)− f(a) = f ′(s)(b− a), as required.

We now prove a generalization of the standard Mean Value Theorem,
known as Cauchy’s Mean Value Theorem.
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Theorem 4.7 (Cauchy’s Mean Value Theorem) Let f and g be real-valued
functions defined on some interval [a, b]. Suppose that f and g are continuous
on [a, b] and are differentiable on (a, b). Then there exists some real number s
satisfying a < s < b which has the property that

(f(b)− f(a)) g′(s) = (g(b)− g(a)) f ′(s).

In particular, if g(b) 6= g(a) and the function g′ is non-zero throughout (a, b),
then

f(b)− f(a)

g(b)− g(a)
=

f ′(s)

g′(s)
.

Proof Consider the function h: [a, b] → R defined by

h(x) = f(x) (g(b)− g(a))− g(x) (f(b)− f(a)) .

Then h(a) = f(a)g(b) − g(a)f(b) = h(b), and the function h satisfies the
hypotheses of Rolle’s Theorem on the interval [a, b]. We deduce from Rolle’s
Theorem (Theorem 4.5) that h′(s) = 0 for some s satisfying a < s < b. The
required result then follows immediately.

An important corollary of Cauchy’s Mean Value Theorem is l’Hôpital’s
Rule for evaluating the limit of a quotient of two functions at a point where
both functions vanish.

Corollary 4.8 (L’Hôpital’s Rule) Let f and g be differentiable real-valued
functions defined around some real number s for which f(s) = g(s) = 0.
Suppose that there exists δ > 0 such that g(x) and g′(x) are non-zero for all
real numbers x satisfying 0 < |x − s| < δ, and that the limit of f ′(x)/g′(x)
exists (and is finite) as x → s. Then the limit of f(x)/g(x) exists as x → s,
and

lim
x→s

f(x)

g(x)
= lim

x→s

f ′(x)

g′(x)
.

Proof Let l be the limit of f ′(x)/g′(x) as x → s, and let ε > 0 be given.
By choosing δ > 0 sufficiently small we can ensure that f(x)/g(x) and
f ′(x)/g′(x) are well-defined and∣∣∣∣f ′(x)

g′(x)
− l

∣∣∣∣ < ε

for all x satisfying 0 < |x − s| < δ. Moreover, by applying Cauchy’s Mean
Value Theorem to the functions f and g on the interval with endpoints s and
x (considering separately the cases x > s and x < s), we deduce that

f(x)

g(x)
=

f(x)− f(s)

g(x)− g(s)
=

f ′(u)

g′(u)
.
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for some real number u between s and x. (Recall that f(s) = g(s) = 0.)
Thus if 0 < |x− s| < δ then 0 < |u− s| < δ, and hence∣∣∣∣f(x)

g(x)
− l

∣∣∣∣ =

∣∣∣∣f ′(u)

g′(u)
− l

∣∣∣∣ < ε.

This shows that f(x)/g(x) → l as x → s, as required.

Example Using l’Hôpital’s Rule twice, we see that

lim
x→2

x3 + x2 − 16x + 20

x3 − 3x2 + 4
= lim

x→2

3x2 + 2x− 16

3x2 − 6x
= lim

x→2

6x + 2

6x− 6
=

7

3
.

4.2 Taylor’s Theorem

An open interval in R is an interval I with the property that, given any
s ∈ I, there exists some δ > 0 such that every real number x satisfying
|x− s| < δ belongs to the interval I. Given real numbers c and d satisfying
c < d, the intervals (c, d), (c, +∞) and (−∞, d) are open intervals, as is the
whole real line R.

Theorem 4.9 (Taylor’s Theorem) Let s and h be real numbers, and let f
be a k times differentiable real-valued function defined on some open interval
containing s and s + h. Then

f(s + h) = f(s) +
k−1∑
n=1

hn

n!
f (n)(s) +

hk

k!
f (k)(s + θh)

for some real number θ satisfying 0 < θ < 1.

Proof Let p: [0, 1] → R be defined by

p(t) = f(s + th)− f(s)−
k−1∑
n=1

tnhn

n!
f (n)(s).

A straightforward calculation shows that p(n)(0) = 0 for n = 0, 1, . . . , k − 1.
Thus if q(t) = p(t) − p(1)tk for all s ∈ [0, 1] then q(n)(0) = 0 for n =
0, 1, . . . , k − 1, and q(1) = 0. We can therefore apply Rolle’s Theorem (The-
orem 4.5) to the function q on the interval [0, 1] to deduce the existence of
some real number t1 satisfying 0 < t1 < 1 for which q′(t1) = 0. We can then
apply Rolle’s Theorem to the function q′ on the interval [0, t1] to deduce the
existence of some real number t2 satisfying 0 < t2 < t1 for which q′′(t2) = 0.
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By continuing in this fashion, applying Rolle’s Theorem in turn to the func-
tions q′′, q′′′, . . . , q(k−1), we deduce the existence of real numbers t1, t2, . . . , tk
satisfying 0 < tk < tk−1 < · · · < t1 < 1 with the property that q(n)(tn) = 0
for n = 1, 2, . . . , k. Let θ = tk. Then 0 < θ < 1 and

0 =
1

k!
q(k)(θ) =

1

k!
p(k)(θ)− p(1) =

hk

k!
f (k)(s + θh)− p(1),

hence

f(s+h) = f(s)+
k−1∑
n=1

hn

n!
f (n)(s)+p(1) = f(s)+

k−1∑
n=1

hn

n!
f (n)(s)+

hk

k!
f (k)(s+θh),

as required.

Example Consider the cosine function cos: R → R. The derivatives of
this function are given by cos(2n)(x) = (−1)n cos(x) and cos(2n−1)(x) =
(−1)n sin(x) for all natural numbers n. It follows from Taylor’s Theorem
that, given any x ∈ R and given any non-negative integer m, there exists
some θ satisfying 0 < θ < 1 such that

cos x =
m∑

n=0

(−1)nx2n

(2n)!
+

x2m+1(−1)m−1

(2m + 1)!
sin(θx)

(The value of θ will depend on x and m.) But then∣∣∣∣∣cos x−
m∑

n=0

(−1)nx2n

(2n)!

∣∣∣∣∣ ≤ |x|2m+1

(2m + 1)!
,

hence

cos x = lim
m→+∞

m∑
n=0

(−1)nx2n

(2n)!
=

+∞∑
n=0

(−1)nx2n

(2n)!
.

A similar argument shows that

sin x =
+∞∑
n=0

(−1)nx2n+1

(2n + 1)!
.

Let f be an infinitely differentiable real-valued function defined around
some real number a. The infinite series

f(a) +
+∞∑
n=1

hn

n!
f (n)(a)
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is referred to as the Taylor expansion of the function f about a. It will often
be the case that

f(a + h) = f(a) +
+∞∑
n=1

hn

n!
f (n)(a) = f(a) + lim

m→+∞

(
m∑

n=1

hn

n!
f (n)(a)

)

for all sufficiently small values of h. However there exist functions whose
Taylor expansion about some real number a does not converge to the given
function for any non-zero value of h. Such a function is exhibited in the
following example.

Example Let

g(x) =

 exp

(
−1

x

)
if x > 0;

0 if x ≤ 0.

We show by induction on k that the function g is k times differentiable on R
and g(k)(0) = 0 for all natural numbers k. Now

g(k)(x) =
pk(x)

x2k
exp(−(1/x))

for all x > 0, where p1(x) = 1 and

pk+1(x) = x2p′k(x) + (1− 2kx)pk(x)

for all k. Note that p1, p2, p3, . . . are polynomials in x. Also elementary
calculus shows that the function x 7→ x−2k−1 exp(−1/x) attains its maximum
value Ck on (0, +∞) when (2k+1)x = 1, and therefore 0 < x−2k exp(−1/x) ≤
Ckx for all x > 0. It follows that lim

x→0+
x−2k exp(−1/x) = 0, and hence

g(k)(0) = lim
x→0

g(k−1)(x)

x
= 0 = lim

x→0
g(k)(x)

for all natural numbers k, as required.
Note that the function g has a well-defined Taylor expansion about x = 0.

Moreover all the terms of this Taylor expansion are zero, and therefore the
Taylor expansion of g converges to the zero function. This function therefore
provides an example of a function where the Taylor expansion is well-defined
but does not converge to the given function.
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5 Integration

A partition P of an interval [a, b] is a set {x0, x1, x2, . . . , xn} of real numbers
satisfying a = x0 < x1 < x2 < · · · < xn−1 < xn = b.

Given any bounded real-valued function f on [a, b], the lower sum L(P, f)
and the upper sum U(P, f) of f for the partition P of [a, b] are defined by

L(P, f) =
n∑

i=1

mi(xi − xi−1), U(P, f) =
n∑

i=1

Mi(xi − xi−1),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Clearly L(P, f) ≤ U(P, f). Moreover

n∑
i=1

(xi − xi−1) = b− a, and therefore

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤ M(b− a),

for any real numbers m and M satisfying m ≤ f(x) ≤ M for all x ∈ [a, b].

Definition Let f be a bounded real-valued function on the interval [a, b],

where a < b. The upper Riemann integral U
∫ b

a
f(x) dx and the lower Rie-

mann integral L
∫ b

a
f(x) dx of the function f on [a, b] are defined by

U
∫ b

a

f(x) dx ≡ inf {U(P, f) : P is a partition of [a, b]} ,

L
∫ b

a

f(x) dx ≡ sup {L(P, f) : P is a partition of [a, b]}

(i.e., U
∫ b

a
f(x) dx is the infimum of the values of U(P, f) and L

∫ b

a
f(x) dx is

the supremum of the values of L(P, f) as P ranges over all possible partitions
of the interval [a, b]). If

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx

then the function f is said to be Riemann-integrable on [a, b], and the Rie-

mann integral
∫ b

a
f(x) dx of f on [a, b] is defined to be the common value of

U
∫ b

a
f(x) dx and L

∫ b

a
f(x) dx.

When a > b we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx
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The upper sum U(P, f)

The lower sum L(P, f)
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for all Riemann-integrable functions f on [b, a]. We set
∫ b

a
f(x) = 0 when

b = a.
If f and g are bounded Riemann-integrable functions on the interval

[a, b], and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx, since

L(P, f) ≤ L(P, g) and U(P, f) ≤ U(P, g) for all partitions P of [a, b].

Definition Let P and R be partitions of [a, b], given by P = {x0, x1, . . . , xn}
and R = {u0, u1, . . . , um}. We say that the partition R is a refinement of P
if P ⊂ R, so that, for each xi in P , there is some uj in R with xi = uj.

Lemma 5.1 Let R be a refinement of some partition P of [a, b]. Then
L(R, f) ≥ L(P, f) and U(R, f) ≤ U(P, f) for any bounded function f : [a, b] →
R.

Proof Let P = {x0, x1, . . . , xn} and R = {u0, u1, . . . , um}, where a = x0 <
x1 < · · · < xn = b and a = u0 < u1 < · · · < um = b. Now for each
integer i between 0 and n there exists some integer j(i) between 0 and m
such that xi = uj(i) for each i, since R is a refinement of P . Moreover 0 =
j(0) < j(1) < · · · < j(n) = n. For each i, let Ri be the partition of [xi−1, xi]

given by Ri = {uj : j(i − 1) ≤ j ≤ j(i)}. Then L(R, f) =
n∑

i=1

L(Ri, f) and

U(R, f) =
n∑

i=1

U(Ri, f). Moreover

mi(xi − xi−1) ≤ L(Ri, f) ≤ U(Ri, f) ≤ Mi(xi − xi−1),

since mi ≤ f(x) ≤ Mi for all x ∈ [xi−1, xi]. On summing these inequal-
ities over i, we deduce that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤ U(P, f), as
required.

Given any two partitions P and Q of [a, b] there exists a partition R of
[a, b] which is a refinement of both P and Q. For example, we can take
R = P ∪ Q. Such a partition is said to be a common refinement of the
partitions P and Q.

Lemma 5.2 Let f be a bounded real-valued function on the interval [a, b].
Then

L
∫ b

a

f(x) dx ≤ U
∫ b

a

f(x) dx.

Proof Let P and Q be partitions of [a, b], and let R be a common refinement
of P and Q. It follows from Lemma 5.1 that L(P, f) ≤ L(R, f) ≤ U(R, f) ≤
U(Q, f). Thus, on taking the supremum of the left hand side of the inequality
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L(P, f) ≤ U(Q, f) as P ranges over all possible partitions of the interval [a, b],

we see that L
∫ b

a
f(x) dx ≤ U(Q, f) for all partitions Q of [a, b]. But then,

taking the infimum of the right hand side of this inequality as Q ranges over
all possible partitions of [a, b], we see that L

∫ b

a
f(x) dx ≤ U

∫ b

a
f(x) dx, as

required.

Example Let f(x) = cx+d, where c ≥ 0. We shall show that f is Riemann-

integrable on [0, 1] and evaluate
∫ 1

0
f(x) dx from first principles.

For each natural number n, let Pn denote the partition of [0, 1] into n
subintervals of equal length. Thus Pn = {x0, x1, . . . , xn}, where xi = i/n.
Now the function f takes values between (i− 1)c/n + d and ic/n + d on the
interval [xi−1, xi], and therefore

mi =
(i− 1)c

n
+ d, Mi =

ic

n
+ d

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Thus

L(Pn, f) =
n∑

i=1

mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d− c

n

)
=

c(n + 1)

2n
+ d− c

n
=

c

2
+ d− c

2n
,

U(Pn, f) =
n∑

i=1

Mi(xi − xi−1) =
1

n

n∑
i=1

(
ci

n
+ d

)
=

c(n + 1)

2n
+ d =

c

2
+ d +

c

2n
.

But L(Pn, f) ≤ L
∫ b

a
f(x) dx ≤ U

∫ b

a
f(x) dx ≤ U(Pn, f) for all n. It follows

that L
∫ b

a
f(x) dx = 1

2
c + d = U

∫ b

a
f(x) dx. Thus f is Riemann-integrable on

the interval [0, 1], and
∫ 1

0
f(x) dx = 1

2
c + d.

Example Let f : [0, 1] → R be the function defined by

f(x) =
{

1 if x is rational;
0 if x is irrational.

Let P be a partition of the interval [0, 1] given by P = {x0, x1, x2, . . . , xn},
where 0 = x0 < x1 < x2 < · · · < xn = 1. Then

inf{f(x) : xi−1 ≤ x ≤ xi} = 0, sup{f(x) : xi−1 ≤ x ≤ xi} = 1,

for i = 1, 2, . . . , n, and thus L(P, f) = 0 and U(P, f) = 1 for all partitions P

of the interval [0, 1]. It follows that L
∫ 1

0
f(x) dx = 0 and U

∫ 1

0
f(x) dx = 1,

and therefore the function f is not Riemann-integrable on the interval [0, 1].
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It can be shown that sums and products of Riemann-integrable functions
are themselves Riemann-integrable.

Proposition 5.3 Let f be a bounded real-valued function on the interval
[a, c]. Suppose that f is Riemann-integrable on the intervals [a, b] and [b, c],
where a < b < c. Then f is Riemann-integrable on [a, c], and∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx.

Proof Let Q and R be any partitions of the intervals [a, b] and [b, c] respec-
tively. These partitions combine to give a partition Q ∪ R of the interval
[a, c]: thus if Q = {a, x1, . . . , xn−1, b} and R = {b, u1, . . . , um−1, c}, where

a < x1 < x2 < · · · < xn−1 < b < u1 < u2 < · · · < um−1 < c,

then Q∪R = {a, x1, . . . , xn−1, b, u1, . . . , um−1, c}. Clearly the lower and upper
sums of f satisfy L(Q, f) + L(R, f) = L(Q∪R, f) and U(Q, f) + U(R, f) =
U(Q ∪R, f). It follows that

L(Q, f) + L(R, f) ≤ L
∫ c

a

f(x) dx.

Taking the supremum of the left hand side of this inequality over all parti-
tions Q of [a, b] and all partitions R of [b, c], we deduce that∫ b

a

f(x) dx +

∫ c

b

f(x) dx ≤ L
∫ c

a

f(x) dx.

Similarly U(Q, f) + U(R, f) ≥ U
∫ c

a
f(x) dx, and hence∫ b

a

f(x) dx +

∫ c

b

f(x) dx ≥ U
∫ c

a

f(x) dx.

But L
∫ c

a
f(x) dx ≤ U

∫ c

a
f(x) dx by Lemma 5.2. It follows that

L
∫ c

a

f(x) dx =

∫ b

a

f(x) dx +

∫ c

b

f(x) dx = U
∫ c

a

f(x) dx,

as required.
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5.1 Integrability of Continuous functions

Lemma 5.4 Let f be a continuous real-valued function on a closed bounded
interval [a, b]. Then, given any ε > 0, there exists some δ > 0 (independent of
x and y) such that |f(x)−f(y)| < ε for all x, y ∈ [a, b] satisfying |x−y| < δ.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0
with the required property. Then, for each natural number n, there would
exist values xn and yn in the interval [a, b] such that |xn − yn| < 1/n and
|f(xn)−f(yn)| ≥ ε. But the sequence x1, x2, x3, . . . would be bounded (since
a ≤ xn ≤ b for all n) and thus would possess a convergent subsequence
xn1 , xn2 , xn3 , . . ., by the Bolzano-Weierstrass Theorem (Theorem 2.4). Let
l = lim

k→+∞
xnk

. Then l = lim
k→+∞

ynk
also, since lim

k→+∞
(ynk

−xnk
) = 0. Moreover

a ≤ l ≤ b, and therefore

lim
k→+∞

f(xnk
) = lim

k→+∞
f(ynk

) = f(l),

since f is continuous (see Lemma 3.6). Thus lim
k→+∞

(f(xnk
)− f(ynk

)) = 0.

But this is impossible, since xn and yn have been chosen so that |f(xn) −
f(yn)| ≥ ε for all n. We conclude therefore that there must exist some δ > 0
with the required property.

Theorem 5.5 Let a and b be real numbers satisfying a < b. Then any
continuous real-valued function on the interval [a, b] is Riemann-integrable.

Proof Let f be a continuous real-valued function on [a, b]. Then f is
bounded above and below on the interval [a, b] (see Theorem 3.12).

Let ε > 0 be given. It follows from Lemma 5.4 that there exists some
δ > 0 such that |f(x) − f(y)| < ε whenever x, y ∈ [a, b] satisfy |x − y| < δ.
Choose a partition P of the interval [a, b] such that each subinterval in the
partition has length less than δ. Write P = {x0, x1, . . . , xn}, where a = x0 <
x1 < · · · < xn = b. Now if xi−1 ≤ x ≤ xi then |x − xi| < δ, and hence
f(xi)− ε < f(x) < f(xi) + ε. It follows that

f(xi)− ε ≤ mi ≤ Mi ≤ f(xi) + ε (i = 1, 2, . . . , n),

where mi = inf{f(x) : xi−1 ≤ x ≤ xi} and Mi = sup{f(x) : xi−1 ≤ x ≤ xi}.
Therefore

n∑
i=1

f(xi)(xi − xi−1)− ε(b− a) ≤ L(P, f) ≤ U(P, f)

≤
n∑

i=1

f(xi)(xi − xi−1) + ε(b− a),
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where L(P, f) and U(P, f) denote the lower and upper sums of the function f
for the partition P , and hence

0 ≤ U
∫ b

a

f(x) dx− L
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) ≤ 2ε(b− a).

But this inequality must be satisfied for any ε satisfying ε > 0. Therefore

U
∫ b

a

f(x) dx = L
∫ b

a

f(x) dx,

and thus the function f is Riemann-integrable on [a, b].

5.2 The Fundamental Theorem of Calculus

Let a and b be real numbers satisfying a < b. One can show that all continu-
ous functions on the interval [a, b] are Riemann-integrable (see Theorem 5.5).
However the task of calculating the Riemann integral of a continuous func-
tion directly from the definition is difficult if not impossible for all but the
simplest functions. Thus to calculate such integrals one makes use of the
Fundamental Theorem of Calculus.

Theorem 5.6 (The Fundamental Theorem of Calculus) Let f be a contin-
uous real-valued function on the interval [a, b], where a < b. Then

d

dx

(∫ x

a

f(t) dt

)
= f(x)

for all x satisfying a < x < b.

Proof Let F (s) =
∫ s

a
f(t) dt for all s ∈ (a, b). Now the function f is contin-

uous at x, where a < x < b. Thus, given any ε > 0, there exists δ > 0 such
that |f(t)− f(x)| < 1

2
ε for all t ∈ [a, b] satisfying |t− x| < δ. Now

F (x + h)− F (x)

h
− f(x) =

1

h

∫ x+h

x

f(t) dt− f(x) =
1

h

∫ x+h

x

(f(t)− f(x)) dt.

But if 0 < |h| < δ and x + h ∈ [a, b] then
∣∣∣∫ x+h

x
(f(t)− f(x)) dt

∣∣∣ ≤ 1
2
ε|h|, and

thus ∣∣∣∣F (x + h)− F (x)

h
− f(x)

∣∣∣∣ ≤ 1
2
ε < ε.

It follows that

d

dx

(∫ x

a

f(t) dt

)
= lim

h→0

F (x + h)− F (x)

h
= f(x),

as required.
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Let f : [a, b] → R be a continuous function on a closed interval [a, b]. We
say that f is continuously differentiable on [a, b] if the derivative f ′(x) of f
exists for all x satisfying a < x < b, the one-sided derivatives

f ′(a) = lim
h→0+

f(a + h)− f(a)

h
, f ′(b) = lim

h→0−

f(b + h)− f(b)

h

exist at the endpoints of [a, b], and the function f ′ is continuous on [a, b].
If f : [a, b] → R is continuous, and if F (x) =

∫ x

a
f(t) dt for all x ∈ [a, b]

then the one-sided derivatives of F at the endpoints of [a, b] exist, and

lim
h→0+

F (a + h)− F (a)

h
= f(a), lim

h→0−

F (b + h)− F (b)

h
= f(b).

One can verify these results by adapting the proof of the Fundamental The-
orem of Calculus.

Corollary 5.7 Let f be a continuously differentiable real-valued function on
the interval [a, b]. Then ∫ b

a

df(x)

dx
dx = f(b)− f(a)

Proof Define g: [a, b] → R by

g(x) = f(x)− f(a)−
∫ x

a

df(t)

dt
dt.

Then g(a) = 0, and

dg(x)

dx
=

df(x)

dx
− d

dx

(∫ x

a

df(t)

dt
dt

)
= 0

for all x satisfing a < x < b, by the Fundamental Theorem of Calculus. Now
it follows from the Mean Value Theorem (Theorem 4.6) that there exists
some s satisfying a < s < b for which g(b)− g(a) = (b− a)g′(s). We deduce
therefore that g(b) = 0, which yields the required result.

Corollary 5.8 (Integration by Parts) Let f and g be continuously differen-
tiable real-valued functions on the interval [a, b]. Then∫ b

a

f(t)
dg(x)

dx
dx = f(b)g(b)− f(a)g(a)−

∫ b

a

df(x)

dx
g(x) dx.
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Proof This result follows from Corollary 5.7 on integrating the identity

f(x)
dg(x)

dx
=

d

dx
(f(x)g(x))− df(x)

dx
g(x).

Corollary 5.9 (Integration by Substitution) Let u: [a, b] → R be a contin-
uously differentiable monotonically increasing function on the interval [a, b],
and let c = u(a) and d = u(b). Then∫ d

c

f(x) dx =

∫ b

a

f(u(t))
du(t)

dt
dt.

for all continuous real-valued functions f on [c, d].

Proof Let F and G be the functions on [a, b] defined by

F (x) =

∫ u(x)

c

f(y)dy, G(x) =

∫ x

a

f(u(t))
du(t)

dt
dt.

Then F (a) = 0 = G(a). Moreover F (x) = H(u(x)), where H(s) =
∫ s

c
f(y) dy,

and H ′(s) = f(s) for all s ∈ [a, b]. Using the Chain Rule and the Fundamen-
tal Theorem of Calculus, we deduce that

F ′(x) = H ′(u(x))u′(x) = f(u(x))u′(x) = G′(x)

for all x ∈ (a, b). On applying the Mean Value Theorem (Theorem 4.6) to the
function F−G on the interval [a, b], we see that F (b)−G(b) = F (a)−G(a) =
0. Thus F (b) = G(b) = H(d), which yields the required identity.

5.3 Interchanging Limits and Integrals, Uniform Con-
vergence

Let f1, f2, f3, . . . be a sequence of Riemann-integrable functions defined over
the interval [a, b], where a and b are real numbers satisfying a ≤ b. Suppose
that the sequence f1(x), f2(x), f3(x) converges for all x ∈ [a, b]. We wish to
determine whether or not

lim
n→+∞

∫ b

a

fn(x) dx =

∫ b

a

(
lim

n→+∞
fn(x)

)
dx.

The following example demonstrates that this identity can fail to hold, even
when the functions involved are well-behaved polynomial functions.
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Example Let f1, f2, f3, . . . be the sequence of continuous functions on the
interval [0, 1] defined by fn(x) = n(xn − x2n). Now

lim
n→+∞

∫ 1

0

fn(x) dx = lim
n→+∞

(
n

n + 1
− n

2n + 1

)
=

1

2
.

On the other hand, we shall show that lim
n→+∞

fn(x) = 0 for all x ∈ [0, 1].

Thus one cannot interchange limits and integrals in this case.
Suppose that 0 ≤ x < 1. We claim that nxn → 0 as n → +∞. To verify

this, choose u satisfying x < u < 1. Then 0 ≤ (n + 1)un+1 ≤ nun for all n
satisfying n > u/(1 − u). Therefore there exists some constant B with the
property that 0 ≤ nun ≤ B for all n. But then 0 ≤ nxn ≤ B(x/u)n for all n,
and (x/u)n → 0 as n → +∞. Therefore nxn → 0 as n → +∞, as claimed.
It follows that

lim
n→+∞

fn(x) =

(
lim

n→+∞
nxn

)(
lim

n→+∞
(1− xn)

)
= 0

for all x satisfying 0 ≤ x < 1. Also fn(1) = 0 for all n. We conclude that
lim

n→+∞
fn(x) = 0 for all x ∈ [0, 1], which is what we set out to show.

We now introduce the concept of uniform convergence. Later shall show
that, given a sequence f1, f2, f3, . . . of Riemann-integrable functions on some
interval [a, b], the identity

lim
n→+∞

∫ b

a

fn(x) dx =

∫ b

a

(
lim

n→+∞
fn(x)

)
dx.

is valid, provided that the sequence f1, f2, f3, . . . of functions converges uni-
formly on the interval [a, b].

Definition Let f1, f2, f3, . . . be a sequence of real-valued functions defined
on some subset D of R. The sequence (fn) is said to converge uniformly to a
function f on D as n → +∞ if and only if the following criterion is satisfied:

for every ε > 0, there exists some positive integer N such that |fn(x)−f(x)| <
ε for all x ∈ D and for all integers n satisfying n ≥ N (where the value of N
is independent of x).

Let f1, f2, f3, . . . be a sequence of bounded real-valued functions on some
subset D of R which converges uniformly on D to the zero function. For each
natural number n, let Mn = sup{fn(x) : x ∈ D}. We claim that Mn → 0 as
n → +∞. To prove this, let ε > 0 be given. Then there exists some natural
number N such that |fn(x)| < 1

2
ε for all x ∈ D and n ≥ N . Thus if n ≥ N

then Mn ≤ 1
2
ε < ε. This shows that Mn → 0 as n → +∞, as claimed.
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Example Let (fn : n ∈ N) be the sequence of continuous functions on
the interval [0, 1] defined by fn(x) = n(xn − x2n). We have already shown
(in an earlier example) that lim

n→+∞
fn(x) = 0 for all x ∈ [0, 1]. However a

straightforward exercise in Calculus shows that the maximum value attained
by the function fn is n/4 (which is attained at x = 1/2

1
n ), and n/4 → +∞

as n → +∞. It follows from this that the sequence f1, f2, f3, . . . does not
converge uniformly to the zero function on the interval [0, 1].

Proposition 5.10 Let f1, f2, f3, . . . be a sequence of continuous real-valued
functions defined on some subset D of R. Suppose that this sequence con-
verges uniformly on D to some real-valued function f . Then f is continuous
on D.

Proof Let s be an element of D, and let ε > 0 be given. If n is chosen
sufficiently large then |f(x) − fn(x)| < 1

3
ε for all x ∈ D, since fn → f

uniformly on D as n → +∞. It then follows from the continuity of fn that
there exists some δ > 0 such that |fn(x)−fn(s)| < 1

3
ε for all x ∈ D satisfying

|x− s| < δ. But then

|f(x)−f(s)| ≤ |f(x)−fn(x)|+|fn(x)−fn(s)|+|fn(s)−f(s)| < 1
3
ε+ 1

3
ε+ 1

3
ε = ε

whenever |x−s| < δ. Thus the function f is continuous at s, as required.

Theorem 5.11 Let f1, f2, f3, . . . be a sequence of continuous real-valued func-
tions which converges uniformly on the interval [a, b] to some continuous
real-valued function f . Then

lim
n→+∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Proof Let ε > 0 be given. Choose ε0 small enough to ensure that 0 < ε0(b−
a) < ε. Then there exists some natural number N such that |fn(x)−f(x)| <
ε0 for all x ∈ [a, b] and n ≥ N , since the sequence f1, f2, f3, . . . of functions
converges uniformly to f on [a, b]. Now

−
∫ b

a

|fn(x)− f(x)| dx ≤
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx ≤
∫ b

a

|fn(x)− f(x)| dx.

It follows that∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|fn(x)− f(x)| dx ≤ ε0(b− a) < ε,

whenever n ≥ N . The result follows.
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5.4 Integrals over Unbounded Intervals

We define integrals over unbounded intervals by appropriate limiting pro-
cesses. Given any function f that is bounded and Riemann-integrable over
each closed bounded subinterval of [a, +∞), we define∫ +∞

a

f(x) dx = lim
b→+∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. Similarly, given any function f that
is bounded and Riemann-integrable over each closed bounded subinterval of
(−∞, b], we define ∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx,

provided that this limit is well-defined. If f is bounded and Riemann inte-
grable over each closed bounded interval in R then we define∫ +∞

−∞
f(x) dx = lim

a→−∞,b→+∞

∫ b

a

f(x) dx,

provided that this limit exists.

6 Analysis in the Complex Plane

A complex number is a number of the form x+iy, where x and y are real num-
bers and i2 = −1. Arithmetic operations on the set C of complex numbers
are defined as follows:

(x + iy) + (u + iv) = (x + u) + i(y + v),

(x + iy)− (u + iv) = (x− u) + i(y − v),

(x + iy)(u + iv) = (xu− yv) + i(xv + yu),

(x + iy)/(u + iv) =
xu + yv

u2 + v2
+ i

yu− xv

u2 + v2
(u + iv 6= 0).

If z ∈ C is given by z = x + iy, where x and y are real numbers, then the
real part Re z, imaginary part Im z, complex conjugate z and modulus |z| of
z are given by

Re z = x, Im z = y, z = x− iy, |z| = +
√

x2 + y2.

Note that (z + w) = z + w, (zw) = zw, | − z| = |z|, |z| = |z| and |z|2 = zz
for all complex numbers z and w. Moreover |z| = 0 if and only if z = 0.
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Lemma 6.1 |zw| = |z||w| and |z + w| ≤ |z|+ |w| for all z, w ∈ C.

Proof Let us write z = x + iy and w = u + iv, where x, y, u, v ∈ R. Then

|zw|2 = |xu− yv + i(xv + yu)|2 = (xu− yv)2 + (xv + yu)2

= (x2u2 + y2v2 − 2xuyv) + (x2v2 + y2u2 + 2xvyu)

= (x2 + y2)(u2 + v2) = |z|2|w|2,

so that |zw| = |z||w|. Moreover

|z + w|2 = (x + u)2 + (y + v)2 = x2 + u2 + y2 + v2 + 2xu + 2yv

= |z|2 + |w|2 + 2(xu + yv).

But
(xu + yv) ≤ +

√
(xu + yv)2 + (yu− xv)2 = |zw|

and |zw| = |z||w| = |z||w|. Thus

|z + w|2 ≤ |z|2 + |w|2 + 2|z||w| = (|z|+ |w|)2,

so that |z + w| ≤ |z|+ |w|, as required.

6.1 Infinite Sequences of Complex Numbers

Definition A sequence z1, z2, z3, . . . of complex numbers is said to converge
to some complex number l if the following criterion is satisfied:

for every real number ε satisfying ε > 0 there exists some nat-
ural number N such that |zn − l| < ε for all natural numbers n
satisfying n ≥ N .

The complex number l is referred to as the limit of the sequence z1, z2, z3, . . .,
and is denoted by lim

n→+∞
zn.

A sequence z1, z2, z3, . . . of complex numbers is said to be bounded if there
exists some real number R ≥ 0 such that |zn| ≤ R for all n. Every convergent
sequence of complex numbers is bounded.

Example The sequence w, w2, w3, . . . convergens to 0 for any complex num-
ber w satisfying |w| < 1. Indeed suppose that ε > 0 is given. If N is chosen
such that N > log ε/ log |w| then |wn| < ε for all n ≥ N .
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Lemma 6.2 Let z1, z2, z3, . . . be an infinite sequence of complex numbers,
and, for each n, let zn = xn + iyn, where xn, yn ∈ R. Then lim

n→+∞
zn = l for

some l ∈ C if and only if lim
n→+∞

xn = λ and lim
n→+∞

yn = µ, where λ + iµ = l.

Proof Suppose that zn → l as n → +∞, where l = λ + iµ. Then, given any
ε > 0, there exists some natural number N such that |zn − l| < ε whenever
n ≥ N . But then |xn − λ| < ε and |yn − µ| < ε whenever n ≥ N . We
conclude that xn → λ and yn → µ as n → +∞.

Conversely suppose that xn → λ and yn → µ as n → +∞. Let ε > 0 be
given. Then there exist natural numbers N1 and N2 such that |xn−λ| < ε/

√
2

whenever n ≥ N1 and |yn − µ| < ε/
√

2 whenever n ≥ N2. Let N be the
maximum of N1 and N2. If n ≥ N then

|zn − l|2 = |xn − λ|2 + |yn − µ|2 < 1
2
ε2 + 1

2
ε2 = ε2,

and thus |zn − l| < ε. This shows that zn → l as n → +∞, as required.

Proposition 6.3 Let (zn) and (wn) be convergent infinite sequences of com-
plex numbers. Then the sequences (zn + wn), (zn − wn) and (znwn) are
convergent, and

lim
n→+∞

(zn + wn) = lim
n→+∞

zn + lim
n→+∞

wn,

lim
n→+∞

(zn − wn) = lim
n→+∞

zn − lim
n→+∞

wn,

lim
n→+∞

(znwn) =

(
lim

n→+∞
zn

)(
lim

n→+∞
wn

)
.

If in addition wn 6= 0 for all n ∈ N and lim
n→+∞

wn 6= 0, then the sequence

(zn/wn) is convergent, and

lim
n→+∞

zn

wn

=
lim

n→+∞
zn

lim
n→+∞

wn

.

Proof This result can be proved either by a straightforward adaptation of
the proof of Proposition 2.2, or else by splitting the sequences into their real
and imaginary parts, and using Lemma 6.2 and Proposition 2.2.

A subsequence of a given sequence z1, z2, z3, . . . of complex numbers is a
sequence of the form zn1 , zn2 , zn3 , . . ., where n1 < n2 < n3 < · · · .

Theorem 6.4 (Bolzano-Weierstrass) Every bounded sequence of complex
numbers has a convergent subsequence

44



Proof Let z1, z2, z3, . . . be a bounded sequence of complex numbers, and
let zn = xn + iyn, where xn, yn ∈ R. The Bolzano-Weierstrass Theorem
for sequences of real numbers (Theorem 2.4) guarantees the existence of a
subsequence zn1 , zn2 , zn3 , . . . of the given sequence such that the real parts
xn1 , xn2 , xn3 , . . . converge. A further application of Theorem 2.4 then allows
to replace this subsequence by a subsequence of itself in order to ensure that
the imaginary parts yn1 , yn2 , yn3 , . . . also converge. But then zn1 , zn2 , zn3 , . . .
is a convergent subsequence of z1, z2, z3, . . ., by Lemma 6.2.

6.2 Cauchy’s Criterion for Convergence

Definition A sequence z1, z2, z3, . . . of complex numbers is said to be a
Cauchy sequence if the following condition is satisfied:

for every real number ε satisfying ε > 0 there exists some natural
number N such that |zm − zn| < ε for all natural numbers m
and n satisfying m ≥ N and n ≥ N .

Lemma 6.5 Every Cauchy sequence of complex numbers is bounded.

Proof Let z1, z2, z3, . . . be a Cauchy sequence. Then there exists some nat-
ural number N such that |zn − zm| < 1 whenever m ≥ N and n ≥ N . In
particular, |zn| ≤ |zN | + 1 whenever n ≥ N . Therefore |zn| ≤ R for all n,
where R is the maximum of the real numbers |z1|, |z2|, . . . , |zN−1| and |zN |+1.
Thus the sequence is bounded, as required.

The following important result is known as Cauchy’s Criterion for con-
vergence, or as the General Principle of Convergence.

Theorem 6.6 (Cauchy’s Criterion for Convergence) An infinite sequence of
complex numbers is convergent if and only if it is a Cauchy sequence.

Proof First we show that convergent sequences are Cauchy sequences. Let
z1, z2, z3, . . . be a convergent sequence, and let l = lim

n→+∞
zj. Let ε > 0 be

given. Then there exists some natural number N such that |zn − l| < 1
2
ε for

all n ≥ N . Thus if m ≥ N and n ≥ N then |zm − l| < 1
2
ε and |zn − l| < 1

2
ε,

and hence

|zm − zn| = |(zm − l)− (zn − l)| ≤ |zm − l|+ |zn − l| < ε.

Thus the sequence z1, z2, z3, . . . is a Cauchy sequence.
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Conversely we must show that any Cauchy sequence z1, z2, z3, . . . is con-
vergent. Now Cauchy sequences are bounded, by Lemma 6.5. The sequence
z1, z2, z3, . . . therefore has a convergent subsequence zn1 , zn2 , zn3 , . . ., by the
Bolzano-Weierstrass Theorem (Theorem 6.4). Let l = limj→+∞ znj

. We
claim that the sequence z1, z2, z3, . . . itself converges to l.

Let ε > 0 be given. Then there exists some natural number N such
that |zn − zm| < 1

2
ε whenever m ≥ N and n ≥ N (since the sequence is a

Cauchy sequence). Let j be chosen large enough to ensure that nj ≥ N and
|znj

− l| < 1
2
ε. Then

|zn − l| ≤ |zn − znj
|+ |znj

− l| < 1
2
ε + 1

2
ε = ε

whenever n ≥ N , and thus zn → l as n → +∞, as required.

6.3 Limits of Functions of a Complex Variable

Let D be a subset of the set C of complex numbers A complex number w
is said to be a limit point of D if and only if, given any δ > 0, there exists
z ∈ D satisfying 0 < |z − w| < δ.

Definition Let f : D → C be a function defined over some subset D of C.
Let w be a limit point of D. A complex number l is said to be the limit of the
function f as z tends to w in D if, given any real number ε satisfying ε > 0,
there exists some real number δ satisfying δ > 0 such that |f(z)− l| < ε for
all z ∈ D satisfying 0 < |z − w| < δ.

If l is the limit of f(z) as z approaches some limit point w of the domain of
the function f then we denote this fact either by writing ‘f(z) → l as z → w’
or by writing ‘ lim

z→w
f(z) = l’. A straightforward adaptation of the proof of

Lemma 3.1 shows that the limit lim
z→w

f(z), if it exists, is unique.

Proposition 6.7 Let f : D → C and g: D → C be functions defined over
some subset D of C. Let w be a limit point of D. Suppose that lim

z→w
f(z) and

lim
z→w

g(z) exist. Then lim
z→w

(f(z) + g(z)), lim
z→w

(f(z)− g(z)) and lim
z→w

(f(z)g(z))

exist, and

lim
z→w

(f(z) + g(z)) = lim
z→w

f(z) + lim
z→w

g(z),

lim
z→w

(f(z)− g(z)) = lim
z→w

f(z)− lim
z→w

g(z),

lim
z→w

(f(z)g(z)) = lim
z→w

f(z) lim
z→w

g(z).
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If in addition g(z) 6= 0 for all z ∈ D and lim
z→w

g(z) 6= 0, then lim
z→w

f(z)/g(z)

exists, and

lim
z→w

f(z)

g(z)
=

lim
z→w

f(z)

lim
z→w

g(z)
.

Proof Let l = lim
z→w

f(z) and m = lim
z→w

g(z).

First we prove that lim
z→w

(f(z) + g(z)) = l + m. Let ε > 0 be given. We

must prove that there exists some δ > 0 such that |f(z)+ g(z)− (l +m)| < ε
for all z ∈ D satisfying 0 < |z − w| < δ. Now there exist δ1 > 0 and δ2 > 0
such that |f(z) − l| < 1

2
ε for all z ∈ D satisfying 0 < |z − w| < δ1, and

|g(z)−m| < 1
2
ε for all z ∈ D satisfying 0 < |z − w| < δ2, since l = lim

z→w
f(z)

and m = lim
z→w

g(z). Let δ be the minimum of δ1 and δ2. If z ∈ D satisfies

0 < |z − w| < δ then |f(z)− l| < 1
2
ε and |g(z)−m| < 1

2
ε, and hence

|f(z) + g(z)− (l + m)| ≤ |f(z)− l|+ |g(z)−m| < 1
2
ε + 1

2
ε = ε

This shows that lim
z→w

(f(z) + g(z)) = l + m.

Let c be some complex number. We show that lim
z→w

(cg(z)) = cm. The

case when c = 0 is trivial. Suppose that c 6= 0. Let ε > 0 be given. Then
there exists some real number δ > 0 such that |g(z) −m| < ε/|c| whenever
0 < |z − w| < δ. But then |cg(z) − cm| = |c||g(z) − m| < ε whenever
0 < |z − w| < δ. Thus lim

z→w
(cg(z)) = cm.

If we combine this result, for c = −1, with the previous result, we see
that lim

z→w
(−g(z)) = −m, and therefore lim

z→w
(f(z)− g(z)) = l −m.

Next we show that if p: D → R and q: D → R are functions with the
property that lim

z→w
p(z) = lim

z→w
q(z) = 0, then lim

z→w
(p(z)q(z)) = 0. Let ε > 0 be

given. Then there exist real numbers δ1 > 0 and δ2 > 0 such that |p(z)| <
√

ε
whenever 0 < |z − w| < δ1 and |q(z)| <

√
ε whenever 0 < |z − w| < δ2. Let

δ be the minimum of δ1 and δ2. If 0 < |z − w| < δ then |p(z)q(z)| < ε. We
deduce that lim

z→w
(p(z)q(z)) = 0.

We can apply this result with p(z) = f(z)− l and q(z) = g(z)−m for all
z ∈ D. Using the results we have already obtained, we see that

0 = lim
z→w

(p(z)q(z)) = lim
z→w

(f(z)g(z)− f(z)m− lg(z) + lm)

= lim
z→w

(f(z)g(z))−m lim
z→w

f(z)− l lim
z→w

g(z) + lm = lim
z→w

(f(z)g(z))− lm.

Thus lim
z→w

(f(z)g(z)) = lm.
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Next we show that if h: D → R is a function that is non-zero through-
out D, and if lim

z→w
h(z) → 1 then lim

z→w
(1/h(z)) = 1. Let ε > 0 be given. Let

ε0 be the minimum of 1
2
ε and 1

2
. Then there exists some δ > 0 such that

|h(z) − 1| < ε0 whenever 0 < |z − w| < δ. Thus if 0 < |z − w| < δ then
|h(z)− 1| < 1

2
ε and |h(z)| ≥ 1− |1− h(z)| > 1

2
. But then∣∣∣∣ 1

h(z)
− 1

∣∣∣∣ =

∣∣∣∣h(z)− 1

h(z)

∣∣∣∣ =
|h(z)− 1|
|h(z)|

< 2|h(z)− 1| < ε.

We deduce that lim
z→w

1/h(z) = 1. If we apply this result with h(z) = g(z)/m,

where m 6= 0, we deduce that lim
z→w

m/g(z) = 1, and thus lim
z→w

1/g(z) = 1/m.

The result we have already obtained for products of functions then enables
us to deduce that lim

z→w
(f(z)/g(z)) → l/m.

The proof of Proposition 6.7 is exactly analogous to the proof of the
corresponding result for real-valued functions (Proposition 3.2).

6.4 Continuous Functions of a Complex Variable.

Let D be a subset of C, and let f : D → C be a function on D. Let w be a
point of D. The function f is said to be continuous at w if, given any ε > 0,
there exists some δ > 0 such that |f(z)− f(w)| < ε for all z ∈ D satisfying
|z − w| < δ. If f is continuous at every point of D then we say that f is
continuous on D.

Let f : D → C be a function defined on some subset D of C, and let
w ∈ D. Suppose that w is a limit point of D. On comparing definitions, we
see that the function f is continuous at w if and only if lim

z→w
f(z) = f(w). If

w ∈ D is not a limit point of D then any function defined on D is continuous
there.

Given functions f : D → C and g: D → C defined over some subset D
of C, we denote by f + g, f − g, f · g and f/g the functions on D defined by

(f + g)(z) = f(z) + g(z), (f − g)(z) = f(z)− g(z),

(f · g)(z) = f(z)g(z), (f/g)(z) = f(z)/g(z).

Proposition 6.8 Let f : D → C and g: D → C be functions defined over
some subset D of C. Suppose that f and g are continuous at some point w
of D. Then the functions f + g, f − g and f · g are also continuous at w. If
moreover the function g is everywhere non-zero on D then the function f/g
is continuous at w.
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Proof This result follows directly using Proposition 6.7 and the relationship
between continuity and limits described above.

Proposition 6.9 Let f : D → C and g: E → C be functions defined on D
and E respectively, where D and E are subsets of C satisfying f(D) ⊂ E.
Let w be an element of D. Suppose that the function f is continuous at w
and that the function g is continuous at f(w). Then the composition g ◦ f of
f and g is continuous at w.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(ζ) −
g(f(w))| < ε for all ζ ∈ E satisfying |ζ − f(w)| < η. But then there exists
some δ > 0 such that |f(z)− f(w)| < η for all z ∈ D satisfying |z − w| < δ.
Thus if |z − w| < δ then |g(f(z))− g(f(w))| < ε. Hence g ◦ f is continuous
at w.

Lemma 6.10 Let f : D → C be a function defined on some subset D of C,
and let z1, z2, z3, . . . be a sequence of complex numbers belonging to D. Sup-
pose that zn → w as n → +∞, where w ∈ D, and that f is continuous at w.
Then f(zn) → f(w) as n → +∞.

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(z) −
f(w)| < ε for all z ∈ D satisfying |z − w| < δ. But then there exists some
positive integer N such that |zn − w| < δ for all n satisfying n ≥ N . Thus
|f(zn)− f(w)| < ε for all n ≥ N . Hence f(zn) → f(w) as n → +∞.

Proposition 6.11 Let f : D → C and g: E → C be functions defined on D
and E respectively, where D and E are subsets of C satisfying f(D) ⊂ E.
Let w be a limit point of D, and let l be an element of E. Suppose that
lim
z→w

f(z) = l and that the function g is continuous at l. Then lim
z→w

g(f(z)) =

g(l).

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(ζ) −
g(l)| < ε for all ζ ∈ E satisfying |ζ − l| < η. But then there exists δ > 0
such that |f(z) − l| < η for all z ∈ D satisfying 0 < |z − w| < δ. Thus if
0 < |z − w| < δ then |g(f(z))− g(l)| < ε. Hence lim

z→w
g(f(z)) = g(l).

6.5 Uniform Convergence

Let D be a subset of C and let f1, f2, f3, . . . , be a sequence of functions
mapping D into C. We say that the infinite sequence f1, f2, f3, . . . converges
uniformly on D to a function f : D → C if, given any ε > 0, there exists
some natural number N such that |fn(z) − f(z)| < ε for all z ∈ D and for
all natural numbers n satisfying n ≥ N , where the value of N chosen does
not depend on the value of z.
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Theorem 6.12 Let D be a subset of C, and let f1, f2, f3, . . . be a sequence of
continuous functions mapping D into C which is uniformly convergent on D
to some function f : D → C. Then the function f is continuous on D.

Proof Let w be an element of D. We wish to show that the function f is
continuous at w. Let ε > 0 be given. We must show that there exists some
δ > 0 such that |f(z) − f(w)| < ε whenever z ∈ D satisfies |z − w| < δ.
Now we can find some value of N , independent of z, with the property that
|fn(z)− f(z)| < 1

3
ε for all z ∈ D and for all n ≥ N . Choose any n satisfying

n ≥ N . We can find some δ > 0 such that |fn(z) − fn(w)| < 1
3
ε whenever

z ∈ D satisfies |z − w| < δ, since the function fn is continuous at w. But
then

|f(z)− f(w)| ≤ |f(z)− fn(z)|+ |fn(z)− fn(w)|+ |fn(w)− f(w)|
< 1

3
ε + 1

3
ε + 1

3
ε = ε

whenever |z−w| < δ. Thus the function f is continuous at w, as required.
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